⁰⁸ Структурные превращения наносистемы (1 - x)Fe₂O₃-xRuO₂ при различных температурах восстановления

© А.В. Голубьев,¹ К.Н. Нищев,¹ В.И. Беглов,¹ В.М. Кяшкин,¹ И.Г. Бродская,¹ Ю.В. Максимов,² В.К. Имшенник,² С.В. Новичихин²

 ¹ Национальный исследовательский Мордовский государственный университет им. Н.П. Огарева, 430005 Саранск, Россия
² Институт химической физики им. Н.Н. Семенова РАН, 119991 Москва, Россия e-mail: begvi1@mail.ru

Поступило в Редакцию 9 августа 2018 г. В окончательной редакции 19 марта 2019 г. Принято к публикации 13 ноября 2019 г.

Методами конверсионной, абсорбционной мессбауэровской спектроскопии и рентгеновской дифракции изучены фазовый состав и структура оксидных и восстановленных водородом железо-рутениевых систем. В образцах с содержанием металлов (mass.%) 50Fe-50Ru после прокалки на воздухе при 773 и 973 К формируются наносистемы, содержащие две фазы различной степени дисперсности: α -Fe₂O₃ с примесью Ru и RuO₂ с примесью Fe соответственно. Изучены структурные превращения наносистемы, прокаленной при 973 K, при различных условиях восстановления. Показано, что формирование наноструктур зависит от начальной и конечной температур восстановления. Присутствие рутения существенно изменяет кинетику восстановления оксидных систем. Показано, что при повышении температуры восстановления наблюдаются перестройки исходных стехиометрических оксидов в промежуточные оксидные структуры переменного состава с различным типом кристаллической решетки. Завершающим этапом восстановления служит образование кластеров металла или твердых растворов интерметаллидов.

Ключевые слова: оксид железа-рутения, восстановленные водородом железо-рутениевые системы, структурные преобразования наносистем, конверсионная (CEMS) и абсорбционная мессбауэровская спектроскопия (MC), рентгеновская дифракция.

DOI: 10.21883/JTF.2020.05.49188.310-18

Введение

Восстановление оксидной системы представляет собой сложный процесс, зависящий, в частности, от температурного режима обработки, размеров исходных частиц, взаимной диффузии компонентов системы и т.д. Процесс восстановления может приводить, с одной стороны, к неоднородности распределения элементов внутри восстановленных частиц, а с другой — к образованию кристаллитов различных размеров.

При исследовании структуры и состава фаз методами рентгеновской дифракции (РД) невозможно разделить вклады в уширение дифракционных линий, обусловленные размерами кристаллитов и их химической неоднородностью. В отличие от РД мессбауэровская абсорбционная и эмиссионная (CEMS) спектроскопия (MC) позволяет получать информацию как об электронной, магнитной и кристаллической структуре объема кластера, так и о состоянии его поверхности.

Распространенным способом получения металлических катализаторов является восстановление оксидов водородом [1]. От выбора оптимальных условий процесса восстановления в значительной степени зависят его стабильность и активность. В большинстве случаев синтезированные оксидные соединения представляют собой многокомпонентные и многофазные системы. Каждый оксид имеет различную скорость и температуру начала восстановления и различную растворимость в системе металл-оксид. Каталитические свойства металлических систем во многом определяются кристаллической структурой и характером распределения составляющих элементов. Поэтому для получения катализатора с высокой каталитической активностью необходимо знать влияние температурного режима восстановления на процесс формирования его структуры.

В литературе широко представлены исследования железосодержащих биметаллических систем, применяемых в качестве катализаторов синтеза аммиака [2,3]. Высокую активность в синтезе аммиака проявляют железо-рутениевые системы [4]. Структурные аспекты формирования оксидных структур [5], а также степени восстановления и элементного состава поверхности восстановленных Fe–Ru-систем изучены в [6,7]. Однако влияние температурного режима восстановления на процесс формирование сложных металл-оксидных структур рассмотрено недостаточно.

В равновесном состоянии взаимная растворимость железа и рутения высока и они могут образовывать непрерывный ряд твердых растворов с ОЦК и ГПУ решетками [8]. При восстановлении оксидной Fe–Ru-системы это существенно усложняет получение активного металлического катализатора с оптимальной структурой. Эффективным методом исследования структуры и фазового состава каталитически активных систем является МС, позволяющая получать информацию о фазовом составе и структурных особенностях кристаллической решетки [9–11].

В настоящей работе методами абсорбционной и конверсионной МС, РД исследовано влияние режимов термической обработки на воздухе оксидных Fe–Ru-соединений на их фазовый состав и структуру. Изучено влияние температурного режима восстановления бинарных оксидов на структуру железо-рутениевых металлических катализаторов синтеза аммиака.

