09

Обнаружение промежуточной фазы в сегнетоэластике K₃Na(CrO₄)₂ методом рамановского рассеяния

© Ю.Э. Китаев¹, Т.И. Максимова¹, К. Hermanowicz², М. Mączka², J. Hanuza²

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² Institute for Low Temperature and Structure Research PAS, Wroclaw, Poland

E-mail: yu.kitaev@mail.ioffe.ru

(Поступила в Редакцию 14 июля 2011 г.)

Впервые в кристаллах $K_3Na(CrO_4)_2$ исследованы поляризованные рамановские спектры в широком температурном интервале 4–300 К. Выявленные существенные изменения интенсивности и формы линий рамановских спектров при T = 150 К и результаты проведенного теоретико-группового анализа позволили установить, что структурный фазовый переход в этом сегнетоэластике происходит в два этапа через промежуточную фазу: $P\bar{3}m1 \rightarrow C2/m \rightarrow C2/c$.

Работа поддержана грантом ОФН РАН "Фундаментальная оптическая спектроскопия и ее приложения".

1. Введение

Сегнетоэластики $K_3Na(MeO_4)_2$ (Me = Cr, Mo, Se, S) относятся к структурному типу глазерита. Исследованию этих кристаллов различными методами посвящено большое число работ [1–12]. Одним из замечательных свойств кристаллов этого семейства является наличие в них серии структурных фазовых переходов.

Наиболее изученным представителем этого семейства является $K_3Na(SeO_4)_2$, который был исследован с помощью целого ряда методов (оптических, диэлектрических, рентгеновских и др.), в то время как кристалл $K_3Na(CrO_4)_2$ исследован гораздо меньше, а его изучение методами рамановского рассеяния вообще, насколько нам известно, не проводилось.

Следует отметить, что температуры фазовых переходов, а также симметрии высоко- и низкосимметричной фаз, полученные методом рентгеновской дифракции, для различных кристаллов семейства глазерита установлены достаточно надежно. До настоящего времени только в кристаллах K₃Na(SeO₄)₂ при фазовом переходе наблюдалась промежуточная фаза, причем данные о симметрии такой фазы, предлагаемые в различных работах [2-4], являются противоречивыми. Так, например, в [2] по данным комплексных исследований методами адиабатической калориметрии, линейного двулучепреломления, теплового расширения и дифференциальной сканирующей калориметрии было определено, что в кристалле $K_3Na(SeO_4)_2$ происходит переход из высокосимметричной тригональной фазы *Р*3*m*1 в низкосимметричную моноклинную C2/с через промежуточную фазу В2/т. В появившейся позже работе по исследованию фазовых переходов методом рамановского рассеяния [3] было также установлено наличие промежуточной фазы, но с другой точечной группой симметрии (3). Согласующаяся с ней пространственная группа промежуточной

фазы $P\bar{3}c1$ в K₃Na(SeO₄)₂ была затем предложена в работе [4] на основе данных ЯМР. В этой же работе [4] ЯМР-исследования кристалла K₃Na(CrO₄)₂ не выявили наличия промежуточной фазы.

В настоящей работе впервые проведено исследование методом рамановского рассеяния фазовых переходов в монокристаллах сегнетоэластика $K_3Na(CrO_4)_2$, при этом поляризованные рамановские спектры были получены в широком температурном интервале 4-300 К. Появление в рамановских спектрах новых особенностей при двух температурах позволило предположить, что ферроэластический фазовый переход осуществляется в два этапа через ранее неизвестную промежуточную фазу.

Проведенный нами теоретико-групповой анализ фазовых переходов в $K_3Na(CrO_4)_2$ с использованием новых программ Bilbao Crystallographic Server [13,14] позволил подтвердить существование промежуточной фазы, установить ее симметрию и на основании этой симметрии выполнить интерпретацию полученных в настоящей работе рамановских спектров.

