06

Влияние толщины пленки Pt на изменение текстуры и доли кристаллической фазы при ее отжиге

© Р.В. Селюков, В.В. Наумов

Ярославский филиал Физико-технологического института РАН, 150007 Ярославль, Россия e-mail: rvselyukov@mail.ru

Поступило в Редакцию 24 апреля 2018 г. В окончательной редакции 19 ноября 2019 г. Принято к публикации 19 ноября 2019 г.

Текстурированные пленки Pt с толщиной 20-80 nm, нанесенные методом магнетронного распыления на окисленную пластину *c*-Si(100), подвергались отжигу в вакууме в режиме 500°C/60 min. С помощью методов рентгеноструктурного анализа найдены зависимости параметров кристаллической текстуры и доли кристаллической фазы от толщины для исходных пленок и пленок, подвергнутых отжигу. Для нахождения доли кристаллической фазы в текстурированных пленок и пленок, подвергнутых отжигу. Для нахождения на анализе кривых качания. Найдено, что для всех толщин отжиг привел к улучшению текстуры и увеличению доли кристаллической фазы тем большим, чем меньше толщина. Данный результат объяснен появлением в результате отжига крупных вторичных зерен, чья объемная доля растет с уменьшением толщины. Для исходных пленок Pt исследована неоднородность распределений параметров текстуры и доли кристаллической фазы по глубине пленки.

Ключевые слова: платина, тонкие пленки, кристаллическая текстура, рентгеноструктурный анализ, кривые качания.

DOI: 10.21883/JTF.2020.05.49181.163-18

Введение

Тонкие поликристаллические пленки Pt применяются в качестве тыльного электрода в приборах с перовскитоподобными сегнетоэлектриками [1-4], ZnO [5-7] и AlN [8]. Как правило, Рt-электроды наносят на окисленный *с*-Si или на стекла с использованием адгезионных подслоев, например, Ті или ТіО2. Обычно Рt в таких системах имеет аксиальную кристаллическую текстуру (111), и степень преимущественной ориентации зерен (часто называемая как острота текстуры) Pt оказывает влияние на структуру, а следовательно, на свойства осажденных на нее материалов. Пленки вышеупомянутых материалов, как правило, осаждают на Pt-электрод при повышенной температуре, или подвергают отжигу после осаждения, приборы на основе таких структур часто работают при температурах до 1000°С [8]. Известно, что если температура превышает определенное значение, то в поликристаллических пленках и объемных материалах происходят рекристаллизация и последующий рост зерен. В процессе роста зерен наряду с так называемым нормальным ростом может наблюдаться аномальный рост, приводящий к формированию сравнительно крупных зерен, которые принято называть вторичными [9]. Основная фракция зерен при этом имеет меньшие размеры и формируется в результате нормального роста, такие зерна принято называть обычными. Нормальный рост зерен обусловлен уменьшением энергии межзеренных границ, аномальный рост зерен в тонких пленках обусловлен, главным образом, уменьшением поверхностной энергии, что имеет два важных следствия. Во-первых, для вторичных зерен, как правило, характерна ориентация параллельно подложке тех атомных плоскостей, которые обеспечивают минимальную поверхностную энергию, например, для ГЦК металлов это плоскости (111). Во-вторых, теория аномального роста, учитывающая влияние поверхностной энергии, предсказывает увеличение скорости роста латеральных размеров вторичных зерен с уменьшением толщины пленки [9]. Таким образом, одинаковая термообработка пленок разной толщины приводит к существенно разным изменениям их микроструктуры и текстуры. Это необходимо учитывать при изготовлении и эксплуатации упомянутых выше приборов, однако систематических исследований таких эффектов в пленках Pt авторами не найдено.

Рост зерен при термообработке приводит к уменьшению площади, а следовательно, и объема межзеренных границ. В результате уменьшается количество материала, находящегося в неупорядоченном состоянии в межзеренных границах [10], следовательно, увеличивается доля материала δ , находящегося в кристаллической фазе. Знание параметра δ важно во многих случаях из-за его влияния на физические свойства пленок [11], а также при изучении процессов их кристаллизации [12,13]. При этом измерение δ в пленках затруднительно по нескольким причинам. Для нанокристаллических материалов существуют методики определения δ , основанные на измерении размеров зерен [14,15], а также на измерении модуля Юнга [16]. Область применения этих методик ограничена материалами с равноосными зернами, тогда как пленки часто содержат большие фракции столбчатых зерен. В рентгеновской дифрактометрии для образцов, не имеющих текстуры, δ определяется путем сравнения интегральных интенсивностей пиков на $\theta - 2\theta$ дифрактограммах для исследуемого образца и эталона из того же материала с известным значением δ [17]. При отсутствии эталона остается возможность определить таким методом значения δ относительно одного из образцов, для которого δ принимается равным 100%. Такая методика часто применяется для вычисления δ в пленках, имеющих один и тот же тип текстуры [11–13], однако при этом пренебрегается различием в качестве текстур разных образцов. Это различие учитывается в предлагаемой нами в настоящей работе рентгеновской методике определения относительных значений δ для текстурированных пленок с помощью кривых качания.

Первой целью настоящей работы было установить, как в зависимости от толщины пленки Pt меняется воздействие отжига в вакууме в режиме 500° C/60 min на ее текстуру и δ . Для этого до и после отжига с помощью дифрактограмм, полюсных фигур и кривых качания были определены угол рассеяния текстуры $\Delta \gamma$ [18] и δ для пленок Pt с толщиной h = 20-80 nm. Второй целью работы было найти распределение параметров $\Delta \gamma$ и δ по глубине *t* исходной пленки. Для этого была разработана методика вычисления $\Delta \gamma(t)$ и $\delta(t)$, основанная на предположении о неподвижности межзеренных границ внутри пленки Pt во время ее нанесения.

