Влияние легирующих изовалентных примесей Ві на формирование однородных когерентно-напряженных квантовых точек InAs в матрице GaAs

© Р.М. Пелещак, С.К. Губа*[¶], О.В. Кузык, И.В. Курило*, О.О. Данькив

Дрогобычский государственный педагогический университет им. Ивана Франко, 82100 Дрогобыч, Украина * Национальный университет "Львовская политехника",

79013 Львов, Украина

(Получена 30 января 2012 г. Принята к печати 6 июня 2012 г.)

В рамках модели деформационного потенциала рассчитаны распределения всесторонней деформации в материале квантовых точек InAs с примесью Bi^{3+} в матрице GaAs. Получены зависимости деформации материала сферических квантовых точек InAs с примесью замещения ($Bi \rightarrow As$) и внедрения (Bi) от размера квантовой точки. Обсуждается качественное сопоставление модели с экспериментом. Получены данные о влиянии легирования на морфологию самоорганизованных квантовых точек InAs : Bi в матрице GaAs.

1. Введение

В последнее время развивается новый подход к управлению свойствами полупроводниковых гетероструктур с квантовыми точками, основанный на введении в квантовую точку единичного атома примеси [1]. Данная задача является перспективной для современной оптоэлектроники, в частности для создания одноэлектронных приборов, которые могут найти применение в квантовом компьютере [2]. Достижения в развитии нанотехнологии и физики наноструктур привели в последние годы к практической реализации разного рода оптоэлектронных приборов на базе массивов квантовых точек (КТ) InAs на широкозонной подложке GaAs [3-6]. Одним из способов образования упорядоченных массивов КТ является их самоорганизация на поверхности кристалла. Кинетика эпитаксиального роста и распределение напряжений в системе КТ-матрица влияют на размер, форму и расположение КТ в матрице [6-8]. Исключительные свойства структур с КТ проявятся лишь в том случае, если КТ как можно более однородные по форме и размерам, а массив КТ обладает высокой плотностью (порядка 10¹¹ см⁻²). Поэтому основной задачей при выращивании КТ является управление их морфологией: средним размером, плотностью, однородностью и др. Всеми этими параметрами КТ можно управлять, изменяя технологические параметры процесса роста [9-11]. Другой подход к управлению свойствами полупроводниковых гетероструктур с КТ базируется на введении в КТ единичного атома примеси [1,2]. Изовалентное легирование монокристаллических материалов является важным инструментом для решения многих практических задач. Одной из них является очистка соединений А^{ШВV} от неконтролируемых примесей изовалентной примесью Ві [12,13]. В связи с этим для более глубокого понимания механизма формирования массива КТ InAs при их изовалентном легировании Ві во время выращивания и получения более однородных квантовых точек

актуальной становится задача создания аналитической модели напряженной КТ InAs с изовалентной примесью. Эта модель должна описать следующие физические явления:

 влияние деформационно-индуцируемой диффузии адсорбируемых атомов на форму и размер квантовой точки;

— взаимодействия полей локальных механических напряжений с формируемым массивом КТ InAs и их влияние на размер, форму и расположение КТ в матрице.

Поэтому цель данной работы заключается в описании в рамках модели деформационного потенциала влияния изовалентной примеси Ві в КТ InAs для системы InAs/GaAs на формирование и морфологию КТ InAs. В статье представлены результаты исследования наногетеросистемы InAs/GaAs с напряженными квантовыми точками InAs сферической симметрии с изовалентной примесью Bi.

2. Модель напряженной квантовой точки с примесью

Процесс формирования напряженных КТ в соответствии с методом Странского–Крастанова [14] в напряженной наногетеросистеме осуществляется в 2 этапа. На первом этапе происходит рост псевдоморфного напряженного слоя InAs. При достижении им критической толщины (1.5–1.7 монослоя) следует второй этап спонтанный распад псевдоморфного слоя на систему кристаллических островков КТ и смачивающий слой InAs толщиной около 1 монослоя [15]. Такой распад вызван релаксацией упругих напряжений, которые возникают в гетероэпитаксиальной системе при несоответствии параметров решеток

$$f = \frac{a^{\text{InAs}} - a^{\text{GaAs}}}{a^{\text{InAs}}} \approx 7\%,$$

и разными коэффициентами термического расширения подложки GaAs и эпитаксиального слоя InAs

