06.1;06.5

Анализ углеродсодержащих материалов методом вторично-ионной масс-спектрометрии: содержание атомов углерода в *s p*²- и *s p*³-гибридных состояниях

© М.Н. Дроздов¹, Ю.Н. Дроздов¹, А.И. Охапкин¹, П.А. Юнин¹, О.А. Стрелецкий², А.Е. Иешкин²

¹Институт физики микроструктур РАН, Нижний Новгород, Россия ²Московский государственный университет им. М.В. Ломоносова, Москва, Россия E-mail: drm@ipm.sci-nnov.ru

Поступило в Редакцию 11 декабря 2019 г. В окончательной редакции 11 декабря 2019 г. Принято к публикации 19 декабря 2019 г.

> Исследуется новый подход к анализу углеродсодержащих материалов методом вторично-ионной массспектрометрии, позволяющий определять концентрацию атомов углерода в состояниях sp^2 - и sp^3 гибридизации. В качестве основного параметра масс-спектров вторичных ионов, характеризующего концентрацию $N(sp^3)$, предложено использовать отношение интенсивностей кластерных вторичных ионов C_8/C_7 . На основании измерений нескольких тестовых структур получена калибровочная зависимость $N(sp^3)$ от отношения интенсивностей C_8/C_7 . Измерены профили $N(sp^3)$ образцов алмазоподобного углерода, выращенных на подложках алмаза и кремния, показавшие концентрацию $N(sp^3)$ от 0.3 до 0.6 для разных режимов роста и неоднородное распределение концентрации $N(sp^3)$ по толщине образцов.

Ключевые слова: вторично-ионная масс-спектрометрия, *sp*²- и *sp*³-гибридизация.

DOI: 10.21883/PJTF.2020.06.49164.18151

Основными методами анализа химического состава углеродсодержащих материалов являются спектроскопия характеристических потерь энергии электронов, рентгеновская фотоэлектронная спектроскопия и рамановская спектроскопия [1]. Эти методы позволяют определять концентрацию атомов углерода в состояниях sp²- и s p³-гибридизации атомных орбиталей, с которой связаны основные свойства углеродных материалов. Поэтому данные методы оказываются востребованными для решения широкого круга задач технологии и исследования структур на основе углерода: алмазоподобного углерода (diamond-like carbon, DLC) [2,3], монокристаллического алмаза и эпитаксиальных пленок для алмазной полупроводниковой электроники [4]. В работе [5] мы показали, что метод времяпролетной вторично-ионной массспектрометрии (ВИМС) с использованием кластерных вторичных ионов C_N и CsC_M ($N, M \le 10$) также позволяет различать разные фазы углерода: графит, DLC и алмаз. Эти различия наблюдались не только в статическом режиме измерений ВИМС, не разрушающем поверхность, но и в динамическом режиме послойного анализа, что первоначально было далеко не очевидно из-за нарушения поверхности распыляющими ионами. Был предложен алгоритм обработки полного масс-спектра вторичных ионов, позволяющий определять относительный состав двухфазных систем: алмаз-графит, DLC-графит или алмаз-DLC. Однако этот алгоритм не позволял определять основную характеристику углеродных материалов — концентрацию атомов углерода в состояниях sp^2 - и sp^3 -гибридизации ($N(sp^2)$ и $N(sp^3)$ соответственно). Основной проблемой химического анализа является выделение в полном масс-спектре вторичных ионов отдельных линий или их серий, наиболее однозначно характеризующих концентрацию атомов углерода в разных конфигурациях. Такая проблема не возникает для элементного анализа концентрации атомов примеси в полупроводниках, когда используются все элементарные или кластерные вторичные ионы элемента примеси с наибольшей интенсивностью [6]. Также достаточно очевиден выбор линий вторичных ионов при молекулярном анализе, где используются линии молекул [7,8] или их наиболее тяжелых фрагментов [9]. В массспектре углеродсодержащих материалов присутствует несколько десятков линий кластерных вторичных ионов с высокой интенсивностью, и вопрос его обработки для анализа концентрации *sp*²- и *sp*³-гибридных состояний углерода до сих пор не решен, хотя первые работы по анализу таких материалов появились более десяти лет назад [10-12]. Целью настоящей работы является поиск нового варианта обработки масс-спектров ВИМС для определения концентрации $N(sp^2)$, $N(sp^3)$. Использован подход определения калибровочных зависимостей исходя из измерений тестовых структур.