1. Эксперимент

Пленки Pt толщинами 20, 40, 60, 80 nm осаждались методом магнетронного распыления на окисленные пластины Si (100). Нанесение пленки проводилось в установке SCR 651 "Tetra" (Alcatel) при комнатной температуре, остаточном давлении $5 \cdot 10^{-5}$ Pa и давлении аргона 0.2 Pa. Скорость осаждения Pt составляла 0.5 nm/s. После нанесения пленки отжигались в вакууме при 500°C в течение 60 min. Данная температура примерно соответствует порогу рекристаллизации в объемной Pt [19].

Толщина пленок измерялась по сколу с помощью сканирующего электронного микроскопа (СЭМ) Supra-40 (Carl Zeiss). Рентгеноструктурные исследования пленок проводились до и после отжига. Съемки $\theta-2\theta$ дифрактограмм, полюсных фигур [18] Pt (111) и Pt (200), а также кривых качания пиков Pt (111) проводились с помощью дифрактометра ДРОН-3М с фокусировкой по Брэггу–Брентано, оснащенного гониометрической приставкой ГП-14. Использовалась трубка с медным анодом, линия Cu K_{β} устранялась с помощью кристалламонохроматора. Падающее на образец излучение представляло собой сумму линий Cu $K_{\alpha 1}$ + Cu $K_{\alpha 2}$, дублетность излучения в расчетах не учитывалась. При съемке полюсных фигур шаг сканирования по углу наклона α был равен 2°, шаг сканирования по углу вращения β был равен 2.4°. Кривые качания были сняты с шагом угла поворота образца γ , равным 0.05°. С помощью полюсных фигур было найдено, что во всех случаях пленки обладают аксиальной (111) текстурой, также был определен угол наклона оси текстуры. С помощью кривых качания Pt (111) вычислялись $\Delta \gamma$ и δ . Угол рассеяния текстуры определялся как полуширина соответствующей кривой качания после ее коррекции с учетом фона, поглощения излучения в пленке и изменения облучаемого объема Pt, обусловленного поворотом образца во время съемки. При вычислении δ предполагалось, что данный параметр прямо пропорционален площади под скорректированной кривой качания. Использование кривой качания для вычисления δ позволяет учесть кристаллическую фазу в зернах всех имеющихся ориентировок плоскостей (111).

В пленках распределение $\Delta \gamma$ и δ по t неоднородно, поэтому, строго говоря, пленку необходимо характеризовать зависимостями $\Delta \gamma(t)$ и $\delta(t)$. Получить такие распределения без дополнительных предположений затруднительно, поэтому при расчетах пренебрегали зависимостью $\Delta \gamma$ и δ от t и вычисляли эффективные значения $\Delta \gamma_{\text{eff}}$ и δ_{eff} . Однако в случае исходных пленок можно вычислить и $\Delta \gamma(t)$ и $\delta(t)$, предполагая, что межзеренные границы во время нанесения пленки были неподвижны. В этом случае зависимости $\Delta \gamma(t)$ и $\delta(t)$ определялись в приближении ступенчатого распределения $\Delta \gamma$ и δ по глубине пленки с шириной ступени 20 nm.

2. Результаты и обсуждение

На рис. 1 показаны центральные части полюсных фигур (ПФ) Pt (111) и Pt (200) для исходной и подвергнутой отжигу пленки толщиной 80 nm. Видно, что исходная пленка имеет аксиальную (111) текстуру, причем ось текстуры отклонена от нормали к поверхности на $1-2^{\circ}$. Отжиг не меняет тип и угол наклона оси текстуры, увеличивается только острота текстуры (рис. 1, a, c), что проявляется в сужении и увеличении текстурного максимума на ПФ Pt (111). Эти утверждения справедливы и для пленок других толщин.

2.1. Влияние толщины пленки Pt на изменение качества текстуры и относительной доли кристаллической фазы в результате отжига

Так как для всех образцов наблюдается наклон оси текстуры от нормали к поверхности, для правильного определения $\Delta \gamma$ съемка кривой качания всегда проводилась при значении угла вращения β образца, для которого ось текстуры все время съемки находится в плоскости дифракции. При этом кривая качания представляет собой сечение центральной части ПФ Pt (111), проходящее через начало координат и текстурный максимум. Следуя подходу, предложенному в работе [20] для анализа полюсных фигур, найдем выражение для

Рис. 1. Центральные части полюсных фигур Pt (111) (a, c) и Pt (200) (b, d) для пленки толщиной 80 nm, исходной (a, b) и подвергнутой отжигу 500°С/60 min (c, d).

Рис. 2. Схема съемки кривой качания образца. F — фокус рентгеновской трубки, C — счетчик импульсов. S_0 , t, dt, dV, θ , γ (см. пояснения в тексте).

