12

Твердотельный литий-ионный аккумулятор: структура, технология и характеристики

© А.С. Рудый¹, А.А. Мироненко¹, В.В. Наумов¹, А.М. Скундин², Т.Л. Кулова², И.С. Федоров¹, С.В. Васильев¹

¹ Ярославский филиал Физико-технологического института им. К.А. Валиева РАН, Ярославль, Россия ² Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Москва, Россия E-mail: rudy@uniyar.ac.ru

Поступило в Редакцию 24 октября 2019 г. В окончательной редакции 26 ноября 2019 г. Принято к публикации 28 ноября 2019 г.

> Приведены описание конструкции и результаты испытаний макета полностью твердотельного тонкопленочного литий-ионного аккумулятора. Показано, что особенности его зарядно-разрядных характеристик связаны с изменением уровня Ферми электродов и обусловлены изменением концентрации ионов лития в процессе заряда-разряда. Определены удельные емкостные характеристики макета, которые сопоставимы с характеристиками промышленных твердотельных литий-ионных аккумуляторов.

> Ключевые слова: твердотельный литий-ионный аккумулятор, LiPON, удельная емкость, уровень Ферми, легирующая примесь, потенциальное окно, компенсированный полупроводник.

DOI: 10.21883/PJTF.2020.05.49101.18083

Основная задача разработчиков аккумуляторной продукции сегодня состоит в повышении удельной емкости литий-ионных аккумуляторов. Одним из направлений решения этой проблемы является разработка твердотельных литий-ионных аккумуляторов (ТТЛИА) (в англоязычной литературе all solid-state lithium-ion battery, SSLIB). По сравнению с аккумуляторами с жидким электролитом у ТТЛИА есть свои преимущества и недостатки, которыми и определяется область их применения. К преимуществам следует отнести технологию изготовления ТТЛИА, в частности технологию PVD (physical vapor deposition), которая может быть полностью автоматизирована. Весь цикл изготовления аккумулятора может быть организован в пределах одной кластерной установки. Технологии PVD позволяют существенно снизить толщину функциональных слоев ТТЛИА по сравнению с ракельными технологиями, струйной печатью и золь-гель-методом. При максимальной толщине слоев ТТЛИА 5-6 µm наибольшей удельной емкости электродных материалов удается достичь только при использовании PVD-методов нанесения. К преимуществам следует отнести и отсутствие механизмов образования SEI (solid electrolyte interface), что существенно продлевает срок службы ТТЛИА.

Из недостатков ТГЛИА в первую очередь следует отметить высокие значения удельного сопротивления электролита и полного сопротивления интерфейса электролит—электрод, которые снижают удельную емкость. Если в литий-ионных аккумуляторах с жидким электролитом и катодом на основе оксидов ванадия (удельная емкость литий-ионных аккумуляторов определяется емкостью катода) она составляет от 0.08 до $0.2 \text{ mA} \cdot \text{h/cm}^2$ [1], то для ТТЛИА эта величина будет уже порядка $0.004 \text{ mA} \cdot \text{h/cm}^2$. Труднопреодолимым в силу конструктивных особенностей недостатком является низкое соотношение полезного объема (электроды) и объема, занимаемого токоотводами и другими элементами ТТЛИА. В итоге удельная емкость ТТЛИА оказывается приблизительно в 20 раз ниже емкости литий-ионных аккумуляторов с жидким электролитом. Таким образом, преимущества ТТЛИА реализуются в весьма ограниченной, но чрезвычайно значимой области применения. Это микроминиатюрные устройства интегральной электроники, имплантаты, микроэлектромеханические устройства (более известные как МЭМС), смарт-карты, RFID-метки, гибкая электроника и устройства специального назначения.