Методика эксперимента

Исходные оксиды получали смешиванием водных растворов $RuOHC_{13}$ и $Fe(NO_3)_3 \cdot 9H_2O$ определенной массовой концентрации с последующим осаждением раствором NH_3 при pH 8–8.5. Полученный осадок гидрооксидов просушивали и прокаливали на воздухе при различных температурах. Восстановление оксидов проводили в атмосфере водорода по методике [6] при различных температурах с последующей пассивацией.

Абсорбционные и CEMS мессбауэровские спектры получали при 293 и 80 К на установке электродинамического типа [12], работающей в режиме с постоянным ускорением. В качестве источника использовали ⁵⁷Со в матрице хрома. Электроны внутренней конверсии регистрировали с помощью пропорционального счетчика со смесью 95% He + 5% CO₂. Изомерные сдвиги отсчитывали от центра спектра сверхтонкой структуры (СТС) α -Fe. Параметры получали обработкой спектров стандартными программами МНК.

Съемки рентгенограмм проводились на дифрактометре Empyrean (PANalytical) в фильтрованном Cu K_{α} излучении с регистрацией дифракционной картины двухкоординатным детектором Pixcel 3D в режиме сканирующего линейного детектора. Оптическая схема включала в себя щели Соллера и программируемую щель расходимости. При обработке рентгенограмм использовалась программа Highscore Plus, сопряженная с базой данных PDF-2 Международного центра дифракционных данных (ICDD). Ошибка в определении параметров постоянной решетки и области когерентного рассеяния (OKP) не превышала 0.00005 и 0.5 nm соответственно.

Результаты и их обсуждение

На рис. 1 представлены абсорбционные мессбауэровские спектры образцов оксидной системы (1-x)Fe₂O₃-xRuO₂. Режимы термической обработки системы, температуры измерения и параметры спектров приведены в табл. 1, в которой для сравнения указаны параметры крупнокристаллического гематита

Рис. 1. Мессбауэровские спектры при T = 293 К оксидов Fe/Ru

 $(\alpha-{\rm Fe_2O_3})$. Рентгенограммы исследуемых образцов показаны на рис. 2. Для сравнения там же приведены дифракционные линии RuO₂ (рутила) и $\alpha-{\rm Fe_2O_3}$ из базы данных PDF-2.

Данные по образованию α -Fe₂O₃ из гидроокиси [13] показывают, что уже после прокалки при T = 623 K синтезированный оксид имеют спектр, типичный для гематита. Совершенство кристаллической решетки α -Fe₂O₃ характеризует низкотемпературный фазовый переход Морина [14], связанный с переориентацией спина. Внутреннее магнитное поле на ядре 57 Fe (H_{in}) определяется в основном ближним порядком, а на переход Морина влияет дальний порядок и он носит более кооперативный характер. Гематиты, полученные после прокалки модификаций гидроокисей железа, имеют различные значения температур Морина (T_M) , что обусловлено не только размерами частиц, но и степенью совершенства их кристаллических структур [15]. Температура Морина 261 К, характерная для крупнокристаллического бездефектного гематита, при термическом превращении гидроокисей в *α*-Fe₂O₃ не изменяется после прокалки при T = 1173 К [16].

Мессбауэровские спектры образца 100Fe/0Ru, прокаленного на воздухе при 773 и 973 K, аналогичны друг другу и представляют собой 6 линий магнитной сверхтонкой структуры (СТС) с параметрами, характер-

Образец и формы Fe	<i>Т</i> , К	Магнитная СТС				,	Α,			
		δ , m/s (± 0.02)	Δ, mm/a (±0.02)	H_{in}, T (± 0.02)	Γ, mm/s (±0.02)	δ , m/s (±0.02)	Δ, mm/a (±0.02)	H_{in}, T (± 0.02)	Γ, mm/s (±0.02)	(±0.02)
$\alpha - \mathrm{Fe_2O_3}$	293 80	0.38 0.47	$\begin{array}{c} 0.18 \\ -0.42 \end{array}$	51.9 54.3	0.35 0.39					1.00 1.00
100Fe/0Ru (773)* 1 CTC	293 80	0.38 0.47	0.18 -0.27	51.5 53.6	0.30 0.46	_				1.00 1.00
100Fe/0Ru (973)* 1 CTC	293 80	0.38 0.47	0.18 -0.37	51.8 53.9	0.29 0.36	_				1.00 1.00
50Fe/50Ru (413)* 2 дублета	293 80	_	_	_	_	0.33 0.33 0.45 0.44	0.71 1.19 0.72 1.19		0.37 0.39 0.37 0.44	0.59 0.41 0.50 0.50
50Fe/50Ru (773)* 3CTC+ 1 дублет	293	0.39 0.38 0.33 -	-0.40 -0.27 -0.25 -	51.9 49.8 45.5 -	0.36 0.68 1.14 -	 0.31	 0.88		 0.70	0.38 0.37 0.19 0.06
	80	0.48 0.48 0.48 -	-0.40 -0.40 -0.35 -	54.1 52.9 50.6 -	0.26 0.38 0.81 -	 0.43	- - 0.87	_ _ _ _	 0.68	0.36 0.33 0.26 0.05
50Fe/50Ru (973)* 3CTC+ 1 дублет	293	0.37 0.38 0.39 -	-0.38 -0.17 -0.19 -	51.8 50.4 47.5 -	0.28 0.44 0.90 -	 0.33	 0.67		 0.34	0.48 0.33 0.16 0.03
	80	0.49 0.48 0.51 -	-0.43 -0.42 -0.40 -	54.2 53.5 51.3 -	0.24 0.32 0.63 -	 0.37	- - 0.77	_ _ _ _	- - 0.62	0.38 0.38 0.21 0.03