[¶] E-mail: gubask@polynet.lviv.ua

 $(\alpha_t^{\text{InAs}} = 4.5 \cdot 10^{-6} \text{ град}^{-1}, \alpha_t^{\text{GaAs}} = 5.9 \cdot 10^{-6} \text{ град}^{-1} [16]).$ Наибольшее уменьшение свободной энергии системы достигается при определенной форме (пирамидальной) и размерах возникающих трехмерных островков КТ. В реальных системах размеры и форма отдельных КТ отклоняются от равновесных за счет неоднородных деформаций, которые возникают в гетеросистеме.

В системе напряженных островков есть два источника полей упругих напряжений: с одной стороны, несоответствие параметров решеток материала КТ и подложки и, с другой стороны, прыжок тензора поверхностного натяжения на ребрах островков. Соответственно упругая энергия равняется сумме энергии объемной упругой релаксации, энергии упругой релаксации на ребрах островка и энергии взаимодействия двух упругих полей [17].

В одной статье будут рассматриваться КТ, которые не имеют четко выраженной кристаллографической огранки, в частности такие, форма которых приближенно отображает сферическую симметрию. Например, в гетеросистеме InAs/GaAs (001) такие КТ будут формироваться при толщине наращиваемого слоя InAs порядка 2 монослоев [15,18]. Поэтому в дальнейшем вкладом ребер островка в энергию упругой релаксации пренебрегаем.

Чтобы свести задачу с большим количеством КТ к задаче с одной КТ, было сделано следующее приближение: энергия попарного упругого взаимодействия КТ заменена энергией взаимодействия каждой КТ с усредненным полем упругой деформации $\sigma_{\rm eff}$ всех остальных КТ.

Поскольку постоянная решетки наращиваемого материала InAs ($a_1 = 6.08$ Å [19]) больше, чем матрицы GaAs ($a_2 = 5.65$ Å [19]), при гетероэпитаскиальном наращивании в пределах псевдоморфного роста InAs на слой GaAs материал InAs поддается деформации сжатия, а GaAs — растяжения. Таким образом, сферическая КТ радиусом R_0 представляется упругим дилатационным микровключением в виде упругой сферы (сплошная тонкая линия на рис. 1), помещенным в сферическую полость в матрице GaAs (пунктирная линия на рис. 1). Объем полости меньше объема микровключения на ΔV .

Чтобы вложить такое сферическое микровключение, необходимо его сжать и растянуть окружающую матрицу GaAs в радиальных направлениях. Результат одновременного действия деформаций контактирующих наноматериалов (сплошная толстая линия на рис. 1) описывается изменением объема ΔV через параметр f [20]:

$$\Delta V = f 4\pi R_0^3. \tag{1}$$

Рассмотрим сферическую КТ радиусом R_0 , помещенную в полупроводниковую матрицу радиуса R_1 , в центре которой содержится изовалентная примесь.

Для определения компонентов тензора деформации $\varepsilon_{lk}^{(i)}$ необходимо найти явный вид смещений атомов $u_r^{(1)}$, $u_r^{(2)}$ в материалах InAs и GaAs соответственно. Уравнение равновесия в случе КТ с имплантированной

примесью будет иметь вид [20]:

$$\nabla \operatorname{div} \mathbf{u} = -D_1 \mathbf{F}^{(1)}(\mathbf{r}); \qquad (2)$$

$$D_1 = \frac{(1+v_1)(1-2v_1)}{E_1(1-v_1)};$$

$$\mathbf{F}^{(1)} = \frac{2\Delta\Omega}{3\pi^{3/2}} \left(C_{11}^{(1)} + 2C_{12}^{(1)} \right) \frac{1}{r_0^5} r e^{-r^2/r_0^2} \mathbf{n}; \qquad \mathbf{n} = \frac{\mathbf{r}}{|\mathbf{r}|},$$

где $\mathbf{F}^{(1)}$ — объемная сила, созданная примесью в КТ; $\Delta\Omega$ — изменение объема материала КТ, обусловленное наличием изовалентной примеси; r_0 — эффективный радиус атома примеси; v_i , E_i — коэффициент Пуассона и модуль Юнга материала КТ и окружающей матрицы, которые выражаются известным образом [20] через упругие постоянные $C_{11}^{(i)}$ и $C_{12}^{(i)}$ этих материалов.