кривой качания *RC*, в котором учтены поглощение излучения в пленке, а также изменение облучаемого объема Pt, обусловленное поворотом образца в процессе

съемки. Рассмотрим элемент объема пленки dV (рис. 2), на который падает расходящийся пучок излучения интенсивностью *I*:

$$I = I_0 \exp\left[-(h-t)\mu/\sin\gamma\right],\tag{1}$$

~ ~ /

где I_0 — интенсивность падающего на поверхность образца излучения, h — толщина пленки, μ — коэффициент поглощения рентгеновского излучения для Pt, $\mu = 4290 \text{ cm}^{-1}$ [21], γ — угол поворота образца при съемке кривой качания, γ изменяется в пределах от 0 до 2 θ . В направлении счетчика импульсов распространяется дифрагированное излучение интенсивностью dI':

$$dI' = I_0 D(t, \gamma) \exp\left[-(h-t)/L(\gamma)\right] dV = \frac{I_0 S_0 D(t, \gamma)}{\sin \gamma}$$
$$\times \exp\left[-(h-t)/L(\gamma)\right] dt, \qquad (2)$$

где $1/L(\gamma) = \mu/\sin(\gamma) + \mu/\sin(2\theta - \gamma)$, S_0 — площадь поперечного сечения пучка перед образцом, dt — элемент толщины пленки, D — отношение интенсивности дифрагированного в dV излучения к интенсивности излучения, падающего на dV. D прямо пропорционально количеству кристаллической фазы в dV, содержащемуся в кристаллитах, плоскости (111) которых отклонены от плоскости пленки на угол $|\theta - \gamma|$ [18,20]. Интегрирование

по всему облучаемому объему пленки дает выражение для *RC*:

$$RC(h, \gamma) - RC_{bg}(h, \gamma) = \frac{I_0 S_0}{\sin \gamma} \int_0^n D(t, \gamma) \\ \times \exp[-(h-t)/L(\gamma)] dt, \quad (3)$$

где $RC_{bg}(h, \gamma)$ — фон, измеренный как кривая качания при положении счетчика под углом $2\theta = 2\theta_{111} + 3^{\circ}$. В формуле (3) интегрирование по dt проводится от границы раздела пленки и подложки до поверхности пленки. Функция $D(t, \gamma)$ представляет собой распределение отклонений нормалей атомных плоскостей (111) от оси текстуры в слое dt на расстоянии от поверхности пленки h-t. В общем случае D зависит от t, однако без постановки специальных экспериментов невозможно определить эту зависимость, поэтому, как правило, предполагается, что D не зависит от t, и $D(t, \gamma)$ заменяется эффективным значением $D_{eff}(\gamma)$:

$$D_{\text{eff}}(h,\gamma) = \frac{\sin\gamma}{I_0 S_0 L} \frac{RC(h,\gamma) - RC_{bg}(h,\gamma)}{1 - \exp(-h/L)}.$$
 (4)

 $D_{\text{eff}}(\gamma)$ представляет собой кривую качания, исправленную с учетом фона, поглощения в пленке и изменения облучаемого объема. Зависимости $D_{\text{eff}}(\gamma)$ для исходных пленок приведены на рис. 3, а. Углы рассеяния текстуры $\Delta \gamma_{\rm eff}$ вычислялись как полуширины соответствующих профилей $D_{\text{eff}}(\gamma)$, результаты вычисления $\Delta \gamma_{\rm eff}(h)$ для исходных и подвергнутых отжигу пленок приведены на рис. 3, b. Зависимость $\Delta \gamma_{\text{eff}}(h)$ для исходной Pt является убывающей, что типично для поликристаллических пленок на неориентирующих подложках: такие же результаты были получены, например, для пленки Ti, нанесенной на SiO₂ [22] и AlN на Pt [23]. Улучшение качества текстуры с ростом h может быть объяснено следующим образом. На начальной стадии роста на неориентирующей подложке формируются островки с разными кристаллографическими ориентациями, однако при данных условиях нанесения пленки энергетически выгоден рост кристаллитов с наименьшей поверхностной энергией [24]. Для ГЦК металлов это будут кристаллиты с атомными плоскостями (111), параллельными поверхности подложки. По этой причине в процессе роста островков доля материала в зернах с такой ориентацией увеличивается, таким образом, пленка приобретает преимущественную ориентацию. Дальнейший рост происходит на сформировавшихся зернах и является ориентированным. В результате происходит улучшение качества текстуры пленки с увеличением ее толщины [24,25].

На рис. 3, с видно, что для всех h отжиг привел к улучшению качества текстуры, причем степень этого улучшения возрастает с уменьшением h. В [26] было установлено, что в процессе отжига в исследуемой пленке Pt происходит рост обычных и вторичных зерен, причем латеральные размеры и суммарная площадь вторичных зерен тем больше, чем меньше *h*. В работе [9] была предложена модель, согласно которой вторичные зерна обладают наименьшей поверхностной энергией, и скорость их роста будет тем выше, чем меньше толщина пленки. Для зерен с другими ориентациями модель не предусматривает такого эффекта. Очевидным следствием из этой модели будет то, что текстура пленки должна при отжиге улучшаться тем сильнее, чем меньше ее толщина, что и находит экспериментальное подтверждение в нашей работе.

Как указывалось во Введении, применение стандартных рентгеновских методик определения δ в текстурированных материалах дает неверный результат из-за неучета зависимости D_{eff} от угла у. В настоящей работе предлагается методика оценки δ с помощью кривых качания, позволяющая учесть такую зависимость. Из-за отсутствия эталона с известным значением δ в рамках предлагаемой методики есть возможность оценить только относительную долю кристаллической фазы, когда для образца с наибольшим значением δ принимается, что $\delta = 100\%$. Чтобы вычислить δ , необходимо провести суммирование интегральных интенсивностей от всех существующих в пленке ориентировок плоскостей (*hkl*). Для пленки Pt с сильной аксиальной текстурой (111) это можно сделать с помощью ПФ (111). С учетом необходимых поправок доля кристаллической фазы будет прямо пропорциональна сумме $\sum_{\alpha,\beta} b(h,\alpha) D_{\text{eff}}(h,\alpha,\beta)$, где суммирование по а ведется так, чтобы захва-