Таблица 1. Параметры абсорбционных мессбауэровских спектров при *T* = 293 и 80 К оксидных образцов 100Fe/0Ru и 50Fe/50Ru, прокаленных на воздухе при различных температурах

Примечание. * в скобках 1-го столбца указана температура прокалки в градусах Кельвина, δ — изомерный сдвиг относительно α -Fe, Δ — квадрупольное расщепление или квадрупольный сдвиг, H_{in} — внутреннее магнитное поле на ядре ⁵⁷Fe, Γ — ширина линии, A — относительное содержание формы железа.

ными для ромбоэдрической решетки α -оксида железа со структурой корунда. Абсолютные значения и знак квадрупольного сдвига (Δ) изменяются в этих спектрах с 0.18 mm/s при температуре измерения 293 К на -0.27 и -0.37 mm/s при T = 80 К соответственно. Это типично для перехода Морина в гематите. Все же меньшие значения H_{in} и Δ при 80 К по сравнению с типичными параметрами крупнокристаллического α -Fe₂O₃ свидетельствуют о дефектности структуры и(или) уменьшении средних размеров кристаллитов гематита до $d \sim 59$ nm [11].

По данным РД (рентгенограммы *I*, 2) при температурах прокалки 773 и 973 К формируется α -Fe₂O₃ с параметрами ромбоэдрических ячеек a = 0.50333, 0.50340 nm, c = 1.37451, 1.37670 nm. При этом увеличение температуры прокалки приводит к

уменьшению ширины дифракционных линий. Средний размер области когерентного рассеяния (ОКР) в кристаллитах гематита возрастает с 51 до 58 nm.

Мессбауэровские спектры образца 50Fe/50Ru, прокаленного на воздухе при 413, 293 и 80 К, представляют собой ассиметричные дублеты. Асимметрия интенсивностей линий характеризуется некоторым набором "парамагнитных" дублетов. Отсутствие зеемановской СТС в мессбауэровских спектрах может свидетельствовать либо об отсутствии магнитного упорядочения в веществе, либо о наличии явления суперпарамагнетизма, связанного с тепловыми флуктуациями магнитных моментов малых частиц магнитоупорядоченного вещества. Параметры составляющих спектр дублетов при температурах измерения для данного образца идентичны и характерны для мелкодисперсных кластеров гидроксида

Рис. 2. Рентгенограммы оксидов Fe/Ru.

(оксида) с максимальным размером кристаллитов 5 nm, которые проявляют суперпарамагнитные свойства даже при температуре жидкого азота [17,18]. Различие в изомерном сдвиге (δ) при 293 и 80 К обусловлено температурным сдвигом [19]. Следует отметить, что заметного взаимодействия Fe³⁺-Ru³⁺ на стадии исходного продукта не отмечено, и сказать определенно, входит ли рутений в структуру окисной фазы, затруднительно. Анализ параметров спектра показывает, что температура прокалки 413 К не приводит к кристаллизации железорутениевой системы. По данным РД (рентгенограмма 3), образец находится в ультрамелкодисперсном состоянии. Как следует из рентгенограммы, прокалка при 413 К не приводит к существенному увеличению ОКР. Сравнение интенсивностей и положений размытых дифракционных линий с эталонными указывает, что кристаллическая структура полученной системы отличается от равновесной. Из рентгенограммы следует, что средние размеры ОКР не превышают 4 nm ("рентгеноаморфное" состояние).