Как правило, компании-производители не раскрывают конструкции ТТЛИА и технологии их изготовления. Но поскольку в большинстве случаев известны электрохимические системы, а следовательно, оптимальная толщина функциональных слоев и их удельная емкость, количество аккумуляторных ячеек в одном чипе может быть вычислено достаточно точно. В таблице приведены характеристики некоторых промышленных и экспериментальных образцов ТТЛИА, из которых видно, что удельные объемные емкости у всех систем приблизительно одинаковы, а различия объясняются их конструктивными особенностями, например количеством аккумуляторных ячеек в одном чипе. Эти данные интересны тем, что позволяют сопоставлять отечественные разработки с мировым уровнем. В частности, приведенные в настоящей работе результаты испытаний ТТЛИА электрохимической системы LiV₂O₅-LiPON-(Si-O-Al) показывают,

Рис. 1. Макет ТТЛИА и его структура.

Производитель	Электрохимическая система	Габариты, mm	Номинальное напряжение, V	Емкость, $\mu \mathbf{A} \cdot \mathbf{h}$	Удельная емкость, $\mu A \cdot h/mm^3$	Рекомендуемый ток разряда, mA (или режим)	Лит. ссылка
Cymbet TM	_	$1.7 \times 2.25 \times 0.200$	3.8	5	6.54	0.05	[2]
Corporation							
CBC005							
Cymbet TM	—	5.7 imes 6.1 imes 0.200	3.8	50	7.19	0.5	[2]
Corporation							
CBC050							
Front Edge	LiCoO2-LiPON-Li	$25\times20\times0.1$	4.0	100	2.0	1	[3]
Technology, Inc.							
NanoEnergy							
Front Edge	LiCoO2-LiPON-Li	25 imes 20 imes 0.3	4.0	1000	6.7	1	[3]
Technology, Inc.							
NanoEnergy							
Infinite Power	LiCoO2-LiPON-Li	$25.4\times25.4\times0.17$	3.9	1000	9.1	0.5	[4]
Solutions							
THINERGY TM							
MEC101							
Sandia National	LiCoO ₂ -LiPON-Si	-	_	4*	_	$\sim 1C$	[5]
Laboratories,							
Livermore, CA,							
USA et al.							
STMicroelectronics	LiCoO2-LiPON-Li	$25.8\times28.8\times0.16$	3.9	1000	8.41	15	[6]
Exxellatron	LiCoO2-LiPON-Li	50 imes 38 imes 0.37	3.9	1000	1.42	10	[7]
ЯФ ФТИАН им. К.А. Валиева РАН	V ₂ O ₅ -LiPON-(Si-O-Al)	$40\times 20\times 0.0085$	3.2	44.5	6.62	0.1	Наст. раб.

ларактеристики некоторых промышленных и экспериментальных образцов 1 глига	Характеристики	некоторых	промышленных	и экспериментальных	образцов	ТТЛИА
--	----------------	-----------	--------------	---------------------	----------	-------

* На квадратный сантиметр. Данные о площади аккумулятора в [5] не приводятся.

что этот уровень вполне достижим при наличии необходимого технологического оборудования.

В качестве заготовок для макетов ТТЛИА использовалась титановая фольга толщиной 10 μ m с нанесенным

на нее композитным анодом состава Si–O–Al. Экспериментальные детали нанесения композитного анода приведены в [8]. Макеты (рис. 1) были изготовлены методом вакуумного магнетронного нанесения отдельных слоев

Рис. 2. Зависимость напряжения от времени в процессе гальваностатического заряда-разряда током $100 \,\mu$ A в окне 0–5 V. Приведены кривые, соответствующие циклам со 111-го по 114-й (разрядные кривые практически сливаются). При смене направления тока наблюдается скачок напряжения с амплитудой ~ 2 V.

на установке SCR-651 Теtra и состояли из следующих функциональных слоев: анод (Si-O-Al) — 1μ m; твердый электролит (LiPON) — 1μ m; катод (LiV₂O₅) — 0.6μ m; токоотвод (Cu) — 0.8μ m. Для капсулирования макетов использовался фоторезист S1813SP15.