где суммирование по α ведется так, чтобы захватить область текстурного максимума в центре ПФ (рис. 1, *a*, *c*), суммирование по β ведется в диапазоне 0-360°, *b*(*h*, α) — интегральная ширина пика Pt (111) на θ -2 θ дифрактограмме, снятой при наклоне образца с пленкой толщиной *h* на угол α . Как указывалось выше, кривая качания Pt (111) представляет собой сечение центральной части полюсной фигуры Pt (111), которое в нашем эксперименте проведено через центр ПФ и текстурный максимум. В случае аксиальной симметрии ПФ суммирование $\sum_{\alpha,\beta} b(h, \alpha) D_{\text{eff}}(h, \alpha, \beta)$ сводится к суммированию по α , а следовательно, будет эквивалентно интегрированию функции $b(h, \gamma) D_{\text{eff}}(h, \gamma)$ по γ , поэтому

интегрированию функции $b(h, \gamma)D_{\text{eff}}(h, \gamma)$ по γ , поэтому с точностью до постоянного множителя, пренебрегая зависимостью b от γ , можно записать

$$\delta_{\text{eff}}(h) = b(h) \int_{0}^{2\theta} D_{\text{eff}}(h, \gamma) d\gamma.$$
 (5)

В формуле (5) b(h) определяется с помощью дифрактограммы, снятой при $\gamma = \theta$ с использованием тех же щелей источника и счетчика, что использовались для съемки кривой качания. Так как γ при съемке кривой качания не может выходить за пределы диапазона $0-2\theta_{111}$, интегрирование в (5) захватывает ПФ только в диапазоне углов наклона $\alpha = 0-\theta_{111}$. Таким образом,

Рис. З. a — исправленные кривые качания $D_{\text{eff}}(\gamma)$ для исходных пленок Pt толщинами 20 (1), 40 (2), 60 (3), 80 nm (4). b — зависимости угла рассеяния текстуры $\Delta \gamma_{\text{eff}}$ от толщины пленки h для исходной (1) и подвергнутой отжигу 500°С/60 min (2) пленки Pt.

данная методика применима только для пленок с однокомпонентной аксиальной текстурой, при этом хотя бы один текстурный максимум должен находиться в данном диапазоне углов α . Так как для Pt $2\theta_{111} \approx 40^\circ$, для полученных в нашем эксперименте ПФ Pt (111) это требование выполняется для всех образцов (рис. 1, a, c). Необходимо заметить, что в случае пленки Pt с аксиальной текстурой (111) происходит суммирование по тем зернам, чьи плоскости (111) отклонены от плоскости подложки на углы 0-20° и 50-90°. Второй диапазон углов обусловлен учетом дифракции на тех плоскостях из совокупности {111}, которые дают на ПФ (111) текстурный максимум в виде кольца в области $\alpha \approx 70.5^{\circ}$ (на рис. 1, *a*, *c* не показан). Количество материала в неучтенных зернах представляется пренебрежимо малым, так как интенсивность на ПФ в диапазоне $\alpha = 20-50^{\circ}$ не превышает фона.

Значения δ_{eff} были вычислены как по описанной выше методике, так и путем измерения интегральной интенсивности пика Pt(111) на 2-20 дифрактограмме (см. Введение). Результаты для исходной и подвергнутой отжигу пленки Pt представлены на рис. 4. Видно, что значение $\delta_{\text{eff}}(h)$, определенное с помощью традиционной методики для 20 nm пленки, подвергнутой отжигу, существенно завышено, что объясняется наилучшим среди всех образцов качеством текстуры этой пленки. В случае лучшей текстуры при стандартной геометрии съемки *θ*-2*θ* дифрактораммы условию Брэгга удовлетворяет большая доля объема пленки, чем в случае худшей текстуры, следовательно, интегральная интенсивность пика на дифрактограмме будет выше, что и приведет к завышению значения δ_{eff} . В случае исходной пленки значения δ_{eff} , полученные с помощью традиционной методики, несколько занижены, это можно объяснить

Рис. 4. Относительная доля кристаллической фазы δ_{eff} для пленок Pt, исходной (1, 3) и подвергнутой отжигу 500° C/60 min (2, 4) в зависимости от толщины пленки *h*. Значение δ_{eff} для 80 nm пленки, подвергнутой отжигу, принято равным 100%. Значения δ_{eff} получены интегрированием кривых качания (1, 2) и путем вычисления интегральной интенсивности пика Pt (111) на θ -2 θ дифрактограмме (3, 4).

худшим качеством текстуры по сравнению с пленками, подвергнутыми отжигу. Таким образом, показано преимущество метода вычисления $\delta_{\rm eff}(h)$, основанного на анализе кривых качания, позволяющее учитывать различие качества текстуры разных образцов.

Зависимости $\delta_{\text{eff}}(h)$, вычисленные с помощью кривых качания, позволяют сделать два утверждения. Вопервых, для исходной пленки $\delta_{\rm eff}$ сублинейно увеличивается с ростом h. Во-вторых, для всех толщин δ_{eff} в результате отжига увеличивается, причем, увеличение это тем больше, чем меньше h. Первый факт можно объяснить уменьшением площади межзеренных границ, обусловленным увеличением латеральных размеров зерен с ростом h [26]. По той же причине рост обычных и вторичных зерен в процессе отжига приводит для всех *h* к увеличению δ_{eff} . Рост разности значений δ_{eff} до и после отжига с уменьшением h может быть объяснен теми же причинами, что и аналогичное улучшение текстуры. Выше уже указывалось, что средний латеральный размер и суммарная занимаемая площадь вторичных зерен увеличиваются с уменьшением h. При $h = 20 \, \text{nm}$ площадь, занимаемая вторичными зернами, примерно равна площади, занимаемой обычными зернами, а средний латеральный размер вторичных зерен примерно на порядок больше такового для обычных зерен. При этом средний латеральный размер обычных зерен, как и до отжига, уменьшается с уменьшением *h*. Несмотря на последний факт, можно предположить, что из-за увеличения размеров вторичных зерен при уменьшении h суммарная площадь межзеренных границ уменьшится в результате отжига тем больше, чем меньше h, что приведет к увеличению разности значений $\delta_{\rm eff}$ до и после отжига с уменьшением h.