Мессбауэровские спектры образца 50Fe/50Ru, прокаленного на воздухе при 773 K, качественно отличаются от описанных выше. В них, наряду с линиями СТС магнитоупорядоченного оксида, присутствует слабоинтенсивный дублет. Полученные параметры дублета характерны для структуры RuO₂ допированного ионами железа [5]. Относительная доля ионов железа, находящихся в парамагнитном состоянии, от общего количества ионов в образце составляет 6%. В спектрах при 293 и 80 K можно выделить три СТС с уменьшающими *H*_{in}. Из табл. 1 следует, что параметры выделенных СТС отличаются от аналогичных параметров крупнокристаллического гематита. Так, величина и знак Δ при температуре измерения 293 К характерны для кристалла α -Fe₂O₃ ниже перехода Морина (антиферромагнитное состояние). При переходе $\alpha - Fe_2O_3$ из ферримагнитного в антиферромагнитное состояние происходит скачкообразное увеличение H_{in} на 0.8 Г [20], чего в нашем случае не наблюдается. Аномально большие ширины крайних линий СТС-2 и СТС-3 в спектре указывают на образование твердого раствора с неоднородным распределением ионов примеси. Совокупность полученных параметров подтверждает вхождение ионов Ru⁺³ в структуру корунда и образование твердого раствора α -Fe_{2-x}Ru_xO₃ различной степени дисперсности. Таким образом, отчетливо проявляется взаимодействие оксидов железа и рутения. В данном образце формируется двухфазная система дисперсных неоднородных твердых растворов: α -Fe₂O₃, допированный Ru, и RuO₂, допированный Fe. По данным РД отжиг при 773 K смеси окислов железа и рутения приводит к формированию ромбоэдрической (a = 0.5025 nm, c = 1.3739 nm) и тетрагональной (a = 0.4510 nm, c = 0.3086 nm) фаз (рентгенограмма 4). Средние размеры ОКР корундовой структуры составляют 43 nm и структуры рутила — 22 nm.

Для образца 50Fe/50Ru, прокаленного на воздухе при 973 К, качественно наблюдается та же картина. В этом случае относительная доля ионов железа, находящихся в парамагнитном состоянии, от общего количества в образце составляет 3%. Значения параметров спектров образцов, прокаленных при 773 и 973 К, близки за исключением больших значений *H_{in}* для СТС-2, СТС-3 и более узких линий. Следовательно, как и в предыдущем случае, в данном образце происходит образование твердых растворов α -Fe_{2-x}Ru_xO₃ и Ru_{1-y}Fe_yO₂, однако более однородных по составу. Этот результат аналогичен влиянию высокотемпературного отжига, при котором примеси более равномерно и упорядоченно распределяются по объему образца. На рентгенограмме данного образца присутствуют дифракционные линии ромбоэдрической (a = 0.5031 nm, c = 1.3726 nm) и тетрагональной (a = 0.4502 nm, c = 0.3090 nm) фаз (рентгенограмма 5). Средние размеры ОКР корундовой структуры составляют 40 nm, структуры рутила — 27 nm.

На рис. 3 представлены мессбауэровские спектры восстановленных при различных температурах оксидных железо-рутениевых наносистем, прокаленных при 973 К. Параметры спектров приведены в табл. 2. Для сравнения там же приведены параметры мессбауэровских спектров стехиометрического магнетита (Fe₃O₄). На рис. 4 показаны рентгенограммы восстановленных образцов, а также эталонных α -Fe, Fe₃O₄ и Ru из картотеки PDF-2.

Кинетика восстановления α -Fe₂O₃ до α -Fe водородом зависит от скорости изменения и значения температуры, скорости потока газа, размеров кристаллитов, при-

Рис. 3. Мессбауэровские спектры при *T* = 293 К восстановленных Fe/Ru-образцов.

роды носителя, а также содержания примесей [21]. В литературе присутствуют две точки зрения на механизм восстановления α -Fe₂O₃ до α -Fe [22,23]. Согласно одной из них, единственным интермедиатом в реакции восстановления является магнетит, согласно другим работам, промежуточными соединениями являются Fe₃O₄ и FeO (вюстит). Следует отметить, что для нестехиометрического Fe_{3- δ}O₄ отношение интенсивностей линий *B*и *A*-подрешеток (*S* = *B*/*A*) в мессбауэровском спектре зависит от параметра нестехиометрии δ [24,25] (*S* = 2 для стехиометрического Fe₃O₄). В процессе восстановления гематита появляется "сверхвосстановленный" нестехиометрический магнетит с избытком Fe²⁺, для которого *S* > 2 [26]. Нестехиометрия магнетита со стороны γ -Fe₂O₃ приводит к *S* < 2 [26].

В результате восстановления оксидного образца, не содержащего рутений (α -Fe₂O₃), как вид, так и па-