Испытания макетов ТТЛИА проводились методами гальваностатической потенциометрии на многоканальном потенциостате Elins P-20х8. Испытания состояли из нескольких серий циклов заряд-разряд. В каждой серии циклов величина окна напряжений сохранялась постоянной и увеличивалась от серии к серии с шагом 0.5 V. Таким образом, в интервале от 3 до 5 V было выполнено пять серий испытаний по 25 циклов в каждой.

На рис. 2 показана зависимость напряжения U от времени t в процессе гальваностатического заряда-разряда в интервале напряжений 0–5 V и при силе тока 100 μ A. Особенностью разрядной кривой является скачок напряжения при смене направления тока, величина которого, определенная экстраполяцией кривой разряда, составляет ~ 2 V. Скачок указывает на поляризацию аккумуляторных слоев и существование потенциального барьера, которой исчезает при смене направления тока. Особенность зарядной кривой — ступенчатый рост напряжения — может быть связана с формированием потенциального барьера при литировании отрицательного электрода.

Действительно, для изготовления отрицательного электрода используются две мишени: 1) *п*-кремний, легированный фосфором; 2) алюминий. При нанесении анодного слоя работают оба магнетрона (с кремниевой и алюминиевой мишенью), а их мощность изменяется в противофазе. Перемешивание частиц кремния и алюминия на наноуровне при достаточно высоких температурах может приводить к диффузии алюминия в кремний и компенсации донорной примеси. При высокой концентрации алюминия может измениться тип проводимости кремния, и в этом случае барьер Шоттки на границе *a*-Si/Ti не образуется, а уровень Ферми смещается к потолку валентной зоны –3.5 V. Это предположение поясняет энергетическая диаграмма, приведенная на рис. 3.

На рис. З зонная структура Li_xV₂O₅ изображена в соответствии с данными работы [9]. Размытость уровня Ферми отражает его зависимость от концентрации лития. Согласно [9], работа выхода Li_xV₂O₅ изменяется от 6.1 eV при x = 0 до 5.5 eV при x = 2.5. Зонная структура LiPON изображена согласно данным [10]. Положения зон аморфного кремния приведены в соответствии с данными [11]. Как отмечалось выше, положение уровня Ферми в аморфном кремнии может изменяться в зависимости от концентрации лития. На рис. 3 уровень Ферми изображен в предположении, что основной примесью является литий, энергетический уровень которого для кристаллического кремния составляет 33 meV от дна зоны проводимости. В аморфном кремнии энергия ионизации лития будет иметь некоторый разброс, а положение уровня Ферми будет зависеть от соотношения концентраций $n_{\rm Li}/n_{\rm Al}$, которая изменяется в процессе заряда-разряда.

Исходя из приведенной диаграммы можно предположить, что в начале процесса заряда уровень Ферми аморфного кремния находится у потолка валентной зоны (*p*-кремний), а работа выхода A_{a-Si} составляет ~ 3.5 eV. В этом случае барьера Шоттки на границе металл-полупроводник нет, и на начальном этапе заряда разность потенциалов на токоотводах изменяется монотонно. При этом алюминиевая примесь в a-Si постепенно компенсируется литием, и при определенной его концентрации уровень Ферми практически достигает дна зоны проводимости -2.3 V, а на границе с титаном формируется потенциальный барьер. Работа выхода титана лежит в интервале от 4.14 до 4.54 eV, и в случае неподвижных атомов примеси его высота составляла бы от 1.84 до 2.24 V. Высота "ступеньки" на кривой заряда оказывается ниже этой величины и составляет 1.2 V. Это может быть связано как с неполной экстракцией лития при разряде, так и с разбросом глубины залегания энергетических уровней лития в аморфном кремнии. Еще одной причиной может быть подвижность ионов лития в кремнии, уменьшающая область пространственного заряда и увеличивающая коэффициент прозрачности потенциального барьера.