Решение уравнения (2) в сферических координатах имеет вид:

$$u_r^{(1)} = C_1 r + \frac{C_2}{r^2} - \frac{AD_1 r_0^4 e^{-r^2/r_0^2}}{4r} + \frac{AD_1 \sqrt{\pi} r_0^5 \operatorname{Erf}(r/r_0)}{8r^2},$$

$$0 \le r \le R_0,$$
(3)

где

$$A = \frac{2\Delta\Omega}{3\pi^{3/2}} \left(C_{11}^{(1)} + 2C_{12}^{(1)} \right) \frac{1}{r_0^5}.$$

Поскольку в точке r = 0 смещение должно быть конечным, в решении (3) следует положить $C_2 = 0$.

Смещение атомов в материале матрицы GaAs имеет вид:

$$u_r^{(2)} = C_3 r + \frac{C_4}{r^2}, \qquad R_0 \le r \le R_1.$$

Поле смещений определяет следующие компоненты тензора деформации:

$$\begin{split} \varepsilon_{rr}^{(1)} &= C_1 + \frac{AD_1 r_0^2 (r^2 + r_0^2) e^{-r^2/r_0^2}}{2r^2} - \frac{AD_1 \sqrt{\pi} r_0^5 \operatorname{Erf}(r/r_0)}{4r^3}, \\ \varepsilon_{\varphi\varphi}^{(1)} &= \varepsilon_{\theta\theta}^{(1)} = C_1 - \frac{AD_1 r_0^4 e^{-r^2/r_0^2}}{4r^2} + \frac{AD_1 \sqrt{\pi} r_0^5 \operatorname{Erf}(r/r_0)}{8r^3}, \\ \varepsilon_{rr}^{(2)} &= C_3 - \frac{2C_4}{r^3}, \\ \varepsilon_{\varphi\varphi\varphi}^{(2)} &= \varepsilon_{\theta\theta}^{(2)} = C_3 + \frac{C_4}{3}. \end{split}$$

Коэффициенты C₁, C₃, C₄ находятся из решения системы граничных условий

$$\begin{cases} 4\pi R_0^2 \left(u_r^{(2)} \big|_{r=R_0} - u_r^{(1)} \big|_{r=R_0} \right) = \Delta V, \\ \sigma_{rr}^{(1)} \big|_{r=R_0} = \sigma_{rr}^{(2)} \big|_{r=R_0} - P_L, \qquad P_L = \frac{2\gamma\varepsilon^{(1)}}{R_0} \quad (4) \\ \sigma_{rr}^{(2)} \big|_{r=R_1} = \sigma_{\text{eff}}, \end{cases}$$

(левая часть первого из уравнений системы (4) равняется геометрической разнице ΔV объемов микровключения и полости в матрице GaAs, изображенных на рис. 1); P_L — лапласовское давление; $2\gamma \varepsilon^{(1)}$ — поверхностная

Рис. 1. Модель напряженной квантовой точки сферической симметрии.

энергия КТ (InAs), которая является функцией тензора поверхностного напряжения и деформации КТ [21]:

$$\gamma \varepsilon^{(1)} = \gamma(0) + \sum_{i,j} \sigma^{(1)}_{ij} \varepsilon^{(1)}_{ij} + \frac{1}{2} \sum_{i,j,k,l} \varepsilon^{(1)}_{ij} (1) s^{(1)}_{ijkl} \varepsilon^{(1)}_{kl} + \dots$$

Здесь $\varepsilon_{ij}^{(1)}$, $\sigma_{ij}^{(1)}$ — соответственно тензор деформации и терзор поверхностного напряжения квантовой точки, $s_{ijkl}^{(1)}$ — тензор напряжений 2-го порядка.