раметры спектра существенно изменяются (спектр 1, табл. 2). Исходная фаза гематита полностью исчезает процесс восстановления α -Fe₂O₃ \rightarrow Fe₃O₄ завершен. В процессе дальнейшего восстановления из структуры Fe₃O₄ вначале удаляются большинство октаэдрических катионов Fe³⁺ и соответствующих анионов [27], что приводит к S < 2. Мессбауэровский спектр образца состоит из линий СТС от ионов железа, расположенных в тетраэдрической (A) и октаэдрической (B) подрешетках магнетита, магнитной составляющей М и металлического железа (*α*-Fe). Структура магнетита является дефектной, о чем свидетельствуют полученные параметры, отличающие от параметров стехиометрического Fe₃O₄. Параметры магнитной составляющей *M*, значение *S* = 1.81 для магнетита в образце указывают на вторую стадию процесса восстановления: Fe₃O₄ $\rightarrow \alpha$ -Fe. По данным РД набор дифракционных линий (рентгенограмма 1) в данном образце соответствует смеси фаз Fe₃O₄ и *α*-Fe со средними размерами ОКР соответственно 48 и 24 nm. Меньшее значение постоянной решетки Fe₃O₄ a = 0.8373 nm (для стехиометрического магнетита $a = 0.8396 \,\mathrm{nm}$) указывает на дефектность структуры и связано с вакансиями как в катионной, так и анионной подрешетках [28]. Полученный в результате измерений параметр ячейки $a = 0.2867 \,\mathrm{nm}$ для α -Fe совпадает с данными картотеки PDF-2.

Таким образом, согласно результатам МС и РД, образец содержит дефектный магнетит и металлическое железо. При этом образование вюстита не замечено. Действительно, по диаграмме состояния железо-кислород для температур ниже 845 K в равновесном состоянии система состоит из α -Fe + Fe₃O₄ [8]. Данного температурного режима не достаточно для полного восстановления исходного образца в металлическое железо.

В отличие от предыдущего режима восстановления более высокие начальная и конечная температуры способствуют полному восстановлению оксида железа до металлического состояния (спектр 2). Дублет d в центре спектра соответствует мелкодисперсному состоянию оксидов железа, образующемуся в результате пассивации, поскольку, как следует из [29], после восстановления α -Fe₂O₃ чистым водородом при 673 K остается только фаза металлического железа. Рентгенограмма 2 содержит рефлексы, принадлежащие только α -Fe с параметром ячейки *a* = 0.2866 nm и средним размером ОКР 33 nm. Отсутствие рефлексов от оксидной фазы указывает на ее рентгеноаморфное состояние. Таким образом, повышение начальной и конечной температур восстановления гематита приводит к полному восстановлению и росту размеров кристаллитов металлического железа.

Ниже представлены результаты исследования структурных превращений при восстановлении оксидных наносистем 50Fe/50Ru. Вид спектра 3 при одном и том же температурном режиме восстановления существенно отличается от спектра 1. Наряду с линиями СТС от ионов железа, расположенных в A и B позициях

				Магнитная СТС				Парамагнитный дублет			
Образец	<i>Т</i> , К	Форма Fe	$\delta, \ (\pm 0.02) \ \mathrm{mm/s}$	Δ, (±0.02) mm/s	$H_{in},\ (\pm 0.02)$ T	Γ, (±0.02) mm/s	δ, (±0.02) mm/s	Δ, (±0.02) mm/s	Γ, (±0.02) mm/s	$A \\ (\pm 0.02)$	
Fe ₃ O ₄	293	(NOTIVETING)	Α	0.28	0.25	49.0	0.25				1.00
		(магнитная)	В	0.67	0.36	46.0	0.36	_	_	_	1.00
100Fe/0Ru (293-533)*		FeaO4 (магнитная)	Α	0.30	0.44	48.5	0.44	-	_	_	0.51
	293		В	0.58	0.83	45.3	0.83	-	-	-	0.51
		Окись Fe (магнитная)	М	0.74	0.90	40.9	0.90	-	-	-	0.06
		<i>α</i> –Fe (магнитна	-0.01	-0.03	33.0	0.39	_	-	-	0.43	
100Fe/0Ru (648-798)*	293	<i>α</i> -Fe (магнитна	0.00	0.00	32.8	0.29	-	_	_	0.94	
	275	Окись Fe (суперпарам		Ι	I	Ι	0.32	0.77	0.43	0.06	
50Fe/50Ru (293-533)*	293		Α	0.28	0.25	48.9	0.25	-	_	_	- 0.68
		ГС3О4 (магнитная)	В	0.65	0.58	45.7	0.58	—	—	—	
		Окись Fe (парамагн	I	I	Ι	Ι	0.26	1.02	0.75	0.15	
		$Ru_{1-y}Fe_y$ (парамагн	-	-	-	-	-0.01	0.21	0.32	0.17	
	80	Fe ₃ O ₄ (магнитная)		0.41	0.00	50.2	0.48	—	—	—	0.81
		Окись Fe (магнит	0.79	-0.01	48.4	0.96	-	_	-		
		Ru _{1-у} Fe _у (парамагн Окись Fe (суперпара					0.09 0.47		0.57 0.23	0.17 0.02	
	293	<i>α</i> -Fe (магнитна	0.00	-0.03	32.9	0.41	-	-	-	0.23	
		$\alpha - \operatorname{Fe}_{1-x} \operatorname{Ru}_x$ (магн	0.01	-0.03	30.2	0.91	_	_	_	0.20	
		Ru _{1-y} Fe _y (парамагн	_	_	-	_	-0.02	0.23	0.44	0.51	
50Fe/50Ru		Окись Fe (суперпара	-	-	-	-	0.32	1.06	0.43	0.06	
(438-673)*	293,	$lpha$ —Fe (магнитн $lpha$ —Fe $_{1-x}$ Ru $_x$ (магни	0.00 0.04	-0.03 0.13	32.9 30.3	0.33 1.52	_	_	_	0.16 0.36	
	CE MS	Ru _{1-y} Fe _y (парамагн	_	-	-	-	-0.06	0.20	0.36	0.33	
	1110	Окись Fe (суперпарамагнитная)		-	-	-	-	0.39	0.82	0.58	0.15
50Fe/50Ru (543–673)*	293		Α	0.32	0.55	46.6	0.55	_	_	_	0.33
		гезО4 (магнитная)	В	0.69	1.80	42.3	1.80	_	_	_	
		Окись Fe (парамагн	_	_	-	_	0.37	0.85	0.58	0.17	
		$\alpha - \mathrm{Fe}_{1-x}\mathrm{Ru}_x$ (магнитная)		0.05	-0.05	32.9	0.33	-	_	_	0.04
		Ru _{1-y} Fe _y (парамагн	_	_	-	_	-0.05	0.22	0.33	0.46	
50Fe/50Ru (293–873)*	202	Ru _{1-y} Fe _y (парамагнитная)		-	-	-	-	-0.05	0.22	0.30	0.94
	295	Окись Fe (суперпара	_	_	-	_	0.26	1.21	0.43	0.06	
	293.	Ru _{1-y} Fe _y (парамагнитная)		—	—	_	_	-0.05	0.21	0.26	0.92
	CE MS	Окись Fe (суперпарамагнит	сь Fe магнитная)		_	_	_	0.39	1.00	0.40	0.08