Обращает на себя внимание факт значительного (десятки процентов) увеличения δ_{eff} с ростом h или в результате отжига. Существенные изменения δ при небольших изменениях размеров зерен являются, однако, типичными для нанокристаллических материалов [14,15,27].

2.2. Нахождение распределений угла рассеяния текстуры и относительной доли кристаллической фазы по глубине для исходной пленки Pt

Ранее было установлено, что для исходных образцов $\Delta \gamma_{\rm eff}$ и $\delta_{\rm eff}$ меняются с изменением *h*, это является признаком неоднородности распределения данных параметров по глубине Pt. Такая особенность пленок хорошо известна, и нахождение данных распределений является актуальной задачей, решение которой необходимо, например, для изучения напряжений в пленках [25]. Имеющиеся данные позволяют провести оценку этих распределений для исходных образцов Pt при условии, что микроструктура, а следовательно, распределения $\Delta \gamma(t)$ и $\delta(t)$ в объеме растущей пленки не меняются в процессе ее осаждения. Изменения микростуктуры в растущих пленках происходят за счет термически активируемого роста зерен, который сопровождается движением межзеренных границ. Известно, что для пленок ГЦК металлов межзеренные границы неподвижны при гомологической температуре ниже 0.2-0.3 [28]. В нашем эксперименте пленка Рt осаждалась при гомологической температуре 0.15,

следовательно, поставленное выше условие соблюдается. Неизменность микроструктуры пленки Pt при такой температуре подтверждается СЭМ изображениями пленок, полученными с интервалом в несколько месяцев: за этот период не было отмечено изменения морфологии поверхности. Отжиг пленок Pt происходил при гомологической температуре 0.4, в результате чего, как было показано выше, произошли изменения кристаллической структуры, тем более существенные, чем меньше *h*. Следовательно, для пленок, подвергнутых отжигу, принципиально невозможно определить $\Delta \gamma(t)$ и $\delta(t)$.

Так как исследуемые образцы были изготовлены в одинаковых условиях, мы будем считать, что функция $D(t, \gamma)$ для всех исходных образцов одинакова. Это дает возможность рассмотреть пленку толщиной h как состоящую из N горизонтальных слоев равной толщины Δh , в нашем случае $\Delta h = 20$ nm. Значения $\Delta \gamma$ и δ в слое между $t - \Delta h$ и t можно оценить, вычтя с учетом необходимых поправок кривую качания для пленки толщиной $t - \Delta h$ из кривой качания для пленки толщиной t. Далее, чтобы учесть поглощение в Pt, $\Delta \gamma(t)$ и $\delta(t)$ были вычислены в приближении ступенчатой функции D(t): внутри каждого слоя D(t) полагалась равной константе. Таким образом, зависимости $\Delta \gamma(t)$ и $\delta(t)$ также получаются ступенчатыми, и для их нахождения предлагается следующая процедура. При сделанных выше допущениях формула (3) для кривой качания может быть записана в виле

$$RC(h, \gamma) - RC_{bg}(h, \gamma) = rc(h, \gamma) = \frac{I_0 S_0 L}{\sin \gamma} \sum_{i=1}^N D(t_i, \gamma)$$
$$\times \exp(-h/L) \left[\exp(t_i/L) - \exp(t_{i-1}/L) \right]. \tag{6}$$

В (6) $t_0 = 0$, $t_N = h$. Например, для разбиения 60 nm пленки на N = 3 слоя получаем систему

$$\begin{cases} rc(h_1, \gamma) = A(\theta, \gamma)D(t_1, \gamma), \\ rc(h_2, \gamma) = A(\theta, \gamma)[D(t_2, \gamma) + D(t_1, \gamma)\exp(-\Delta h/L)], \\ rc(h_3, \gamma) = A(\theta, \gamma)[D(t_3, \gamma) + D(t_2, \gamma)\exp(-\Delta h/L)], \\ + D(t_1, \gamma)\exp(-2\Delta h/L)], \end{cases}$$
(7)

где $A(\theta, \gamma) = I_0 SL[1 - \exp(-\Delta h/L)]/\sin \gamma$. Решение системы (7) имеет вид

$$\begin{cases} D(t_1, \gamma) = rc(h_1, \gamma)/A(\theta, \gamma), \\ D(t_2, \gamma) = [rc(h_2, \gamma) - rc(h_1, \gamma) \exp(-\Delta h/L)]/A(\theta, \gamma), \\ D(t_3, \gamma) = [rc(h_3, \gamma) - rc(h_2, \gamma) \exp(-\Delta h/L)]/A(\theta, \gamma). \end{cases}$$
(8)

Puc. 5. *a* — распределения ориентировок атомных плоскостей (111) *D*(γ) для слоев исходной пленки: 0–20 (*I*), 20–40 (*2*), 40–60 (*3*), 60–80 nm (*4*). *b* — зависимость $\Delta \gamma(t)$ (столбчатая диаграмма) и зависимость $\Delta \gamma_{\text{eff}}(h)$ (*I*) для исходной пленки Pt, а также их аппроксимации функцией $\Delta \gamma(x) = [\Delta \gamma(0) - \Delta \gamma(\infty)] \exp(-x/x_0) + \Delta \gamma(\infty)$ (*2*, 3).

