03

Применение метода продолженных граничных условий к решению задачи дифракции волн на рассеивателях сложной геометрии, расположенных в однородной и неоднородной средах

© Д.В. Крысанов¹, А.Г. Кюркчан^{1,2,3}, С.А. Маненков¹

1 Московский технический университет связи и информатики,

111024 Москва, Россия

² Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН,

141190 Фрязино, Московская обл., Россия

³ Центральный научно-исследовательский институт связи,

111141 Москва, Россия

e-mail: dimok1993@mail.ru

Поступила в редакцию 04.12.2019 г. В окончательной редакции 04.12.2019 г. Принята к публикации 23.12.2019 г.

> На основе метода продолженных граничных условий предложена методика, позволяющая моделировать характеристики рассеяния для тел произвольной геометрии. В работе рассмотрена двумерная задача дифракции плоской волны на диэлектрических телах со сложной геометрией сечения, в частности на фракталоподобных телах. Проведено сравнение численных алгоритмов решения задачи дифракции на основе систем интегральных уравнений 1-го и 2-го рода. Приведено обобщение метода на задачу дифракции на цилиндрическом теле, расположенном в однородном магнитодиэлектрическом полупространстве. Корректность метода подтверждена при помощи проверки выполнения оптической теоремы для различных тел и путем сравнения с результатами расчетов, полученных модифицированным методом дискретных источников.

> Ключевые слова: дифракция волн на телах сложной геометрии, метод продолженных граничных условий, дифракция на телах, расположенных в плоскослоистой среде.

DOI: 10.21883/OS.2020.04.49199.327-19

Введение

Задача дифракции волн на диэлектрическом теле сложной геометрии является весьма актуальной и остается сравнительно слабо исследованной ввиду сложности ее решения. Результаты моделирования характеристик рассеяния волн диэлектрическими телами представляют большой интерес в таких, например, областях, как оптика неоднородных сред, лазерная дефектоскопия, проектирование поглощающих покрытий и др. [1-3]. Несмотря на то, что на данный момент разработан ряд аналитических и численных методов решения этих задач (наиболее распространенными из которых являются метод Т-матриц [4] и метод дискретных источников [5]), потребности в моделировании дифракционных процессов возрастают довольно быстро, в связи с чем вопрос разработки более универсальных методов решения задач дифракции все еще остается актуальным. Широкая популярность метода Т-матриц объясняется во многом тем, что с использованием этого метода можно сравнительно легко выполнять такую важную, например, в астрофизике процедуру, как усреднение характеристик рассеяния тела по углам его ориентации относительно падающей плоской волны. Однако традиционный (классический) вариант метода Т-матриц [4], как и некоторые его недавно разработанные модифицированные варианты [5,6], применимы к решению задач дифракции лишь на рассеивателях с аналитической границей.

В работах [7,8] было предложено обобщение метода Т-матриц на основе метода продолженных граничных условий (МПГУ) для решения задачи дифракции с условием Дирихле на границе в двумерном и трехмерном случаях. Двумерный случай был также рассмотрен для импедансного краевого условия [9]. Идея МПГУ заключается в переносе граничного условия с поверхности S рассеивателя на некоторую вспомогательную поверхность S_{δ} , которая располагается вне рассеивателя на некотором достаточно малом расстоянии δ от его границы. К главным достоинствам МПГУ можно отнести отсутствие ограничений на геометрию рассеивателя (в том числе он применим и для рассеивателей, имеющих изломы границы, и для тонких экранов). Кроме того, МПГУ предлагает единый подход к решению краевых задач, не зависящий от их типа, размерности, геометрии поверхности рассеивателя и характера рассеиваемого поля. Отметим также, что в рамках МПГУ задача дифракции может быть сведена к решению системы интегральных уравнений 1- или 2-рода, что невозможно также просто осуществить, например, при решении задачи методом поверхностных интегральных уравнений.

В настоящей работе предлагается обобщение описанной выше методики для решения двумерной задачи ди-

Рис. 1. Геометрия задачи дифракции на теле, расположенном в однородной среде.

фракции электромагнитных волн на диэлектрическом теле. Рассмотрены примеры моделирования характеристик рассеяния волн телами с поперечным сечением сложной геометрии и фракталоподобными телами. Приведены формулы и результаты расчетов диаграммы рассеяния тел сложной геометрии, расположенных в однородном диэлектрическом полупространстве.

1. Вывод основных соотношений

Пусть на бесконечно длинный магнитодиэлектрический цилиндр с образующей, параллельной оси OZ, и с направляющей S падает первичное электромагнитное поле \mathbf{E}^0 , \mathbf{H}^0 . Геометрия задачи изображена на рис. 1. Рассмотрим случай E-поляризации, когда вектор напряженности электрического поля \mathbf{E} имеет только одну составляющую E_z (ниже обозначаемую буквой U_- или U_+), параллельную образующей цилиндрического тела. Тогда на границе рассеивателя будут иметь место следующие условия сопряжения:

$$U_+|_S = U_-|_S, \quad \frac{\partial U_+}{\partial n}\Big|_S = \kappa \frac{\partial U_-}{\partial n}\Big|_S,$$
 (1)