Измерения методом ВИМС проводились на установке TOF.SIMS-5 с времяпролетным масс-анализатором и двумя ионными пушками с раздельными функциями зондирования и распыления. Зондирование проводилось ионами висмута с энергией 25 keV, длительностью импульса 1 ns и низким значением тока пучка 1 pA. Использовались кластерные зондирующие ионы Bi₃⁺, поскольку они обеспечивают эмиссию тяжелых кластерных или молекулярных вторичных ионов с наибольшей интен-

Рис. 1. *а* — участок полного масс-спектра вторичных ионов — интенсивность кластерных вторичных ионов C_7-C_{12} в структурах *A*-*D*; *b* — интенсивности кластерных вторичных ионов, показанные на части *a*, нормированные на интенсивность C_7 для каждого из образцов *A*-*D*. *1* — структура *A*, *2* — структура *B*, *3* — структура *C*, *4* — структура *D*.

сивностью (в сравнении с элементарными ионами Bi^+). Это связывается [13] с разным механизмом распыления ионами Bi_3^+ ("тепловые пики") и ионами Bi^+ ("линейные каскады" с доминирующим механизмом парных столкновений). Распыление проводилось ионами цезия Cs^+ с энергией 1 keV.

Для поиска калибровочной зависимости интенсивности вторичных ионов от концентрации $N(sp^2)$, $N(sp^3)$ использовалось несколько тестовых структур. Структура A — пиролитический графит, все атомы углерода в котором имеют sp^2 -гибридизацию атомных орбиталей, $N(sp^2) = 1$. Структура B — монокристаллическая подложка алмаза, в которой все атомы имеют sp^3 -конфигурацию, $N(sp^3) = 1$. Структура C представляла собой слой DLC толщиной около 100 nm с высокой концентрацией $N(sp^3) \sim 0.9$ (по независимым измерениям методом рентгеновской фотоэлектронной спектроскопии). По классификации образцов DLC [1] это аморфный тетраэдрический углерод ta-С. С использованием полученных калибровочных зависимостей в работе анализировался фазовый состав четырех образцов DLC a-С : H, выращенных на установке Oxford Plasmalab 80 Plus на подложках алмаза (D) и кремния (E-G).

На рис. 1, а приведен узкий участок полного массспектра вторичных ионов — интенсивность вторичных ионов С7-С12 в тестовых структурах А-С. Для сопоставления там же приведены результаты для образца *D* — слоя DLC на алмазе. Измерения (рис. 1, *a*) проводились в идентичных условиях для всех образцов, масс-спектр интегрировался в течение 100 s при послойном анализе на участке однородного профиля вторичных ионов, удаленном от областей поверхностных загрязнений или переходных областей с подложкой. Для выбора характерных линий масс-спектра воспользуемся представлениями о химических связях между атомами углерода в состояниях *s p*²- и *s p*³-гибридизации. Для *s p*³-гибридизации атомные орбитали образуют пространственную тетраэдрическую конфигурацию, в которой каждый атом углерода связан с соседними атомами четырьмя *σ*-связями. Такая связь реализуется в алмазе. Для *s p*²-гибридизации атомы углерода связаны тремя σ-связями и одной π-связью; π-связь значительно слабее, чем σ -связь, из-за меньшей степени перекрытия атомных орбиталей. Такая конфигурация реализуется в графите, в котором атомы углерода связаны сильными σ-связями в плоскости, а отдельные плоскости связаны между собой более слабой *п*-связью. В промежуточном случае такие конфигурации сочетаются между собой.

Таким образом, *s p*²-конфигурация отличается от *s p*³-конфигурации наличием одной более слабой связи между атомами углерода. На наш взгляд, именно это отличие и составляет основную причину различия массспектров вторичных ионов в материалах с разной гибридизацией атомов углерода. Эти соображения подсказывают простой рецепт получения калибровочных зависимостей для фазового анализа — сопоставление интенсивностей близлежащих кластерных вторичных ионов C_4/C_3 , C_6/C_5 , C_8/C_7 и т.д. Однако в установке TOF.SIMS-5 детектор вторичных ионов оказывается насыщенным при детектировании вторичных ионов С3, С4 и С6 из-за высокой интенсивности. Коррекция мертвого времени детектора, предпринятая в установке, не компенсирует это насыщение. Поэтому для целей количественного анализа концентраций $N(s p^2)$ и $N(s p^3)$ было выбрано отношение интенсивностей С8/С7 (далее отношение C_8/C_7).