Таблица 2. Параметры CEMS и абсорбционных мессбауэровских спектров при T = 293 и 80 K, восстановленных водородом оксидных образцов 100Fe/0Ru и 50Fe/50Ru

Примечание. * в скобках 1-го столбца указан диапазон температур восстановления в градусах Кельвина, δ — изомерный сдвиг относительно α-Fe, Δ — квадрупольное расщепление или квадрупольный сдвиг, H_{in} — внутреннее магнитное поле на ядре ⁵⁷Fe, Γ — ширина линии, A — относительное содержание формы железа.

Рис. 4. Рентгенограммы восстановленных Fe/Ru-образцов.

решетки обращенной шпинели дефектного магнетита (S = 2.63), в спектре присутствуют линии слабо разрешенного дублета ($\Delta \approx 0.22 \text{ mm/s}$) от металлического железо-рутениевого раствора ($Ru_{1-y}Fe_y$) [30], дублета dот промежуточных железосодержащих оксидных фаз, возникающих при восстановлении и оксидных наночастиц, полученных на поверхности в результате пассивации. При понижении температуры образца до 80 К для фазы дефектного магнетита наблюдался структурный переход, типичный для Fe₃O₄ [31,32]. По данным РД (рентгенограмма 3) в образце присутствуют гексагональный твердый раствор Ru_{1-v}Fe_v с параметрами решетки a = 0.26961 nm, c = 0.42748 nm и Fe₃O₄ с a = 0.83977 nm. Размеры ОКР соответственно 15 и 19 nm. Определенный из рентгенографических измерений объем ячейки фазы Ru_{1-v}Fe_v больше объема ячейки фазы состава Ru_{0.5}Fe_{0.5}, но меньше объема ячейки чистого рутения из картотеки PDF-2. Использование, наряду с рентгенографическими данными, результатов МС, позволяет определить химический состав этой фазы: Ru_{0.76}Fe_{0.24}.

Повышение начальной и конечной температуры обработки в водороде двухфазной оксидной железорутениевой системы (спектр 4) приводит к полному восстановлению фаз до металлического состояния. Спектр данного образца содержит суперпозицию магнитных составляющих с параметрами, характерными для металлического железа в ОЦК решетке, парамагнитный слабо разрешенный дублет от гексагонального раствора $Ru_{1-y}Fe_y$ и дублет от пассивированного окисного