где U_+ — поле внутри цилиндра, $U_- = U^0 + U^1$ полное поле вне тела, причем U^0 — падающее, а U^1 рассеянное (вторичное) поле, $\frac{\partial}{\partial n}$ — дифференцирование по направлению внешней к *S* нормали, $\kappa = \mu_i/\mu_e$, μ_i и μ_e — относительные магнитные проницаемости сред внутри и вне тела соответственно. Внешняя среда $(D_e = \mathscr{R}^2 \setminus \overline{D}, \overline{D} = D \cup S, D$ — область, ограниченная кривой *S*) и среда внутри цилиндра полагаются однородными, линейными и изотропными. На бесконечности предполагаются выполненными стандартные условия излучения для рассеянного поля. Воспользуемся следующими представлениями для решения уравнения Гельмгольца в областях *D* и *D*_e соответственно [5]:

$$U_{-}(\mathbf{r}) = U^{0}(\mathbf{r}) + \int_{S} \left\{ \frac{\partial U_{-}(\mathbf{r}')}{\partial n'} G_{-}(\mathbf{r}, \mathbf{r}') - U_{-}(\mathbf{r}') \frac{\partial G_{-}(\mathbf{r}; \mathbf{r}')}{\partial n'} \right\} ds',$$
$$U_{+}(\mathbf{r}) = -\int_{S} \left\{ \frac{\partial U_{+}(\mathbf{r}')}{\partial n'} G_{+}(\mathbf{r}, \mathbf{r}') - U_{+}(\mathbf{r}') \frac{\partial G_{+}(\mathbf{r}; \mathbf{r}')}{\partial n'} \right\} ds',$$
(2)

в которых $G_{\pm}(\mathbf{r};\mathbf{r}') = \frac{1}{4i}H_0^{(2)}(k_{\pm}|\mathbf{r}-\mathbf{r}'|)$ — это фундаментальные решения скалярного уравнения Гельмгольца в \mathscr{R}^2 с материальными параметрами сред D_e и D соответственно, причем k_+ и k_- — волновые числа среды внутри и вне рассеивателя. Потребовав в соответствии с МПГУ выполнения условий (1) на контуре S_{δ}^- , расположенном в $\mathscr{R}^2 \setminus \overline{D}$, и на контуре S_{δ}^+ , расположенном в области D (рис. 1), с использованием соотношений (2), получим следующие системы интегральных уравнений (СИУ) Фредгольма 1-го или 2-го рода соответственно:

$$\begin{split} &\int_{S} \left\{ \frac{\partial U(\mathbf{r}')}{\partial n'} \left(G_{-}(\mathbf{r}_{-};\mathbf{r}') + \kappa G_{+}(\mathbf{r}_{+};\mathbf{r}') \right) \right\} ds' = -U^{0}(\mathbf{r}_{-}), \\ &\int_{S} \left\{ \frac{\partial G_{-}(\mathbf{r}_{-};\mathbf{r}')}{\partial n'} + \frac{\partial G_{+}(\mathbf{r}_{+};\mathbf{r}')}{\partial n} \right) \right\} ds' = -U^{0}(\mathbf{r}_{-}), \\ &\int_{S} \left\{ \frac{\partial U(\mathbf{r}')}{\partial n'} \left(\frac{\partial G_{-}(\mathbf{r}_{-};\mathbf{r}')}{\partial n} + \frac{\partial G_{+}(\mathbf{r}_{+};\mathbf{r}')}{\partial n} \right) \right\} ds' = \\ &- U(\mathbf{r}') \left(\frac{\partial^{2}G_{-}(\mathbf{r}_{-};\mathbf{r}')}{\partial n \partial n'} + \frac{1}{\kappa} \frac{\partial^{2}G_{+}(\mathbf{r}_{+};\mathbf{r}')}{\partial n \partial n'} \right) ds' = \\ &- \frac{\partial U^{0}(\mathbf{r}_{-})}{\partial n}, \\ &U(\mathbf{r}) = \frac{1}{2} U^{0}(\mathbf{r}_{-}) \\ &+ \frac{1}{2} \int_{S} \left\{ \frac{\partial U(\mathbf{r}')}{\partial n'} \left(G_{-}(\mathbf{r}_{-};\mathbf{r}') - \kappa G_{+}(\mathbf{r}_{+};\mathbf{r}') \right) \right. \\ &- U(\mathbf{r}') \left(\frac{\partial G_{-}(\mathbf{r}_{-};\mathbf{r}')}{\partial n'} - \frac{\partial G_{+}(\mathbf{r}_{+};\mathbf{r}')}{\partial n'} \right) \right\} ds', \\ &\frac{\partial U(\mathbf{r})}{\partial n} = \frac{1}{1+\kappa} \frac{\partial U^{0}(\mathbf{r}_{-})}{\partial n} + \frac{1}{1+\kappa} \\ &\times \int_{S} \left\{ \frac{\partial U(\mathbf{r}')}{\partial n'} \left(\frac{\partial G_{-}(\mathbf{r}_{-};\mathbf{r}')}{\partial n} - \kappa \frac{\partial G_{+}(\mathbf{r}_{+};\mathbf{r}')}{\partial - n} \right) \right. \\ &- U(\mathbf{r}') \left(\frac{\partial^{2}G_{-}(\mathbf{r}_{-};\mathbf{r}')}{\partial n\partial n'} - \frac{\partial^{2}G_{+}(\mathbf{r}_{+};\mathbf{r}')}{\partial - n} \right) \\ &- U(\mathbf{r}') \left(\frac{\partial^{2}G_{-}(\mathbf{r}_{-};\mathbf{r}')}{\partial n\partial n'} - \frac{\partial^{2}G_{+}(\mathbf{r}_{+};\mathbf{r}')}{\partial - n} \right) \right\} ds', \end{aligned}$$