Механические напряжения $\sigma_{rr}^{(1)}$ и $\sigma_{rr}^{(2)}$ в материалах квантовой точки и матрицы определяются следующим образом [22]:

$$\sigma_{rr}^{(i)} = \frac{E_i}{(1+v_i)(1-2v_i)} \left[(1-v_i)\varepsilon_{rr}^{(i)} + v_i \left(\varepsilon_{\varphi\varphi}^{(i)} + \varepsilon_{\theta\theta}^{(i)}\right) \right].$$
(5)

3. Результаты и их обсуждение

Расчет компонентов тензора деформации был проведен для наногетеросистемы InAs/GaAs с напряженными квантовыми точками InAs сферической симметрии с ионизированной примесью Ві при следующих значениях параметров [16,19,21]:

$$C_{11}^{(1)} = 0.833 \text{ M6ap}, \quad C_{12}^{(1)} = 0.453 \text{ M6ap},$$

 $C_{11}^{(2)} = 1.223 \text{ M6ap}, \quad C_{12}^{(2)} = 0.571 \text{ M6ap};$
 $D_{001}^{(1)} = 1.088, \quad D_{001}^{(2)} = 0.934;$
 $\gamma(0) = 0.567 \text{ H/m}; \quad \sigma_{\text{eff}} = 10^9 \text{ H/m}^2; \quad R_1 = 500 \text{ Å}$

Расчеты проводились для двух случаев: 1) Bi^{3+} замещает As^{3+} ; 2) примесь Ві находится в междоузлии полупрозрачного материала InAs. В первом случае ионный

радиус Bi³⁺ ($r_0 = 0.12$ нм) больше ионного радиуса As³⁺ ($r_{\rm As} = 0.069$ нм), что приводит к увеличению объема КТ на величину $\Delta \Omega = \frac{4}{3}\pi (r_0^3 - r_{\rm As}^3)$. Во втором случае увеличение объема КТ $\Delta \Omega = a_{\rm Bi}^3$ [23], где $a_{\rm Bi} = 0.475$ нм — параметр решетки Bi.

На рис. 2, 3 представлено распределение всесторонней деформации Sp $\varepsilon^{(1)}(r)$ в материале KT InAs с примесью Bi³⁺, которая замещает в узле атом As (рис. 2) или находится в междоузлии (рис. 3).

В обоих случаях примесь является центром растяжения и в окрестности примеси характер деформации изменяется на противоположный. По мере отдаления от центра КТ всестороннее сжатие ее материала монотонно растет к значению, которое практически не отличается от деформации всестороннего сжатия материала беспримесной КТ, возникающей за счет несоответствия параметров решеток контактирующих материалов. В первом случае деформация растяжения, возникающая в окрестности примеси, больше по величине и более локализована вблизи центра КТ. Это объясняется тем, что эффективный радиус упругого действия дефекта замещения является значительно меньшим, чем межузельного атома ($r_0 - r_{\rm As} \ll a_{\rm Bi}$).

Рис. 2. Всесторонняя деформация материала квантовой точки InAs с примесью замещения Bi^{3+} при разных радиусах квантовой точки R_0 , нм: 2 (1), 5 (2), 8 (3).

Рис. 3. Всесторонняя деформация материала квантовой точки InAs с примесью внедрения Bi^{3+} при разных радиусах квантовой точки R_0 , нм: 2 (1), 5 (2), 8 (3).

Физика и техника полупроводников, 2013, том 47, вып. 3

Монотонно уменьшающийся характер зависимости Sp $\varepsilon^{(1)} = f(R_0)$ обусловлен уменьшением влияния поверхностных сил давления Лапласа, формула (4), с увеличением размера KT.