состояния железа d. Анализ ширины и формы линий магнитной составляющей показал, что ее можно описать набором СТС с уменьшающимися значениями внутренних магнитных полей на ядре ⁵⁷Fe. К уменьшению величины *H*_{in} может привести легирование рутением металлического α -Fe. Полученные значения H_{in} , аномально большое значение Г (табл. 2) свидетельствуют об образовании непрерывного ряда твердых растворов α -Fe_{1-x}Ru_x, где x = 0-0.05. СЕМS-спектр данного образца аналогичен абсорбционному (рис. 5, спектр 1). Однако относительное содержание железа, входящее в составляющие структурные соединения, иное (табл. 2). Увеличение в два раза относительного содержания оксидной d фазы в CEMS-спектре подтверждает пассивационный характер образования нанооксида с размерами кристаллитов, не превышающих 5 nm. В данном образце набор дифракционных линий (рентгенограмма 4) соответствует смеси фаз с ОЦК и ГПУ решетками. Объем ячейки ОЦК решетки больше объема ячейки *α*-Fe, но меньше объема ячейки фазы состава $\alpha - Fe_{9.45}Ru_{0.55}$ из картотеки PDF-2. Сравнение полученного значения постоянной решетки $a = 0.28773 \,\mathrm{nm}$ с данными работы [33] позволило определить химический состав *α*-Fe_{0.96}Ru_{0.04}. Из мессбаузровских и рентгеновских данных формулу полученного химического состава гексоганального раствора для образца 4 можно записать Ru_{0.52}Fe_{0.48}.

Как следует из мессбаузровского спектра, повышение начальной температуры восстановления до 543 К приводит к изменению фазового состава системы (спектр 5). Наряду с металлическим $Ru_{1-y}Fe_y$ раствором и оксидной составляющей d, в центре спектра появилась магнитная "мешкообразная" область резо-

Рис. 5. Конверсионные мессбауэровские спектры при T = 293 К восстановленных Fe/Ru-образцов: 1 - 50Fe/50Ru, диапазон температур восстановления 458-673 K; 2 - 50Fe/50Ru, диапазон температур восстановления 293-873 K.

нансного поглощения. Регистрация спектра с набором до 7.106 импульсов/канал позволило определить фазовый состав "мешкообразной" области резонансного поглощения. При данном режиме восстановления магнитная составляющая состоит из нестехиометрического магнетита и *α*-Fe. Оксидная составляющая *d* аналогична таковой образца З. По данным РД (рентгенограмма 5) в образце наблюдается смесь фаз: шпинели c a = 0.84301 nm, $\Gamma \Pi Y \text{ Ru}_{1-y} \text{Fe}_y$ c a = 0.26312 nm, c = 0.42626 nm и ОЦК α -Fe с a = 0.28631 nm решетками. Увеличение параметра ячейки дефектной шпинели с большим числом вакансий в А и В подрешетках, вероятно, связано с вхождением рутения в ее решетку [28]. Использование данных РД и результатов МС позволяет определить химический состав гексагонального раствора, как Ru_{0.55}Fe_{0.45}.

Повышение жесткости восстановления оксидов приводит к полному восстановлению системы до металлического состояния (спектр 6). Впервые из двухфазной оксидной системы с разными типами кристаллических решеток формируется единственная структура твердого раствора Ru_{1-у}Fe_у. CEMS-спектр данного образца аналогичен абсорбционному (рис. 5, спектр 2). Что касается составляющей d, то увеличение ее относительного содержания в CEMS-спектре (табл. 2) свидетельствует о пассивационном характере образования нанооксида. По данным РД (рентгенограмма 6) в образце наблюдается одна фаза ГПУ $Ru_{1-v}Fe_v$ с a = 0.26086 nm, $c = 0.41796 \,\mathrm{nm}$ и средним размером ОКР 11 nm. Расчетный состав — Ru_{0.36}Fe_{0.64}. Отсутствие рефлексов от оксидной фазы подтверждает ее рентгеноаморфное состояние.

Заключение

Из сравнительного анализа железосодержащих структурных фаз в абсорбционных и CEMS-спектрах, данных РД следует, что процесс структурообразования при восстановлении носит сложный характер. Процесс восстановления допированных оксидных структур не проходит поэтапно и изолировано. Повышая жесткость восстановления, изменяя диапазон температур, можно варьировать как фазовый, так и химический состав структурных соединений, наблюдать последовательно все этапы перестройки исходных оксидов: от образования шпинели и сплава к двухфазной системе металлического железа и сплава железо-рутений и к однофазной композиции сплава.