где точки наблюдения $M(\mathbf{r}_{\pm})$ принадлежат контурам S_{δ}^+ , а точка $M(\mathbf{r}) \in S$ и обозначено $U = U_-$. Отметим, что чаще всего в качестве S_{δ}^{\pm} [5,10] выбирают контуры, отстоящие от S на некоторое достаточно малое расстояние δ , т. е. рассматривают эквидистантные контуры. Пусть уравнение границы S задано в параметрическом виде

$$\begin{cases} x = x'(t), \\ y = y'(t), t \in [0, t_{\max}]. \end{cases}$$
(5)

Тогда уравнения смещенных контуров S^{\mp} записываются следующим образом:

$$\begin{cases} x = x'(t) \pm n_x(t)\delta, \\ y = y'(t) \pm n_y(t)\delta, \end{cases}$$
(6)

где n_x и n_y — координаты нормали к границе тела *S*. Для решения систем (3) и (4) используем метод Крылова-Боголюбова. Для этого запишем системы уравнений (3) и (4) в виде

$$\int_{0}^{t_{\text{max}}} K_{11}(t, t') I_{1}(t') + K_{12}(t, t') I_{2}(t') dt' = b_{1}(t),$$

$$\int_{0}^{t_{\text{max}}} K_{21}(t, t') I_{1}(t') + K_{22}(t, t') I_{2}(t') dt' = b_{2}(t), \quad (7)$$

$$I_{1}(t) + \int_{0}^{t_{\max}} \tilde{K}_{11}(t, t') I_{1}(t') + \tilde{K}_{12}(t, t') I_{2}(t') dt' = \tilde{b}_{1}(t),$$

$$I_{2}(t) + \int_{0}^{t_{\max}} \tilde{K}_{21}(t, t') I_{1}(t') + \tilde{K}_{22}(t, t') I_{2}(t') dt' = \tilde{b}_{2}(t), \quad (8)$$

в которых

$$I_{1}(t') = U(\mathbf{r}'(t')), \ I_{2}(t') = \frac{\partial U(\mathbf{r}'(t'))}{\partial n'},$$

$$\xi(t') = \sqrt{\dot{x}'(t')^{2} + \dot{y}'(t')^{2}},$$

$$K_{11} = -\left(\frac{\partial G_{-}(\mathbf{r}_{-};\mathbf{r}')}{\partial n'} + \frac{\partial G_{+}(\mathbf{r}_{+};\mathbf{r}')}{\partial n'}\right)\xi(t'),$$

$$K_{12} = \left(G_{-}(\mathbf{r}_{-};\mathbf{r}') + \kappa G_{+}(\mathbf{r}_{+};\mathbf{r}')\right)\xi(t'),$$

$$K_{21} = -\left(\frac{\partial^{2}G_{-}(\mathbf{r}_{-};\mathbf{r}')}{\partial n\partial n'} + \frac{1}{\kappa}\frac{\partial^{2}G_{+}(\mathbf{r}_{+};\mathbf{r}')}{\partial n\partial n'}\right)\xi(t'),$$

$$K_{22} = \left(\frac{\partial G_{-}(\mathbf{r}_{-};\mathbf{r}')}{\partial n} + \frac{\partial G_{+}(\mathbf{r}_{+};\mathbf{r}')}{\partial n}\right)\xi(t'),$$

$$b_{1}(t) = -U^{0}(\mathbf{r}(t)), \ b_{2}(t) = -\frac{\partial U^{0}(\mathbf{r}_{-}(t))}{\partial n}, \qquad (9)$$

$$\tilde{K}_{11} = -\frac{1}{2}\left(\frac{\partial G_{-}(\mathbf{r}_{-};\mathbf{r}')}{\partial n'} - \frac{\partial G_{+}(\mathbf{r}_{+};\mathbf{r}')}{\partial n'}\right)\xi(t'),$$

$$\tilde{K}_{12} = \frac{1}{2}\left(G_{-}(\mathbf{r}_{-};\mathbf{r}') + \kappa G_{+}(\mathbf{r}_{+};\mathbf{r}')\right)\xi(t'),$$

$$\tilde{K}_{21} = \frac{1}{1+\kappa}\left(\frac{\partial^{2}G_{-}(\mathbf{r}_{-};\mathbf{r}')}{\partial n\partial n'} - \frac{\partial^{2}G_{+}(\mathbf{r}_{+};\mathbf{r}')}{\partial n\partial n'}\right)\xi(t'),$$

$$\tilde{K}_{22} = \frac{1}{1+\kappa} \left(\frac{\partial G_{-}(\mathbf{r}_{-};\mathbf{r}')}{\partial n} - \kappa \frac{\partial G_{+}(\mathbf{r}_{+};\mathbf{r}')}{\partial n} \right) \xi(t'),$$
$$\tilde{b}_{1}(t) = -\frac{1}{2} U^{0}(\mathbf{r}_{-}(t)), \ \tilde{b}_{2}(t) = \frac{1}{1+\kappa} \frac{\partial U^{0}(\mathbf{r}_{-}(t))}{\partial n}.$$
(10)