Из рис. 2,3 следует, что за счет наличия примеси в КТ распределение деформации является пространственно неоднородным, что приводит к возникновению силы, действующей на дефект $F(x) = \theta_d \frac{\partial \varepsilon(x)}{\partial x}$ [24]. Эта сила порождает дополнительный деформационный поток атомов $j_d = vN_d$, где $v = \frac{D\theta_d}{kT} \frac{\partial \varepsilon(x)}{\partial x}$ — скорость атомов, возникающая за счет градиента деформации в квантовой точке (D — коэффициент диффузии, k — постоянная Больцмана, T — температура, $\theta_d = K_A \Delta \Omega$ — потенциал деформации, К_А — модуль упругости). Направление потока атомов определяется знаками деформационного потенциала и градиента деформации, т.е. дефекты, являющиеся центрами растяжения ($\theta_d > 0$), накапливаются в области материала с деформацией относительного растяжения, а дефекты, являющиеся центрами сжатия $(\theta_d < 0)$, накапливаются в области материала с деформацией относительного сжатия. Поскольку ковалентный радиус In больше, чем ковалентный радиус Ga, атомы In можно рассматривать как центры растяжения. Деформационный поток, противоположный к обычному градиентному потоку, будет способствовать локализации атомов In в КТ и соответственно ограничению их миграционной подвижности. Это должно проявиться в повышении однородности по размерам КТ, что и наблюдается экспериментально [25].

Кроме того, начичие примеси Ві в КТ изменяет среднее значение деформации ($\overline{\varepsilon} = \frac{4\pi}{V} \int_{0}^{R_0} \text{Sp} \,\varepsilon(r) r^2 dr$, где V — объем квантовой точки) и соответственно величину поверхностной энергии массива трехмерных когерентнонапряженных островков. В [3] показано, что характер зависимости поверхностной энергии от размера островков определяется параметром α (формулы (14), (15) в работе [3]), который равняется относительному изменению поверхностной энергии при образовании одного островка. Изменение величины деформации за счет примеси Ві приводит к уменьшению параметра α , и соответственно система островков становится более стойкой относительно коалесценции [3].

4. Заключение

В работе развита теоретическая модель деформации сферических квантовых точек, легированных изовалентной примесью. Эта модель качественно объясняет экспериментальные данные по созданию массива однородных КТ InAs, легированных Bi [25]. Висмут не является электрически активной примесью, т.е. не увеличивает концентрацию носителей заряда, но существенно изменяет условия формирования КТ за счет индуцированного диффузионно-деформационного потока. При этом роль Ві заключается как в ограничении миграционной подвижности атомов In и As при самоорганизации слоя КТ, так и во влиянии на поверхностную энергию. Установлено, что можно существенно подавить процесс коалесценции и тем же повысить однородность островков по размерам, если в процессе осаждения InAs легировать его изовалентной мышьяку примесью Bi. Таким образом, легирование висмутом слоя КТ InAs в процессе его образования и самоорганизации на поверхности GaAs способствует росту более однородных по размерам островков (КТ). Дальнейшее развитие модели связано с учетом роли смачивающего слоя и влияния легирующей Bi примеси на дислоцированные кластеры, которые являются основными дефектами в гетероструктурах с КТ.