Выражения для δ в каждом слое будут иметь вид

$$\begin{cases} \delta(t_1) = \int_{0}^{2\theta} b(h_1) rc(h_1, \gamma) / A(\theta, \gamma) d\gamma, \\ \delta(t_2) = \int_{0}^{2\theta} [b(h_2) rc(h_2, \gamma) - b(h_1) rc(h_1, \gamma) \\ \times \exp(-\Delta h/L)] / A(\theta, \gamma) d\gamma, \end{cases}$$
(9)
$$\delta(t_3) = \int_{0}^{2\theta} [b(h_3) rc(h_3, \gamma) - b(h_2) rc(h_2, \gamma) \\ \times \exp(-\Delta h/L)] / A(\theta, \gamma) d\gamma. \end{cases}$$

Как и в случае со сравнением разных пленок, к 100% приравнивается наибольшее значение $\delta(t_i)$. В нашем случае можно найти распределения $\Delta \gamma(t)$ и $\delta(t)$ для диапазона t = 0-80 nm, разбив 80 nm пленку на N = 4 слоя. Результаты вычислений (8) и (9) представлены на рис. 5 и 6 соответственно. Для функции $D(t_i, \gamma)$ каждого слоя аналогично вычислению γ_{eff} были определены углы рассеяния текстуры $\Delta \gamma$ (рис. 5, *b*).

Значения $\Delta \gamma$ для всех *t* меньше, чем соответствующие $\Delta \gamma_{\text{eff}}$, что объясняется учетом в последнем значении текстуры нижележащих слоев с большими значениями $\Delta \gamma$. Было найдено, что зависимости $\Delta \gamma_{\text{eff}}(h)$ и $\Delta \gamma(t)$ хорошо аппроксимируются функцией $\Delta \gamma(x) = [\Delta \gamma(0) - \Delta \gamma(\infty)] \exp(-x/x_0) + \Delta \gamma(\infty)$, причем в обоих случаях $\Delta \gamma(\infty) \neq 0$. Это означает, что для использованного режима нанесения пленки угол рассеяния ее текстуры с дальнейшим ростом h(t) будет стремиться к ненулевому значению, равному для $\Delta \gamma_{\text{eff}}$ 10.2°, а для $\Delta \gamma = 9.2^{\circ}$. Это можно объяснить либо влиянием

шероховатости подложки, либо тем, что, несмотря на повышение качества текстуры с ростом h, вышележащие слои сохраняют определенную степень разориентировки, вероятно, за счет присутствия малоугловых границ в зернах.

На рис. 6, *b* представлена зависимость $\delta(t)$, согласно которой значение данного параметра увеличивается почти в три раза с увеличением t с 20 до 60 nm, после чего рост $\delta(t)$ прекращается. Как и в случае $\delta_{\text{eff}}(h)$, такой рост обусловлен, главным образом, уменьшением площади межзеренных границ. Проверку правильности этого объяснения, а также предложенного метода определения δ можно сделать, используя оценку $\delta(t)$, основанную на следующей простой модели микроструктуры пленки. Предположим, что пленка толщиной h состоит из столбчатых зерен, большинство из которых имеет высоту, равную толщине пленки. Такая микроструктура является типичной для металлических пленок, полученных методом магнетронного распыления. Рассмотрим в пленке между $t - \Delta h$ и t горизонтальный слой толщиной Δh . Представим части зерен, попадающие в такой слой, в виде прямых многоугольных призм с высотами боковых граней, равными высоте слоя. Предположим, что каждая такая часть разделена на несколько областей когерентного рассеяния (ОКР). Таким образом, каждый слой представляет собой систему некогерентно рассеивающих блоков, высотой Δh каждый, состоящих из нескольких ОКР, разделенных большеугловыми межзеренными границами. Такие границы будем рассматривать как прослойки аморфного материала между блоками (рис. 6, *a*). Так как данная модель предназначена для описания зависимости $\Delta(t)$, в которой уже учтены все имеющиеся в слое ориентации зерен, можно считать, что во всех блоках атомные плоскости (111) ориентированы

Рис. 6. a — модель 20 nm слоя в виде системы некогерентно рассеивающих блоков в аморфной матрице (вид сверху). Белые области — зерна, серые области — аморфная прослойка между зернами. b — зависимость относительной доли кристаллической фазы $\delta(t)$. Столбчатая диаграмма — экспериментальные данные, линия — аппроксимация экспериментальных данных функцией (12).

параллельно слою. Предположим, что в таком слое с площадью верхней грани S содержится P таких блоков со средним латеральным размером, равным $\langle l \rangle$. Выразим объем слоя V как

$$V = S\Delta h \approx P\left(\langle l \rangle + d_{gb}\right)^2 \Delta h, \qquad (10)$$

где d_{gb} — эффективная толщина межзеренной границы, такая, что верхние грани P блоков со средним латеральным размером $\langle l \rangle + d_{gb}$ имели бы суммарную площадь, равную S. Объем кристаллической фазы V_c в V будет равен

$$V_c \approx P \langle l \rangle^2 \Delta h = \frac{V}{\left(1 + d_{gb} / \langle l \rangle\right)^2}.$$
 (11)