Точка в (9) означает производную по t. Представим далее неизвестные функции $I_{1,2}(t)'$ в виде сумм

$$I_q \cong \sum_{n=1}^N c_n^q \Phi_n(t'), \ q = 1, 2,$$
 (11)

где $\Phi_n(t')$ — импульсные функции:

$$\Phi_n(t)' = \begin{cases} 1, & t \in [t_n - \Delta/2, t_n + \Delta/2], \\ 0, & t \notin [t_n - \Delta/2, t_n + \Delta/2]. \end{cases}$$
(12)

Здесь $t_n = \frac{t_{\max}}{N} \left(n - \frac{1}{2}\right)$, $n = \overline{1, N}$, $\Delta = \frac{t_{\max}}{N}$ — шаг сетки, N — число базисных функций. Далее, подставив (11) в системы интегральных уравнений (7) и (8) и приравняв левую и правую части в точках коллокации с координатами $(x(t_n), y(t_n))$, выбранных на кривых, получим следующие системы алгебраических уравнений относительно величин c_n^q :

$$\sum_{n=1}^{N} \left(K_{mn}^{11} c_n^1 + K_{mn}^{12} c_n^2 \right) = b_m^1,$$
$$\sum_{n=1}^{N} \left(K_{mn}^{21} c_n^1 + K_{mn}^{22} c_n^2 \right) = b_m^2, \ m = \overline{1, N},$$
(13)

или

$$c_{m}^{1} + \sum_{n=1}^{N} \left(\tilde{K}_{mn}^{11} c_{n}^{1} + \tilde{K}_{mn}^{12} c_{n}^{2} \right) = \tilde{b}_{m}^{1},$$
$$c_{m}^{2} + \sum_{n=1}^{N} \left(\tilde{K}_{mn}^{21} c_{n}^{1} + \tilde{K}_{mn}^{22} c_{n}^{2} \right) = \tilde{b}_{m}^{2}, \quad m = \overline{1, N}, \quad (14)$$

где матричные элементы и правые части вычисляются по формулам

$$K_{mn}^{pq} = \int_{t_n - \Delta/2}^{t_n + \Delta/2} K_{pq}(t_m, t) dt, \ b_m^p = b_p(t_m),$$
(15)

$$\tilde{K}_{mn}^{pq} = \int_{t_n - \Delta/2}^{t_n + \Delta/2} \tilde{K}_{pq}(t_m, t) dt, \ \tilde{b}_m^p = \tilde{b}_p(t_m), \, p, \, q = 1, \, 2.$$
(16)

Переходя к асимптотике рассеянного волнового поля при $\mathbf{r} \to \infty$ с учетом формул (2), (5), (11) и (12) получим следующее выражение для диаграммы рассеяния:

$$g(\varphi) = \frac{i\Delta}{4} \sum_{n=1}^{N} (c_n^2 - c_n^1 i k_- (n'_x)(t_n) \cos \varphi + n'_y(t_n \sin \varphi)) \xi(t_n) e^{ik_- (x'(t_n) \cos \varphi + y'(t_n \sin \varphi))}.$$
 (17)

Оптика и спектроскопия, 2020, том 128, вып. 4

Рис. 2. Геометрия задачи дифракции на теле, расположенном в диэлектрическом полупространстве.

Формулы (13)-(17) дают два численных алгоритма (основанных на системах уравнений 1- и 2-рода) для решения сформулированной задачи дифракции.

Одним из критериев правильности полученных результатов является оптическая теорема, которая записывается в виде [11]

$$\sigma = -\operatorname{Re}(g(\varphi = \varphi_0)), \qquad (18)$$

где

$$\sigma = \frac{1}{2\pi} \int_{0}^{2\pi} |g(\varphi)|^2 d\varphi.$$
(19)

В качестве оценки точности выполнения оптической теоремы будем рассчитывать величину, которая представляет собой относительную разность левой и правой частей в формуле (18):

$$\Delta_{ot} \equiv \frac{|\sigma + \operatorname{Re}(g(\varphi_0))|}{\sigma}.$$
 (20)

2. Рассеяние на цилиндрическом теле, погруженном в однородное диэлектрическое полупространство

Обобщим предлагаемую методику на случай, когда рассеивающее препятствие расположено в однородном магнитодиэлектрическом полупространстве. Геометрия задачи изображена на рис. 2. Обозначим материальные параметры сред при y > d и y < d через ε_1 , μ_1 и ε_2 , μ_2 соответственно (y = d — граница раздела сред). На границе раздела предполагаются выполненными условия сопряжения

$$U|_{y=d} = U_{-}|_{y=d}, \ \frac{1}{\mu_1} \left. \frac{\partial U}{\partial y} \right|_{y=d} = \frac{1}{\mu_2} \left. \frac{\partial U_{-}}{\partial n} \right|_{y=d},$$
(21)