Список литературы

- Л.Е. Воробьёв, В.Ю. Паневин, Н.К. Федосов, Д.А. Фирсов, В.А. Шалыгин, А.D. Andreev, Ю.Б. Самсоненко, А.А. Тонких, Г.Э. Цырлин, Н.В. Крыжановская, В.М. Устинов, S. Hanna, A. Seilmeier, N.D. Zakharov, P. Werner. ФТП, 39, 59 (2005).
- [2] В.В. Светухин, С.В. Булярский, Д.В. Санчищин. Письма ЖТФ, **30**, 9 (2004).
- [3] Н.Н. Леденцов, В.М. Устинов, В.А. Щукин, П.С. Копьёв, Ж.И. Алфёров, Д. Бимберг. ФТП, 32, 385 (1998).
- [4] В.П. Евтихиев, О.В. Константинов. ФТП, 36, 79 (2002).
- [5] N.N. Ledentsov, V.A. Schukin, T. Kettler, K. Posilovic, D. Bimberg, L.Y. Karachinsky, A.Y. Gladyshev, M.V. Maximov, L.I. Novikov, Y.M. Shernakov, A.E. Zhukov, V.M. Ustinov, A.R. Kovsh. J. Cryst. Growth, **301**, 914 (2007).
- [6] Б.В. Новиков, Г.Г. Зегря, Р.М. Пелещак, О.О. Данькив, В.А. Гайсин, В.Г. Талалаев, И.В. Шторм, Г.Э. Цырлин. ФТП, 42, 1094 (2008).
- [7] V.A. Shchukin, D. Bimberg. Appl. Phys. A, 67, 687 (1998).
- [8] В.Г. Дубровский, Ю.Г. Мусихин, Г.Э. Цырлин, В.А. Егоров, Н.К. Поляков, Ю.Б. Самсоненко, А.А. Тонких, Н.В. Крыжановская, Н.В. Берт, В.М. Устинов. ФТП, 38, 342 (2004).
- [9] V.F. Osipov, F. Schenitt, S.A. Kukushkin, P. Hess. Appl. Surf. Sci., 188, 156 (2002).
- [10] V.G. Dubrovskii, G.E. Cirlin, V.M. Ustinov. Phys. Rev. B, 68, 075 409 (2003).
- [11] В.Г. Дубровский, Н.В. Сибирев. Письма ЖТФ, 31, 58 (2005).
- [12] В.К. Баженов, В.И. Фистуль. ФТП, 18, 1345 (1984).
- [13] S.K. Guba, I.V. Kurilo. Functional Mater., 8, 234 (2001).
- [14] Р.Д. Венгренович, Ю.В. Гудыма, С.В. Ярема. ФТП, 35, 1440 (2001).
- [15] В.Г. Талалаев, Б.В. Новиков, С.Ю. Вербин, А.Б. Новиков, Д.Ш. Тхак, Г. Гобш, Р. Гольдхан, Н. Штейн, А. Голомбек, Г.Э. Цырлин, В.Н. Петров, В.М. Устинов, А.Е. Жуков, А.Ю. Егоров. ФТП, **34**, 467 (2000).
- [16] G. Chris, Van de Walle. Phys. Rev. B, 39, 1871 (1989).
- [17] V.A. Shchukin, N.N. Ledentsov, P.S. Kop'ev, D. Bimberg. Phys. Rev. Lett., **75**, 2968 (1995).
- [18] Z.M. Wang, K. Holmes, Yu.I. Mazyr, G.J. Salamo. Appl. Phys. Lett., 84, 1931 (2004).
- [19] A. Qteish, R.J. Needs. Phys. Rev. B, 45, 1317 (1992).
- [20] К. Теодосиу. Упругие модели дефектов в кристаллах (М., Мир, 1985).

- [21] N. Moll, M. Scheffler, E. Pehlke. Phys. Rev. B, 58, 4566 (1998).
- [22] Л.Д. Ландау, Е.М. Лифшиц. *Теория упругости* (М., Наука, 1965).
- [23] А.М. Косевич. *Теория кристаллической решетки* (Киев, Вища шк., 1988).
- [24] В.И. Емельянов, И.М. Панин. ФТТ, 39, 2029 (1997).
- [25] Б.Н. Звонков, И.А. Карпович, Н.В. Байдусь, Д.О. Филатов, С.В. Морозов. ФТП, 35, 92 (2001).

Редактор Т.А. Полянская

Influence of the doping isovalent impurity Bi on formation of homogeneous coherently strained quantum dots InAs in matrix GaAs

R.M. Peleshchak, S.K. Guba*, O.V. Kuzyk, I.V. Kurilo*, O.O. Dankiv

Franko Drogobych State Pedagogical University, 82100 Drogobych, Ukraine * Lviv Polytechnic National University, 79013 Lviv, Ukraine

Abstract Within the framework of model of deformation potential distributions of comprehensive deformation in material of quantum dots of InAs with the impurity of Bi^{3+} in the matrix of GaAs have been calculated. Dependence of deformation of material of spherial quantum dots of InAs with a replacement impurity ($Bi \rightarrow As$) and introductions Bi from the size of a quantum dots have been received. Qualitative comparison of model to experiment is discussed. The data about influence of doping on morphology of self-organised quantum dots InAs : Bi in matrix GaAs is obtained.