2. Кристаллическая структура К₃Na(CrO₄)₂

Структура кристаллов K₃Na(CrO₄)₂ была определена в работе [1] методами рентгеновской дифракции. Было показано, что в этом кристалле имеет место фазовый переход при $T_c = 239$ К из высокотемпературной фазы с пространственной группой $P\bar{3}m1$ в низкотемпературную, симметрия которой описывается пространственной группой C2/c. Полученное в [1] распределение атомов по позициям симметрии (позициям Уайкофа) в элементарной ячейке для высоко- и низкосимметричной фаз приведено в табл. 1. Для каждой фазы в левом столбце указаны атомы в примитивной ячейке, а в правом — соответствующая позиция симметрии, ее координаты и точечная симметрия (обозначение позиций Уайкофа, обозначение и установка пространственной группы приведены согласно [15]).

3. Теоретико-групповой анализ фазовых переходов в K₃Na(CrO₄)₂

Теоретико-групповой анализ фазовых переходов в $K_3Na(CrO_4)_2$ был выполнен с использованием программ Bilbao Crystallographic Server [13,14]. Программа SUBGROUPGRAPH позволила построить диаграмму всех возможных путей, связывающую высоко- и низкосимметричную фазы через промежуточные фазы, а программа SYMMODES позволила определить симметрию первичных и вторичных мод, индуцирующих фазовые переходы между этими фазами.

Видно, что существуют два возможных пути (и две возможные промежуточные фазы) для перехода из тригональной $P\bar{3}m1$ в моноклинную фазу C2/c (рис. 1).

Используя структурные данные для низкосимметричной фазы [1] и программу PSEUDO, мы определили, что реализуется путь $P\bar{3}m1 \rightarrow C2/m \rightarrow C2/c$, поскольку среди всех структур с минимальными супергруппами группы C2/c именно структура с C2/m соответствует минимальным деформациям решетки. Распределение атомов по позициям Уайкофа в промежуточной фазе (табл. 1) было получено нами с помощью программы WYCKSPLIT, которая позволяет установить преобразование позиций Уайкофа при переходе от пространственной группы к ее подгруппе, т. е. установить, как ме-

Таблица 1. Размещение атомов по позициям симметрии (позициям Уайкофа) в высокосимметричной и низкосимметричной фазах [6] и в промежуточной фазе (результаты настоящей работы)

<i>P</i> 3 <i>m</i> 1 (№ 164)		C2/m~(No~12)		$C2/c \ (No \ 15)$	
Na	1 <i>a</i> (000) 3 <i>m</i>	Na	$2a \\ (000) \\ 2/m$	Na	4 <i>a</i> (000) Ī
K(2)	$1b \\ (00 1/2) \\ \bar{3}m$	K(2)	$2c \\ (00 1/2) \\ 2/m$	K(2)	$\begin{array}{c} 4e\\ (0y\ 1/4)\\ 2\end{array}$
K(1) Cr O(1)	2d (00z) 3m	K(1) Cr O(1)	$ \begin{array}{c} 4i \\ (x0z) \\ m \end{array} $	K(1) Cr O(1)	$8f \\ (xyz) \\ 1$
O(2)	$ \begin{array}{c} 6i \\ (x - xz) \\ m \end{array} $	O(2)	$ \begin{array}{c} 4i \\ (x0z) \\ m \end{array} $	O(2) O(3) O(4)	
		O(3)	8 <i>i</i> (<i>xyz</i>) 1		

Group-subgroup phase transition

Рис. 1. Возможные пути фазового перехода в сегнетоэластике $K_3Na(CrO_4)_2$ из высокосимметричной тригональной фазы $P\bar{3}m1$ в низкосимметричную моноклинную фазу C2/c. Жирными стрелками показан предсказанный теоретически и реализующийся экспериментально вариант перехода.

няется позиционная симметрия атомов при понижении симметрии кристалла.