где *U* и *U*₋ — полное поле в верхнем и нижнем полупространстве соответственно. В качестве падающего Как и в случае дифракции на теле, в однородной среде полное поле в нижнем полупространстве, в котором расположено тело, и поле внутри рассеивателя имеют вид (2), где функция Грина $G_{-}(\mathbf{r}, \mathbf{r}')$ заменяется на следующую:

$$G_{-}(\mathbf{r}, \mathbf{r}') = -\frac{i}{4} H_{0}^{(2)}(k_{-}|\mathbf{r} - \mathbf{r}'|) - \frac{i}{4\pi} \int_{-\infty}^{\infty} R(w)$$

$$\times \exp(-i\gamma_{-}(2d - y - y') - iw(x - x')) \frac{dw}{\gamma_{-}}$$

$$= G_{-}^{\mathrm{I}}(\mathbf{r}; \mathbf{r}') + G_{-}^{\mathrm{II}}(\mathbf{r}; \mathbf{r}'), \qquad (22)$$

где $R(w) = \frac{\gamma_- - \mu_{21}\gamma}{\gamma_- + \mu_{21}\gamma}, \quad \gamma_- = \sqrt{k_-^2 - w^2}, \quad \gamma = \sqrt{k^2 - w^2}.$ При этом знак корня выбирается так, чтобы его мнимая часть была неположительна. В приведенных формулах обозначено $k = \omega \sqrt{\varepsilon_1 \mu_1}, \, k_- = \omega \sqrt{\varepsilon_2 \mu_2}, \, \mu_{12} = \mu_1/\mu_2, \, \mu_{21} = \mu_2/\mu_1.$

Дальнейшее решение задачи вновь сводится к СИУ относительно поля и его нормальной производной на границе рассеивателя. Будем решать задачу дифракции, используя, например, СИУ 2-го рода. В результате получим СИУ в виде (8), причем ядра интегральных уравнений записываются следующим образом:

$$\tilde{K}_{pq} = \tilde{K}_{pq}^{\text{I}} + \tilde{K}_{pq}^{\text{II}}, \ p, q = 1, 2,$$
(23)

где первые слагаемые такие же, как для тела в однородной среде с волновым числом k_{-} , а добавочные слагаемые, обусловленные наличием границы раздела, имеют вид

$$\tilde{K}_{11}^{\text{II}} = -\frac{1}{2} \frac{\partial G_{-}^{\text{II}}(\mathbf{r}_{-};\mathbf{r}')}{\partial n'} \xi(t'), \quad \tilde{K}_{12}^{\text{II}} = \frac{1}{2} G_{-}^{\text{II}}(\mathbf{r}_{-};\mathbf{r}')\xi(t'),$$
$$\tilde{K}_{21}^{\text{II}} = -\frac{1}{1+\kappa} \frac{\partial^2 G_{-}^{\text{II}}(\mathbf{r}_{-},\mathbf{r}')}{\partial n \partial n'} \xi(t'),$$
$$\tilde{K}_{22}^{\text{II}} = \frac{1}{1+\kappa} \frac{\partial G_{-}^{\text{II}}(\mathbf{r}_{-},\mathbf{r}')}{\partial n} \xi(t'). \quad (24)$$

Кроме того, в отличие от случая дифракции на теле в однородной среде при дифракции на теле в полупространстве, первичное поле записывается следующим образом:

$$U^{0}(\mathbf{r}) = \frac{2k\cos\theta_{0}}{k\cos\theta_{0} + \mu_{12}\sqrt{k_{-}^{2} - k^{2}\sin^{2}\theta_{0}}}$$

$$\times \exp(ikd\cos\theta_{0} - id\sqrt{k_{-}^{2} - i^{2}\sin^{2}\theta_{0}})$$

$$\times \exp(-ikx\sin\theta_{0} + iy\sqrt{k_{-}^{2} - k^{2}\sin^{2}\theta_{0}}),$$
(25)

где θ_0 — угол падения плоской волны. СИУ вновь решается методом Крылова–Боголюбова, однако в силу

того, что добавочные ядра интегральных уравнений являются медленно меняющимися функциями координат, матричные элементы СЛАУ можно вычислять по приближенной формуле

$$\tilde{K}_{mn}^{pq} \approx \int\limits_{t_n - \Delta/2}^{t_n + \Delta/2} \tilde{K}_{pq}^{\mathrm{I}}(t_m, t) dt + \tilde{K}_{pq}^{\mathrm{II}}(t_m, t_n) \Delta, \ p, q = 1, 2.$$
(26)