На основании приведенных выше данных можно сделать вывод, что максимальной разрядной емкости исследуемых макетов соответствуют окно напряжений 0–5V и ток заряда-разряда 100 μ A. Удельная емкость, рассчитанная по разрядным кривым, которые на рис. 2 практически сливаются, составляет 5.56 μ A · h/cm² и 6.54 μ A · h/mm³. Здесь при расчетах объемной удельной емкости толщина титановой фольги полагалась равной 5 μ m (половина от реальной толщины), так как аккумуляторные слои наносятся на обе стороны фольги. В заключение найдем кулоновскую эффективность макетов ТТЛИА. При токе 100 μ A за время 1700 s (рис. 2) заряд макета достигает 47.2 μ A · h, а полный разряд происходит за 1600 s, что соответствует заряду 44.4 μ A · h.

Рис. 3. Энергетическая диаграмма многослойной структуры V₂O₅/LiPON/a-Si/Ti.

Отсюда кулоновская эффективность составляет 94%. Отметим, что это довольно высокая эффективность с учетом того, что ток $100 \,\mu$ A в рассматриваемом случае соответствует режиму > 2С. Таким образом, изготовленные макеты ТТЛИА имеют емкостные характеристики и кулоновскую эффективность, соответствующие мировому уровню. Важно подчеркнуть, что на этих макетах достигнута наработка 125 полных циклов заряда-разряда без какой-либо деградации функциональных слоев ТТЛИА.

Благодарности

Исследования выполнены на оборудовании ЦКП "Диагностика микро- и наноструктур".

Финансирование работы

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ (соглашение о предоставлении субсидии № 05.604.21.0230, УИ RFMEFI60419X0230).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

[1] Васильев С.В., Геращенко В.Н., Кулова Т.Л., Лебедев М.Е., Мазалецкий Л.А., Метлицкая А.В., Мироненко А.А., Московский С.Б., Никольская Н.Ф., Пухов Д.Э., Рудый А.С., Скундин А.М., Сологуб В.А., Федоров И.С., Чурилов А.Б. // Микроэлектроника. 2016. Т. 45. № 5. С. 363–373. DOI: 10.7868/S0544126916050112

- [2] Datasheet CBC005 Cymbet Corporation [Электронный ресурс]. URL: https://www.alldatasheet.com/datasheetpdf/pdf/545297/CYMBET/CBC005.html (дата обращения 14.06.2019).
- [3] Front Edge Technology (FET) [Электронный ресурс]. URL: http://www.frontedgetechnology.com/index.htm (дата обращения 14.06.2019).
- [4] Infinite Power Solutions [Электронный ресурс]. URL: http://www.infinitepowersolutions.com/ (дата обращения 14.06.2019).
- [5] Talin A.A., Ruzmetov D., Kolmakov A., McKelvey K., Ware N., El Gabaly F., Dunn B.S., White H.S. // ACS Appl. Mater. Interfaces. 2016. V. 8. N 47. P. 32385–32391. DOI: 10.1021/acsami.6b12244
- [6] STMicroelectronics [Электронный ресурс]. URL: https://www.mouser.com/ds/2/389/efl1k0af39-1156297.pdf
- [7] Exxellatron [Электронный ресурс]. URL: http://www.excellatron.com/thin-film-battery-technology/
- [8] Kulova T.L., Mironenko A.A., Skundin A.M., Rudy A.S., Naumov V.V., Pukhov D.E. // Int. J. Electrochem. Sci. 2016. V. 11. P. 1370–1381.
- [9] Wu Q.H. Photoelectron spectroscopy of intercalation phases. Ph.D. Thesis. Darmstadt: Technische Universität, 2003. URL: http://elib.tu-darmstadt.de/diss/000342
- [10] Schwöbel A., Jaegermann W., Hausbrand R. // Solid State Ion. 2016. V. 288. P. 224–228.
- [11] Drabold D.A., Stephan U., Dong J., Nakhmanson S.M. // J. Mol. Graphics Mod. 1999. V. 17. N 5-6. P. 285–291. DOI: 10.1016/S1093-3263(99)00036-4