Программа SYMMODES дает, что первый фазовый переход $P\bar{3}m1 \rightarrow C2/m$ индуцируется Γ_3^+ -фононом, в то время как второй переход $C2/m \rightarrow C2/c - A_2^+$ -фононом. Второй переход сопровождается удвоением примитивной ячейки в направлении оси *с* в соответствии с результатами рентгеновского структурного анализа [1]. В результате этого число атомов в элементарной ячейке удваивается, что сопровождается также изменением их позиционной симметрии.

Далее мы определили механические представления (наборы оптических и акустических мод) для фаз $P\bar{3}m1$, C2/m и C2/c и соответствующие правила отбора для колебаний, активных в рамановских и ИК-спектрах, используя программы SAM:

для высокосимметричной фазы *Р*3*m*1 (№ 164)

$$\Gamma_{\text{opt}} + \Gamma_{\text{ac}} = 5A_{1g} + A_{1u} + A_{2g} + 7A_{2u} + 6E_g + 8E_u,$$

$$\Gamma_{\text{ac}} = A_{2u} + E_u,$$

$$A_{1g}(xx, yy, zz), E_g(xx, yy, xy, xz, yz), A_{2u}(z), E_u(x, y);$$

(1)

для промежуточной фазы C2/m (№ 12)

$$\Gamma_{\rm opt} + \Gamma_{\rm ac} = 11A_g + 9A_u + 7B_g + 15B_u,$$

$$\Gamma_{\rm ac} = A_u + 2B_u,$$

$$A_g(xx, yy, zz, xy), A_u(z), B_g(xz, yz), B_u(x, y);$$
 (2)

Рис. 2. Температурная зависимость спектров рамановского рассеяния в кристалле $K_3Na(CrO_4)_2$ в геометрии рассеяния $y(xz)\bar{y}$ в диапазоне частот 310-450 сm⁻¹. Звездочкой помечены колебания, неактивные в данной геометрии рассеяния.

для низкосимметричной фазы C2/c (№ 15)

$$\Gamma_{\text{opt}} + \Gamma_{\text{ac}} = 19A_g + 22A_u + 20B_g + 23B_u,$$

$$\Gamma_{\text{ac}} = A_u + 2B_u,$$

$$A_g(xx, yy, zz, xy), A_u(z), B_g(xz, yz), B_u(x, y),$$
 (3)

где в скобках указаны ненулевые компоненты тензора рассеяния для колебаний, активных в рамановском рассеянии, и поляризации света для ИК-активных мод.

Мы определили также наборы внутренних колебаний тетраэдров CrO_4 в фазах $P\bar{3}m1$, C2/m и C2/c соответственно:

$$\Gamma_{\rm int} = 3A_{1g}(xx, yy, zz) + 3E_g(xx, yy, xy, xz, yz), \quad (4)$$

$$\Gamma_{\rm int} = 6A_g(xx, yy, zz, xy) + 3B_g(xz, yz), \qquad (5)$$

$$\Gamma_{\rm int} = 9A_g(xx, yy, zz, xy) + 9B_g(xz, yz). \tag{6}$$

Можно проследить генезис внутренних колебаний комплекса CrO_4 с симметрией T_d , которая в высокотемпературной фазе кристалла $K_3Na(CrO_4)_2$ понижается до C_{3v} . Хорошо известно, что в свободном молекулярном комплексе имеется одно полносимметричное валентное колебание $v_1(A_1)$, которое в кристалле трансформируется в A_1 -колебание; одно антисимметричное валентное колебание $v_3(F_2)$, которое в кристалле расщепляется на две моды A_{1g} и E_g ; одно симметричное деформационное колебание $v_2(E)$, которое трансформируется в E_g -колебание, и одно антисимметричное деформационное колебание $v_4(F_2)$, которое также расщепляется на две моды A_{1g} и E_g . Полученные результаты полностью согласуются с выражением (4).

Наборы нормальных колебаний в трех фазах кристалла и соответстующие правила отбора позволили нам провести детальную интерпретацию экспериментальных спектров рамановского рассеяния и их температурной зависимости в интервале 4–300 К.