Приведем формулы для расчета диаграммы рассеяния в верхнем полупространстве. Диаграмма имеет вид

$$g(\varphi) = \frac{i\Delta}{4} \frac{2k\sin\varphi}{\mu_{21}k\sin\varphi + \sqrt{k_{-}^2 - k^2\cos^2\varphi}}$$

$$\times \exp(ikd\sin\varphi - id\sqrt{k_{-}^2 - k^2\cos^2\varphi})$$

$$\times \sum_{n=1}^{N} \left(c_n^2 - c_n^1 \left(in'_x(t_n)k\cos\varphi + in'_y(t_n)\sqrt{k_{-}^2 - k^2\cos^2\varphi}\right)\right)$$

$$\times e^{i\left(kx'(t_n)\cos\varphi + y'(t_n)\sqrt{k_{-}^2 - k^2\cos^2\varphi}\right)} \xi(t_n). \quad (27)$$

3. Численные результаты

Рассмотрим результаты численного моделирования. Всюду в дальнейшем будем предполагать, что тело облучается плоской волной. В качестве примера рассмотрим сначала задачу дифракции на эллиптическом цилиндре, цилиндре с сечением в виде четырехлистника и цилиндре с прямоугольным сечением. Уравнение контура тела с сечением в виде четырехлистника имеет вид (в полярных координатах)

$$r = a(1 + \tau \cos 4\varphi), \ 0 < \tau < 1.$$
 (28)

На рис. 3-5 приведены угловые зависимости диаграммы рассеяния для соответствующей геометрии, полученные для следующих значений параметров задачи: $k\delta = 10^{-4}, \ \varphi_0 = 0, \ \mu_i = 1, \ \varepsilon_i = 4$ (материальные параметры внешней среды всюду $\mu_e = 1$, $\varepsilon_e = 1$). Размеры тел имели следующие значения: полуоси эллипса или половины длин сторон прямоугольника ka = 5, kb = 1,параметры ka = 5 и $\tau = 0.5$ для тела с сечением в виде четырехлистника. Результаты сравнивались с диаграммами, построенными при помощи модифицированного метода дискретных источников (ММДИ) [5,12]. Отметим, что ММДИ не может быть непосредственно применен к задаче дифракции на телах, имеющих изломы границы, поэтому для решения задачи при помощи ММДИ проводилась аппроксимация контура осевого сечения тела гладким контуром [12]. Отметим также, что ММДИ обеспечивает высокую точность расчета для тел с гладкой границей таких, как эллипс, многолистник И Т.Д.

Рис. 3. Угловая зависимость диаграммы рассеяния эллиптического цилиндра. Кривая *1* — ММДИ, кривая *2* — МПГУ.

Рис. 4. Угловая зависимость диаграммы рассеяния тела с сечением в виде четырехлистника. Кривая *1* — ММДИ, кривая *2* — МПГУ.

Таблица 1. Сравнение результатов, полученных при помощи ММДИ и МПГУ. Дифракция на эллиптическом цилиндре

N	СИУ 1-го рода		СИУ 2-го рода		
	Абсолютная погрешность	Относительная погрешность	Абсолютная погрешность	Относительная погрешность	
48	$1.295\cdot10^{-2}$	2.038%	$1.453\cdot 10^{-1}$	24.297%	
96	$1.904 \cdot 10^{-3}$	0.230%	$4.183 \cdot 10^{-2}$	7.238%	
192	$6.096 \cdot 10^{-4}$	0.067%	$1.144 \cdot 10^{-2}$	2.003%	
288	$5.834\cdot 10^{-4}$	0.075%	$5.539 \cdot 10^{-3}$	0.977%	
384	$5.607\cdot 10^{-4}$	0.075%	$3.450 \cdot 10^{-3}$	0.612%	

Рис. 5. Угловая зависимость диаграммы рассеяния тела с прямоугольным сечением. Кривая *I* — ММДИ, кривая *2* — МПГУ.

Таблица 2. Сравнение результатов, полученных при помощи ММДИ и МПГУ. Дифракция на теле с сечением в виде четырехлистника

N	СИУ 1-го рода		СИУ 2-го рода		
	Абсолютная погрешность	Относительная погрешность	Абсолютная погрешность	Относительная погрешность	
48	$1.643\cdot 10^{-1}$	10.411%	$3.836\cdot 10^{-1}$	21.169%	
96	$2.499 \cdot 10^{-2}$	1.442%	$9.462 \cdot 10^{-2}$	5.125%	
192	$5.802 \cdot 10^{-3}$	0.325%	$2.534 \cdot 10^{-2}$	1.370%	
288	$2.984\cdot10^{-3}$	0.166%	$1.143 \cdot 10^{-2}$	0.619%	
384	$2.176 \cdot 10^{-3}$	0.121%	$6.474 \cdot 10^{-3}$	0.351%	

Таблица 3. Сравнение результатов, полученных при помощи ММДИ и МПГУ. Дифракция на теле с прямоугольным сечением

N	СИУ 1-го рода		СИУ 2-го рода		
	Абсолютная	Относительная	Абсолютная	Относительная	
	погрешность	погрешность	погрешность	погрешность	
48	$3.498\cdot 10^{-2}$	4.781%	$5.035 \cdot 10^{-2}$	6.795%	
96	$1.466 \cdot 10^{-2}$	1.956%	$1.417 \cdot 10^{-2}$	1.715%	
192	$7.358 \cdot 10^{-3}$	0.879%	$4.773 \cdot 10^{-3}$	0.466%	
288	$5.229\cdot 10^{-3}$	0.561%	$3.122\cdot 10^{-3}$	0.248%	
384	$4.219\cdot10^{-3}$	0.429%	$2.641 \cdot 10^{-3}$	0.208%	

В табл. 1–3 приведены разности модуля диаграммы рассеяния для указанной геометрии, полученные двумя методами: при помощи ММДИ и МПГУ. Как видно из табл. 1–3, разность результатов при увеличении числа используемых базисных функций, уменьшается. Из приведенных данных также следует, что для тел с гладкой границей использование уравнений 1-го рода

является более предпочтительным в силу более быстрой сходимости. В случае тела с прямоугольным сечением использование уравнений 2-го рода дает лучшие результаты.