В работе [26] были найдены значения среднего латерального размера зерна $\langle l \rangle$ для исходных пленок разных h, и был сделан вывод о приблизительно линейном росте $\langle l \rangle$ с ростом h, однако в литературе есть данные, что $\langle l \rangle$ растет как $h^{1/n}$, где в зависимости от условий роста пленки п может принимать значения 2 [28], 3, 4 [29]. При аппроксимации экспериментальных результатов работы [26] зависимостью $h^{1/n}$ найдено, что наилучшее соответствие данным эксперимента достигается при n = 3, поэтому было принято, что $\langle l \rangle = kt^{1/3}$ (рис. 7). Необходимо указать, что наилучшее соответствие модели и эксперимента было получено в предположении, что d_{gb} экспоненциально уменьшается с ростом h. Таким образом, выражение для $\delta(t)$ принимает вид

$$\delta = V_c/V = \frac{1}{\left\{1 + \frac{[d_{gb}(0) - d_{gb}(\infty)] \exp(-t/t_0) + d_{gb}(\infty)}{kt^{1/3}}\right\}^2}.$$
 (12)

Так как было принято, что каждый блок состоит из нескольких ОКР, следовательно, рассеивает неко-

Рис. 7. Зависимость среднего латерального размера зерна $\langle l \rangle$ исходной пленки Pt от толщины h(1) [26] и ее аппроксимация функцией $\langle l \rangle = kt^{1/3}$ (2), где k = 5.5 nm^{2/3}.

герентно, интенсивность излучения, дифрагированного на каждом таком блоке, будет прямо пропорциональна объему кристаллической фазы в нем. Таким образом, интенсивность излучения, дифрагированного в слое, будет прямо пропорциональна V_c . При сделанных выше допущениях функция (12) (кривая 2 на рис. 6, *b*) удовлетворительно описывает экспериментальные данные. С помощью полученных в результате аппроксимации значений параметров в (12) была найдена зависимость $d_{gb}(t)$. Было получено, что эффективная ширина межзеренной границы уменьшается от 2.5 до 0.5 nm при

увеличении t от 40 до 80 nm. Значение d_{gb} для t = 20 nm равно 9 nm, что представляется завышенным. Такое значение d_{gb} может быть объяснено пористостью 20 nm пленки. Это подтверждается СЭМ изображениями данной пленки, на которых видны поры с латеральными размерами, примерно равными размерам зерен [26]. Для больших значений h значение d_{gb} согласуется с таковым для пленок и объемных нанокристаллических ГЦК металлов [27,30].

Таким образом, результаты эксперимента согласуются с простой моделью микроструктуры пленки, однако значение δ для 20 nm пленки представляется заниженным из-за ее пористости. Последний вывод справедлив и для значения $\delta_{\rm eff}$ при 20 nm.

Заключение

В работе предложена и опробована методика определения относительной доли кристаллической фазы $\delta_{\rm eff}$ в текстурированных пленках с помощью кривых качания. Для пленок Pt с толщинами $h = 20, 40, 60, 80 \,\mathrm{nm}$ до и после их отжига в вакууме в режиме 500°C/60 min были вычислены углы рассеяния текстуры $\Delta \gamma_{\text{eff}}$ и δ_{eff} . Было найдено, что для исходных пленок $\Delta \gamma_{\rm eff}(h)$ экспоненциально уменьшается, а $\delta_{\rm eff}(h)$ сублинейно увеличивается с ростом *h*. Улучшение качества текстуры с ростом *h* объяснено переходом от неориентированного роста кристаллитов на аморфной подложке к появлению преимущественной ориентации и последующему ориентированному росту зерен. Увеличение δ_{eff} с ростом h объяснено увеличением латеральных размеров зерен и обусловленным этим уменьшением объема межзеренных границ. Найдено, что отжиг приводит к уменьшению $\Delta \gamma_{\rm eff}$ и увеличению $\delta_{\rm eff}$ для всех *h*, причем улучшение качества текстуры и увеличение доли кристаллической фазы тем сильнее, чем меньше h. Эти результаты объяснены увеличением скорости роста вторичных зерен при уменьшении толщины пленки. Для исходных пленок Рt предложена методика нахождения распределений Δγ и δ по глубине пленки. Было найдено, что $\Delta \gamma(t)$ экспоненциально уменьшается с ростом t, как и $\Delta \gamma_{\text{eff}}(h)$. Значение $\delta(t)$ увеличивается с ростом t с 20 до 60 nm почти в три раза, после чего рост $\delta(t)$ прекращается. Такой результат в целом согласуется с предложенной моделью микроструктуры пленки, однако при сравнении результатов эксперимента и оценок, сделанных на основе модели, был получен вывод о завышении полученного экспериментально значения δ для t = 20 nm. Данное завышение объяснено пористостью 20 nm пленки.