4. Экспериментальные результаты

4.1. Синтез образцов и детали эксперимента. Монокристаллы ферроэластика $K_3Na(CrO_4)_2$ были выращены при температуре 300 К из насыщенного водного раствора, содержащего соли K_2CrO_4 и Na_2CrO_4 в молярном соотношении 3:1. В раствор добавлялись также КОН и NaOH, чтобы способствовать переходу дихромата калия $K_2Cr_2O_7$ в $K_3Na(CrO_4)_2$ в результате реакции $K_2Cr_2O_7 \rightarrow KOH + NaOH \rightarrow K_3Na(CrO_4)_2$ + H_2O . После медленного испарения в течение двух

Рис. 3. Температурная зависимость спектров рамановского рассеяния в кристалле $K_3Na(CrO_4)_2$ в геометрии рассеяния $y(xz)\bar{y}$ в диапазоне частот 840–1000 сm⁻¹. Звездочкой помечены колебания, неактивные в данной геометрии рассеяния.

недель были выращены прозрачные монокристаллы хорошего оптического качества в форме гексагональных призм (высотой от 5 до 12 mm). Ориентации кристаллографических осей выращенных монокристаллов были определены визуально и подтверждены методом рентгеновской дифракции. Так, ось с направлена вдоль ребра, перпендикулярного гексагональному основанию стержня, ось b совпадает с длинной диагональю гексагонального основания призмы, тогда как ось a имеет направление, перпендикулярное осям с и b.

Измерение поляризованных спектров кристаллов производилось на Фурье-Раман-спектрометре Bruker FT 100/S с разрешением $2 \, \mathrm{cm}^{-1}$. Температурная зависимость рамановских спектров изучалась в интервале $4-300 \, \mathrm{K}$ с использованием гелиевого криостата Охford CF 1204.

4.2. Температурная зависимость спектров рамановского рассеяния кристалла $K_3Na(CrO_4)_2$. На рис. 2 и 3 представлены спектры рамановского рассеяния в областях частот 310-450 и 840-1000 cm⁻¹, полученные в геометрии рассеяния $y(xz)\bar{y}$ в широком температурном интервале (4-300 K).

Из рис. 2 видно, что наиболее резкие изменения в низкочастотной области спектра наблюдаются для линии 346 cm⁻¹. Уже при температуре 150 К происходит расщепление линии на две компоненты, которые очень хорошо разрешены при гелиевой температуре (их частоты равны 344 и 349 cm⁻¹ при 4 K). Кроме линии 346 cm⁻¹ при комнатной температуре в спектре видны две более слабые полосы с частотами 389 и 400 cm⁻¹. При понижении температуры до 150 К с низкочастотной стороны от этих полос появляется еще одна слабая полоса с частотой ~ 382 cm⁻¹.

В высокочастотной области спектра, показанной на рис. 3, при комнатной температуре наблюдаются две линии: первая (интенсивная) — с частотой 861 сm⁻¹; вторая (менее интенсивная) — с частотой 941 сm⁻¹. При более тщательном изучении изменения формы линии 861 сm⁻¹ в зависимости от температуры оказалось, что начиная с T = 150 K с высокочастотной стороны линии возникает плечо, интенсивность которого растет с понижением температуры, вследствие чего при 4 K вместо одной линии наблюдается хорошо разрешенный дублет, компоненты которого, однако, сильно различаются по интенсивности. Что касается линии 941 сm⁻¹,

то нам не удалось наблюдать какие-либо заметные изменения формы линии или появление структуры при понижении температуры. Однако следует отметить, что при температуре 150 К рядом появляется широкая полоса в области $\sim 974 \, {\rm cm}^{-1}$, которой не было при комнатной температуре.

Природа температурного поведения наблюдаемого нами поляризованного рамановского спектра и симметрия активных в данной поляризации линий рассмотрены в разделе 5.

5. Обсуждение результатов

Для анализа экспериментальных данных, представленных на рис. 2, 3, обратимся к результатам теоретикогруппового анализа. При этом следует подчеркнуть, что в областях спектра 310–450 и 840–1000 сm⁻¹ проявляются только внутримолекулярные колебания тетраэдров CrO₄. Трансляционные и либрационные моды тетраэдров, так же как и колебания атомов Na и K, лежат в более низкочастотной спектральной области.