На рис. 6 приведена геометрия фракталоподобных цилиндров с сечением в виде снежинки Коха и кривой Серпинского (1 итерация) [13]. Рисунки 7 и 8 иллюстрируют угловые зависимости диаграммы рассеяния для указанных цилиндров для следующих параметров задачи $k\delta = 10^{-4}$, $\mu_i = 1$, $\varepsilon_i = 4$. Максимальный поперечный размер тела с сечением в виде снежинки Коха и тела с сечением в виде кривой Серпинского по оси *x* составлял kL = 10. Рассматривалось два различных угла падения: $\varphi_0 = 0$ и $\varphi_0 = 45^\circ$. Как следует из рисунков для исследуемой геометрии точки максимума угловых зависимостей диаграммы рассеяния примерно совпадают с углами падения плоской волны. Видно также, что зависимость диаграммы как для тела с сечением в виде снежинки Коха, так и для тела с сечением в виде

Рис. 6. Геометрия тела с сечением в виде снежинки Коха (*a*) и кривой Серпинского (*b*).

Рис. 7. Угловая зависимость диаграммы рассеяния тела с сечением в виде снежинки Коха. Кривая 1 -угол падения волны $\varphi_0 = 0^\circ$, кривая 2 -угол падения $\varphi_0 = 45^\circ$.

N	Эллиптический цилиндр		Цилиндр с сечением четырехлистника		Цилиндр с прямоугольным сечением	
	Абсолютная погрешность	Относительная погрешность	Абсолютная погрешность	Относительная погрешность	Абсолютная погрешность	Относительная погрешность
48 96 192 288 384	$\begin{array}{c} 3.616 \cdot 10^{-2} \\ 1.057 \cdot 10^{-2} \\ 3.073 \cdot 10^{-3} \\ 1.616 \cdot 10^{-3} \\ 1.099 \cdot 10^{-3} \end{array}$	9.047% 2.622% 0.735% 0.368% 0.238%	$\begin{array}{c} 3.414 \cdot 10^{-1} \\ 1.235 \cdot 10^{-1} \\ 3.609 \cdot 10^{-2} \\ 1.687 \cdot 10^{-2} \\ 9.829 \cdot 10^{-3} \end{array}$	51.927% 18.859% 5.696% 2.670% 1.548%	$\begin{array}{c} 2.146 \cdot 10^{-2} \\ 4.928 \cdot 10^{-3} \\ 2.432 \cdot 10^{-3} \\ 2.121 \cdot 10^{-3} \\ 2.630 \cdot 10^{-3} \end{array}$	6.856% 1.611% 0.359% 0.354% 0.377%

Таблица 4. Сравнение результатов, полученных при помощи ММДИ и МПГУ. Дифракция на теле, расположенном в диэлектрическом полупространстве

Рис. 8. Угловая зависимость диаграммы рассеяния тела с сечением в виде кривой Серпинского. Кривая 1 — угол падения волны $\varphi_0 = 0^\circ$, кривая 2 — угол падения $\varphi_0 = 45^\circ$.

кривой Серпинского имеет достаточно большие боковые лепестки.

Была проведена проверка точности выполнения оптической теоремы для рассмотренной выше геометрии рассеивателей. Во всех случаях мы выбирали число базисных функций так, что $N_{\lambda} = 25$, где N_{λ} — число точек коллокации на одной длине волны. При этом относительная диэлектрическая проницаемость среды тела варьировалась в пределах от $\varepsilon_i = 4$ до $\varepsilon_i = 10^3$, а относительная магнитная проницаемость выбиралась равной единице. В результате расчетов получили, что относительная разность правой и левой частей равенства (18) — величина Δ_{ot} (см. формулу (20)) — не превосходит 5 · 10⁻³, т.е. мала.

В табл. 4 приведены результаты расчета диаграммы рассеяния, полученные при помощи МПГУ и ММДИ. Рассматривалась дифракция на теле, расположенном в диэлектрическом полупространстве. Размеры тел были выбраны такими же, как и в случае дифракции в

Рис. 9. Угловая зависимость диаграммы рассеяния тела, расположенного в диэлектрическом полупространстве. Кривая 1 — цилиндр с сечением в виде кривой Серпинского, кривая 2 — цилиндр с сечением в виде снежинки Коха, кривая 3 — цилиндр с сечением в виде правильного шестиугольника. Угол падения $\theta_0 = 0$ (*a*) и 45° (*b*).