Финансирование работы

Работа выполнена в рамках Государственного задания ФАНО России. СЭМ исследования выполнены с использованием оборудования ЦКП "Диагностика микро- и наноструктур" при финансовой поддержке Министерства образования и науки Российской Федерации.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Воротилов К.А., Жигалина О.М., Васильев В.А., Сигов А.С. // ФТТ. 2009. Т 51. Вып. 7. С. 1268–1271. [Vorotilov K.A., Zhigalina O.M., Vasil'ev V.A., Sigov A.S. // Phys. Solid State. 2009. Vol. 51. N 7. P. 1337–1340. Doi: 10.1134/S106378340907004X]
- [2] Chateigner D., Wenk H.-R., Patel A., Todd M., Barber D.J. // Int. Ferroelectrics 1998. Vol. 19. N 1–4. P. 121–140. Doi: 10.1080/10584589808012699
- [3] Potrepka D.M., Fox G.R., Sanchez L.M., Polcawich R.G. // Mat. Res. Soc. Symp. Proc. 2011. Vol. 1299. P. 67–72. Doi: 10.1557/opl.2011.53
- Silva J.P.B., Sekhar K.C., Almeida A., Agostinho Moreira J., Martin-Sanchez J., Pereira M., Khodorov A., Gomes J.M. // J. Appl. Phys. 2012. Vol. 112. N 4. P. 044105. Doi: 10.1063/1.4748288
- [5] Mirica E., Kowach G., Evans P., Du H. // Cryst. Growth & Design. 2004. Vol. 4. N 1. P. 147–156. Doi: 10.1021/cg025595j
- [6] Kim S.-K., Jeong S.-Y., Cho C.-R. // Appl. Phys. Lett. 2003.
 Vol. 82. N 4. P. 562–564. Doi: 10.1063/1.1536253
- [7] Lin R.-C., Kao K.-S., Cheng C.-C., Chen Y.-C. // Thin Solid Films. 2008. Vol. 516. N 16. P. 5262–5265.
 Doi 10.1016/j.tsf.2007.07.105
- [8] Caliendo C., Massimilano Latino P. // Thin Solid Films. 2011.
 Vol. 519. N 19. P. 6326–6329. Doi: 10.1016/j.tsf.2011.04.017
- [9] Thompson C.V. // J. Appl. Phys. 1985. Vol. 58. N 2.
 P. 763-772. Doi: 10.1063/1.336194
- [10] Keblinski P., Wolf D., Phillpot S.R., Gleiter H. // Scripta Mater. 1999. Vol. 41. N 6. P. 631–636.
 Doi: 10.1016/S1359-6462(99)00142-6
- [11] Malek M.F., Mamat M.H., Khusaimi Z., Sahdan M.Z., Musa M.Z., Zainun A.R., Suriani A.B., Md Sin N.D., Abd Hamid S.B., Rusop M. // J. Alloys and Compounds. 2014. Vol. 582. N 5. P. 12–21. Doi: 10.1016/j.jallcom.2013.07.202
- [12] Ho M.-Y., Gong H., Wilk G.D., Busch B.W., Green M.L., Voyles P.M., Muller D.A., Bude M., Lin W.H., See A., Loomans M.E., Lahiri S.K., Raisanen P.I. // J. Appl. Phys. 2003. Vol. 93. N 3. P. 1477–1481. Doi: 10.1063/1.1534381
- [13] Heiroth S., Frison R., Rupp J.L.M., Lippert T., Meier E.J.B., Gubler E.M., Dobeli M., Conder K., Wokaun A., Gauckler L.J. // Solid State Ionics. 2011. Vol. 191. N 1. P. 12–23. Doi: 10.1016/j.ssi.2011.04.002
- Palumbo G., Thorne S.J., Aust K.T. // Scr. Metall. Mater. 1990.
 Vol. 24. N 7. P. 1347–1350.
 Doi: 10.1016/0956-716X(90)90354-J
- [15] Yamasaki T. // Scripta Mater. 2001. Vol. 44. N 8–9. P. 1497– 1502. Doi: 10.1016/S1359- 6462(01)00720-5
- [16] Roebben G., Sarbu C., Lubec T., Van der Biest O. // Mat. Sci. Eng. A. 2004. Vol. 370. N 1–2. P. 453–458.
 Doi: 10.1016/j.msea.2003.05.004
- [17] *Cullity B.D.* Elements of X-ray diffraction. Addison-Wesley Publishing Company, Inc. 1956.
- [18] Уманский Я.С., Скаков Ю.А., Иванов А.Н., Расторгуев Л.Н. Кристаллография, рентгенография и электронная микроскопия. М.: Металлургия, 1982. 632 с.

- [19] Платина, ее сплавы и композиционные материалы / Под ред. Е.В. Васильевой. М.: Металлургия, 1980. 296 с.
- [20] Schulz L.G. // J .Appl. Phys. 1949. Vol. 20. N 11. P. 1030–1033. Doi: 10.1063/1.1698268
- [21] Физические величины. Справочник. / Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.
- [22] Fox A.J., Drawl B., Fox G.R., Gibbons B.J., Trolier-McKinstry S. // IEEE Trans. on UFFC. 2015. Vol. 62. N 1. P. 56–61. Doi: 10.1109/TUFFC.2014.006671
- [23] Martin F., Muralt P., Dubois M.-A., Pezous A. // J. Vac. Sci. Technol. A. 2004. Vol. 22. N 2. P. 361–365. Doi: 10.1116/1.1649343
- [24] Petrov I., Barna P.B., Hultman L., Greene. J.E. // J. Vac. Sci. Technol. A. 2003. Vol. 21. N 5. P. S117–S128. Doi: 10.1116/1.1601610
- [25] Kuru Y, Welzel U, Mittemeijer E.J. // Appl. Phys. Lett. 2014.
 Vol. 105. N 22. P. 221902. Doi: 10.1063/1.4902940
- [26] Селюков Р.В., Наумов В.В., Васильев С.В. // ЖТФ. 2018. Т. 88. Вып. 6. С. 926–933.
- [27] Wei Y, Su C, Anand L. // Acta Mater. 2006. Vol. 54. N 12.
 P. 3177–3190. Doi: 10.1016/j.actamat.2006.03.007
- [28] Thompson C.V. // Annu. Rev. Mater. Sci. 2000. Vol. 30.
 P. 159–190. Doi: 10.1146/annurev.matsci.30.1.159
- [29] Ruffino F., Grimaldi M.G., Bongiorno C., Giannazzo F., Roccaforte F., Raineri V., Spinella C. // J. Appl. Phys. 2009. Vol. 105. N 5. P. 054311. Doi: 10.1063/1.3093681
- [30] Shen T.D., Koch C.C., Tsui T.Y., Pharr G.M. // J. Mater. Res. 1995. Vol. 10. N 11. P. 2892–2896. Doi: 10.1557/JMR.1995.2892