Благодарности

Авторы благодарны Г.И. Килейникову за проведение мессбауэровских экспериментов.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Товбин М.В., Забуга В.Я., Яцимирский В.К. Каталитические свойства сплавов в реакции синтеза аммиака. Киев, 1973. 193 с.
- [2] Розовский А.Я., Стыценко В.Д., Третьяков В.Ф. // Кинетика и катализ. 1976. Т. 18. Вып. 5. С. 1211.
- [3] Миначев Х.М., Антошин Г.В., Шпиро Е.С. Фотоэлектронная спектроскопия и ее применение в катализе. М.: Наука, 1981. 217 с.
- [4] Nielsen A. // Catal. Rev. 1981. Vol. 23. N 1–2. P. 17.
- [5] Килейников Г.И., Максимов Ю.В., Дудоладов В.В., Суздалев И.П., Бродская И.Г., Дмитренко Л.М. // Кинетика и катализ. 1989. Т. 30. Вып. 4. С. 927–932.
- [6] Чудинов М.Г., Алексеев А.М., Дмитренко Л.М., Перов В.М., Назарова И.Г. // Кинетика и катализ. 1988. Т. 29. Вып. 4. С. 909–913.
- [7] Кузнецов Б.Н., Перов В.М., Алексеев А.М., Якерсон В.И. // Кинетика и катализ. 2000. Т. 41. Вып. 5. С. 764–768.
- [8] Диаграммы состояния двойных металлических систем. Т. 2 / Под ред. Н.П. Лякишева. М.: Машиностроение, 1997. 542 с.
- [9] Шибанова М.Д., Каденаци В.М., Максимов Ю.В., Голубьев А.В., Матвеев А.И., Суздалев И.П. // Кинетика и катализ. 1986. Т. 27. Вып. 1. С. 200.
- [10] Шибанова М.Д., Голубьев А.В., Максимов Ю.В., Суздалев И.П., Корчак В.Н. // Кинетика и катализ. 2001. Т. 42. Вып. 1. С. 124–128.
- [11] Нищев К.Н., Голубьев М.А., Максимов Ю.В., Беглов В.И., Кяшкин В.М., Панов А.А. // ЖТФ. 2015. Т. 85. Вып. 5.
 С. 66–70. [Nishchev K.N., Golub'ev М.А., Beglov V.I., Kyashkin V.M., Panov A.A., Maksimov Y.V. // Tech. Phys. 2015. Vol. 60. N 5. P. 695–699.]
- [12] Голубьев А.В., Еркин В.М., Килейников Г.И., Червенков В.Д. // Заводская лаборатория. 1982. Т. 48. № 6. С. 39.
- [13] Povitskii V.A., Makarjv E.F., Murashko N.V., Salugin A.N. // Phys. Stat. Solid. A. 1976. Vol. 33. P. 783–787.
- [14] Galperin F.M., Salugin A.N., Saigin A.A., Elistratov N.V. // Phys. Stat. Solid. A. 1974. Vol. 22. P. 7–8.
- [15] Власов А.Я., Руносцев М.Н. // Изв. вузов. 1972. № 8. С. 151.
- [16] *Салугин А.Н.* Кандидатская диссертация. ИХФ АН СССР. 1978.
- [17] Nakamura T., Shinjo T., Endoh Y., Yamamoto Y., Shinga M., Nakamura Y., // Phys. Lett. 1964. Vol. 12. N 2. P. 178.
- [18] Белозерский Г.Н., Павлюхин Ю.Т. Физические методы исследования твердого тела. Вып. 1. Свердловск: Изд-во Урал. политех. ин-та, 1975. С. 52–57.
- [19] Иркаев С.М., Кузьмин Р.Н., Опаленко А.А. Ядерный гамма-резонанс. Изд-во Московского ун-та, 1970.
- [20] Van der Woude F. // Phys. Stat. Solid. 1966. Vol. 17. P. 417.
- [21] Чернавский П.А., Панкина Г.В., Завалишин И.Н., Лунин В.В. // Кинетика и катализ. 1994. Т. 35. Вып. 1. С. 126– 128.
- [22] Basinska A., Jozwiak W.K., Goralski J. Domka F. Intern. Congr. On Catalysis. 2000. Granada.
- [23] Mingting Xu, Jglesia E. // J. Phys. Chem. B. 1998. Vol. 102. P. 961.
- [24] Романов В.П., Чечерский В.Д. // ФТТ. 1970. Вып. 12. С. 1853.
- [25] Evans B.J., Hafner S.S. // J. Appl. Phys. 1969. Vol. 40. P. 1411.

- [26] Colombo U., Gazzarrini F., Lanzavecchia G. // Mater. Sci. Eng. 1967. Vol. 2. P. 125.
- [27] Daniels J.M., Rosencwaig A. // J. Phys. Chem. Solid. 1969. Vol. 30. P. 1561.
- [28] Шашкин Д.П., Ширяев П.А., Чичагов А.В., Морозова О.С., Крылов О.В. // Кинетика и катализ. 1992. Т. 33. Вып. 4. С. 923–929.
- [29] Юзвяк В.К., Маниечки Т.П., Басинска А., Горальски Я., Федоров Р. // Кинетика и катализ. 2004. Т. 45. Вып. 6. С. 930–941.
- [30] Rush J.D., Johnson C.E., Thomas M.F. // J. Phys. F: Metal Phys. 1976. Vol. 6. N 10. P. 2017–2021.
- [31] Verwey E.J.W., Haayman P.W. // Physica. 1941. Vol. 8. P. 979.
- [32] Verwey E.J.W., Haayman P.W., Romeijn F.C. // J. Chem. Phys. 1947. Vol. 15. P. 181.
- [33] Zwell L., Spreich G.R., Leslie W.C. // Metallurgical Transactions. 1973. Vol. 4. N 8. P. 1990.