однородной среде, а материальные параметры сред для верхнего и нижнего полупространств и цилиндрического тела имели следующие значения: $\mu_1 = 1$, $\varepsilon_1 = 1$, $\mu_2 = 1$, $\varepsilon_{2} = 2 - i \cdot 10^{-3}, \ \mu_{i} = 1, \ \varepsilon_{i} = 6.$ Величина d была выбрана так, что кратчайшее расстояние от границы всех тел до границы раздела сред составляло 1. Параметр $k\delta = 10^{-4}$. Из таблицы следует, что относительная разность результатов, полученных при помощи МПГУ и ММДИ, не превосходит 1.6%. На рис. 9 приведены угловые зависимости диаграммы рассеяния для цилиндров с сечением в виде правильного шестиугольника, снежинки Коха и кривой Серпинского (1 итерация), расположенных в однородном полупространстве. Зависимости диаграммы приведены для верхнего полупространства. Рассматривалось два различных угла падения плоской волны: $\theta_0 = 0$ и $\theta_0 = 45^\circ$. Как следует из рисунка, в случае нормального падения плоской волны диаграмма рассеяния для всех тел имеет главный лепесток (в направлении обратного рассеяния) и два боковых лепестка. В случае наклонного падения волны график диаграммы имеет осциллирующий характер.

Заключение

При помощи МПГУ разработаны два численных алгоритма на основе СИУ 1-го и 2-го рода, позволяющие рассчитывать характеристики рассеяния магнитодиэлектрических тел произвольной геометрии. Получены результаты расчета диаграммы рассеяния для большого набора тел с разной геометрией, в том числе фракталоподобных рассеивателей. Проведено сравнение методов на основе МПГУ с результатами, полученными при помощи ММДИ. МПГУ позволяет получать результаты расчета диаграммы рассеяния с достаточно высокой точностью. В случае гладкой границы тела метод на основе уравнений 1-го рода позволяет получать результаты с большей точностью. Проведена проверка точности выполнения оптической теоремы для рассматриваемой геометрии. Точность выполнения оптической теоремы составляет 5 · 10⁻³. Сравнение ММДИ и МПГУ для случая дифракции на цилиндрическом теле, расположенном в диэлектрическом полупространстве, показало хорошее совпадение результатов расчета. Построены угловые зависимости диаграммы рассеяния для тел, имеющих изломы границы, расположенных в диэлектрическом полупространстве.

Финансирование работы

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (проекты № 18-02-00961, 19-02-00654).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами. М.: Мир, 1986.; Bohren K.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. N.Y.: John Wiley & Sons, 1983.
- [2] Захарьев Л.Н., Леманский А.А. Рассеяние волн "черными" телами. М.: Сов. радио, 1972.
- [3] Mishchenko M.I., Zakharova N.T., Khlebtsov N.G., Videen G., Wriedt T. // J. Quant. Spectr. Rad. Trans. 2017. V. 202. P. 240.
- [4] Waterman P.C. // Proc. IEEE. 1965. V. 53. P. 805.
- [5] Кюркчан А.Г., Смирнова Н.И. Математическое моделирование в теории дифракции с использованием априорной информации об аналитических свойствах решения. М.: ИД Медиа Паблишер, 2014; Kyurkchan A.G., Smirnova N.I. Mathematical Modeling in Diffraction Theory Based on A Priori Information on the Analytical Properties of the Solution. Amsterdam: Elsevier, 2016
- [6] Кюркчан А.Г., Смирнова Н.И., Чиркова А.П. // РЭ. 2015. Т. 60. № 3. С. 247; Kyurkchan A.G., Smirnova N.I., Chirkova A.P. // J. Commun. Technol. Electron. 2015. V. 60. N 3. P. 232.
- [7] Кюркчан А.Г., Смирнова Н.И. // РЭ. 2017. Т. 62. № 5.
 С. 476; Kyurkchan A.G., Smirnova N.I. // J. Commun. Technol. Electron. 2017. V. 62. N 5. P. 502.
- [8] Кюркчан А.Г., Маненков С.А., Смирнова Н.И. // Опт. и спектр. 2019. Т. 126. № 5. С. 547; Kyurkchan A.G., Manenkov S.A., Smirnova N.I. // Opt. and Spectrosc. 2019. V. 126. N 5. P. 466.
- [9] Крысанов Д.В., Кюркчан А.Г. // Т-Сотт. Телекоммуникации и транспорт. 2017. Т. 11. № 7. С. 17.
- [10] Кюркчан А.Г., Анютин А.П. // ДАН. 2002. Т. 385. № 3. С. 309; Kyurkchan A.G., Anyutin A.P. // Doklady Mathematics. 2002. V. 66. N 1. P. 132.
- [11] Шендеров Е.Л. Излучение и рассеяние звука. Л.: Судостроение, 1989.
- [12] Kyurkchan A.G, Manenkov S.A. // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113. P. 2368.
- [13] Кроновер Р.М. Фракталы и хаос в динамических системах. Основы теории. М.: Постмаркет, 2000; Crownover R.M. Intoduction to Fractals and Chaos. Boston: Jones and Bartlett Publishers, 1995.