Отметим, что кроме sp^2 и sp^3 возможна еще одна конфигурация атомных орбиталей углерода — sp^1 -гибридизация, для которой две σ -связи сочетаются с двумя π -связями и образуют линейную пространственную конфигурацию атомов, реализующуюся, например, в карбине. Однако в рассматриваемом в настоящей работе классе структур (DLC, алмаз и графит) конфигурация sp^1 не встречается. Для этого класса материалов сумма

Рис. 2. a — калибровочная зависимость $N(sp^3)$ от отношения интенсивностей C₈/C₇. 1 — экспериментальные значения, 2 — аппроксимация. b — зависимости концентрации $N(sp^3)$ в структурах A-D от времени распыления, использованные для получения калибровочной зависимости. 1 — структура A, 2 — структура B, 3 — структура C, 4 — структура D.

концентраций $N(sp^2) + N(sp^3) = 1$, поэтому ниже вычисляется только одна величина — $N(sp^3)$.

На рис. 1, *b* приведены интенсивности кластерных вторичных ионов, показанные на рис. 1, *a*, нормированные на интенсивность C₇ для каждого из образцов A-D. Рис. 1, *b* для образцов A-C с известной концентрацией $N(sp^3)$ позволяет получить калибровочную зависимость $N(sp^3)$ от отношения C₈/C₇, приведенную на рис. 2, *a*. Экспериментальные точки на рис. 2, *a* могут быть аппроксимированы полиномом второй степени:

$$N(sp^3) = -K_0 + K_1(C_8/C_7) - K_2(C_8/C_7)^2.$$
(1)

Для использованного режима анализа $K_0 = 31.596$, $K_1 = 43.365$, $K_2 = 14.423$.

С учетом калибровочной зависимости (1) были перестроены исходные профили послойного анализа структур A-D, использованные для построения рис. 1, a и b.

Эти профили приведены на рис. 2, *b*. Они дают наглядное представление о возможности различить отдельные фазы углерода при анализе погрешности измерений. Значения концентрации $N(sp^3)$ для образцов A-D и погрешности ее измерения представлены в табл. 1.

Полученная калибровочная зависимость позволяет проводить анализ концентрации $N(s p^3)$ образцов DLC, выращенных в разных режимах. На рис. 3, *a*, *b* приведены профили $N(s p^3)$ и интенсивности вторичных ионов Si в образцах *E* и *F*, измеренные со сниженной скоростью распыления для уменьшения случайных погрешностей. Рис. 3, *a* и *b* показывают, что слой DLC имеет градиент концентрации $N(s p^3)$ с нарастанием от подложки к поверхности образца. Такой же градиент наблюдался в образце *D* — слое DLC на подложке алмаза. В табл. 2 приведены средние значения $N(s p^3)$ в трех образцах DLC (образцы *E*-*G*), выращенных при разных соотношениях мощности высокочастотного разряда и мощности разряда индукционно-связанной плазмы.

Была проведена попытка получения калибровочных зависимостей для элементарных зондирующих ионов

Рис. 3. Профили $N(s p^3)$ (1) и интенсивности вторичных ионов Si (2) в образцах E (*a*) и F (*b*).

Таблица 1. Значения концентрации $N(sp^3)$ для образцов A-D и погрешности ее измерения

Образец	$N(sp^3)$
Α	0.01 ± 0.06
В	0.999 ± 0.001
C	0.89 ± 0.02
D	0.30 ± 0.07

Таблица 2. Значения концентрации $N(sp^3)$ в DLC (образцы E-G)

Образец	$N(sp^3)$
E F G	$egin{array}{c} 0.6 \pm 0.1 \ 0.3 \pm 0.1 \ 0.4 \pm 0.1 \end{array}$

висмута Bi⁺. Интенсивность кластерных вторичных ионов C_N для ионов Bi^+ меньше, чем для Bi_3^+ , поэтому предполагалось получить калибровочную зависимость для отношения С₄/С₃. Однако для тестовых структур А-С мы получили, что наибольшее значение отношений С₄/С₃ и С₈/С₇ наблюдается для образца графита (в сравнении с образцами алмаза и ta-C). Это оказывается в полном противоречии с результатами использования зондирующего пучка Bi₃⁺, для которого наибольшие значения отношения С8/С7 наблюдаются для образцов алмаза и ta-C, а минимальное — для графита (рис. 1, b). На наш взгляд, наблюдаемое противоречие является следствием разного характера каскадных процессов при зондировании ионами Bi⁺ и Bi₃⁺, как отмечалось выше. Эти особенности каскадных процессов изменяют и процессы эмиссии вторичных ионов. Можно провести близкую параллель с новым вариантом статического режима ВИМС, получившим название "Gentle SIMS" [7], что можно перевести как "мягкий", "щадящий". В этом режиме для идентификации молекулярного состава смесей сопоставляются масс-спектры для двух разных зондирующих пучков, например Bi⁺ и Ві₃⁺ или Мп⁺ и Ві₃⁺. С использованием зондирующих ионов Ві₃⁺ эмитируются молекулярные вторичные ионы с высокой интенсивностью. При зондировании ионами Bi⁺, Mn⁺ молекулярные вторичные ионы практически отсутствуют, а в области низких масс формируются интенсивные линии фрагментов молекул.

Таким образом, в работе предложен новый подход к анализу фазового состава углеродсодержащих материалов методом ВИМС, позволяющий определять концентрацию атомов углерода в sp^2 - и sp^3 -конфигурациях. С использованием нескольких тестовых структур с известной концентрацией $N(sp^3)$ установлено, что отношение интенсивностей C_8/C_7 может служить количественным показателем концентрации $N(sp^3)$. Получена калибровочная зависимость $N(s p^3)$ от отношения C_8/C_7 , позволяющая проводить послойный анализ распределения $N(sp^3)$ по толщине образца. В данной работе было доступно лишь небольшое число тестовых структур с известной концентрацией $N(s p^3)$, в ближайшее время мы рассчитываем увеличить их число, что снизит систематическую погрешность фазового анализа. Измерены профили $N(s p^3)$ для нескольких образцов DLC, вырашенных методом плазмохимического осаждения на подложках алмаза и кремния. Слои DLC на этих подложках имеют неоднородное распределение $N(sp^3)$ по толщине с нарастанием от 0.1 вблизи подложки до 0.35 у поверхности. Использование дополнительного источника индукционно-связанной плазмы приводит к возрастанию концентрации $N(sp^3)$, характер неоднородности сохраняется. Традиционно метод ВИМС позволяет проводить послойный анализ элементов матрицы гетероструктур и элементов примеси с высокой чувствительностью и высоким разрешением по глубине на уровне нескольких нанометров. Дополнение аналитических возможностей метода ВИМС возможностью фазового анализа углеродсодержащих материалов для определения содержания атомов углерода в sp^3 - и sp^2 -гибридных состояниях существенно расширит применение метода ВИМС в области технологии и исследования образцов DLC и алмазной электроники.

Благодарности

В работе использовалось оборудование ЦКП ИФМ РАН "Физика и технология микро- и наноструктур".

Финансирование работы

Работа поддержана проектом Российского фонда фундаментальных исследований № 18-02-00565 в части развития методики ВИМС и грантом Президента для молодых кандидатов наук МК-3450.2019.2 в части изготовления структур DLC.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] *Robertson J.* // Mater. Sci. Eng. R. 2002. V. 37. N 4-6. P. 129–281.
- [2] Takabayashi S., Hayashi H., Yang M., Sugimoto R., Ogawa S., Takakuwa Y. // Diamond Related Mater. 2018.
 V. 81. P. 16–26.
- [3] Lesiak B., Kövér L., Tóth J., Zemek J., Jiricek P., Kromka A., Rangam N. // Appl. Surf. Sci. 2018. V. 452. P. 223–231.
- [4] Power electronics device applications of diamond semiconductors // Eds S. Koizumi, H. Umezawa, J. Pernot, M. Suzuki. Woodhead Publishing Ser. in Electronic and Optical Materials. Elsevier, 2018. 452 p.

- [5] Дроздов М.Н., Дроздов Ю.Н., Охапкин А.И., Краев С.А., Лобаев М.А. // Письма в ЖТФ. 2019. Т. 45. В. 2. С. 50–54.
- [6] Wilson R.G., Zavada J.M. // Mater. Sci. Eng. R. 2012. V. 73. N 11-12. P. 101–128.
- [7] Winograd N. // Surf. Interface Anal. 2013. V. 45. N 1. P. 3-8.
- [8] Дроздов М.Н., Дроздов Ю.Н., Пахомов Г.Л., Травкин В.В., Юнин П.А., Разумов В.Ф. // Письма в ЖТФ. 2013. Т. 39.
 В. 24. С. 45-54.
- [9] Mihara I., Nakagawa K., Kudo M., Aoyagi S. // Surf. Interface Anal. 2013. V. 45. N 1. P. 453–456.
- [10] Chiba K., Akamatsu T., Kawamura M. // Chem. Phys. Lett. 2006. V. 419. N 4-6. P. 506-510.
- [11] Staryga E., Bąk G.W., Rogowski J., Knapik M., Rylski A., Fabisiak K. // Diamond Related Mater. 2007. V. 16. N 4-7. P. 1312–1315.
- [12] Grasso S., Fumagalli F., Polignano M., Ravizza E., Spadoni S., Soncini V. // Surf. Interface Anal. 2016. V. 48. N 7. P. 428–431.
- [13] Van Vaeck L, Adriaens A., Gijbels R. // Mass Spectrometry Rev. 1999. V. 18. N 1. P. 1–47.