Внутренние колебания тетраэдров CrO_4 в высокосимметричной, промежуточной и низкосимметричной фазах представлены выражениями (4)-(6). Трансформация этих колебаний при фазовых переходах приведена в табл. 2.

При температуре первого фазового перехода $P3m1 \rightarrow C2/m$ ($T_{c1} \approx 230 \,\mathrm{K}$) изменяется точечная симметрия кристалла $\bar{3}m \rightarrow 2/m$ и решетка ИЗ тригональной превращается в моноклинную, но число атомов в элементарной ячейке не меняется. При этом переходе изменяется точечная группа симметрии тетраэдра CrO₄ (табл. 1) и, как следствие, *E*_g-моды расщепляются на $(A_g + B_g)$ -моды, а A_{1g} -моды переходят в Ag-моды. Расщепление Eg-моды можно увидеть только в неполяризованных спектрах, поскольку компоненты A_g и В_g активны в разных геометриях рамановского рассеяния: A_g -колебание активно в (xx, yy, zz, xy)-поляризациях, а B_g — в (xz, yz)-поляризациях.

При температуре второго фазового перехода $C2/m \rightarrow C2/c$ ($T_{c2} = 150$ К в наших экспериментах) элементарная ячейка удваивается. При этом удваивается число тетраэдров CrO₄, а также изменяется и позиционная симметрия атомов, составляющих тетраэдр (табл. 2). Это приводит к удвоению числа собственных колебаний тетраэдра (см. (5), (6)), что проявляется в спектрах низкосимметричной фазы C2/c как удвоение числа линий по сравнению с промежуточной фазой.

Анализируя спектры рамановского рассеяния в низкочастотной области спектра (рис. 2), мы делаем вывод, что в высокосимметричной (высокотемпературной) фазе линию 346 ст⁻¹ (ν_2 -колебание) следует интерпретировать как активную в $y(yz)\bar{y}$ -геометрии рассеяния E_g -моду, которая при $T_{c1} \approx 230$ К расщепляется на A_g и B_g -моды, одна из которых (A_g -мода) оказывается неактивной, а другая (B_g) активной в этой геометрии

Таблица 2. Симметрия внутренних колебаний тетраэдров CrO₄

Геометрия	Высокосиммет-	Промежуточная	Низкосиммет-
рассеяния	ричная фаза	фаза	ричная фаза
$y(xz)\bar{y}$ $y(xz)\bar{y}$	$\begin{array}{c} A_{1g} \ (974 \ {\rm cm}^{-1}) \\ A_{1g} \ (941 \ {\rm cm}^{-1}) \\ E_g \ (861 \ {\rm cm}^{-1}) \\ A_{1g} \ (400 \ {\rm cm}^{-1}) \\ E_g \ (389 \ {\rm cm}^{-1}) \\ E_g \ (346 \ {\rm cm}^{-1}) \end{array}$	$egin{array}{c} A_g & & \ A_g & A_g & \ A_g + B_g & \ A_$	$\begin{array}{c} A_g + B_g \\ A_g + B_g \\ 2A_g + 2B_g \\ A_g + B_g \\ 2A_g + 2B_g \\ 2A_g + 2B_g \\ 2A_g + 2B_g \end{array}$

рассеяния. Далее при температуре 150 К A_g - и B_g -моды преобразуются в $(2A_g + 2B_g)$ -моды. При этом в рамановском спектре низкосимметричной фазы C2/c появляется дублет из B_g -мод, который становится особенно интенсивным при 4 К.

Из двух других слабых линий, наблюдающихся при комнатной температуре, линию 389 сm⁻¹ (v_4 -колебание) можно также связать с E_g -колебанием, а слабая линия 400 сm⁻¹ (v_4 -колебание) является A_{1g} -модой, которая видна в этой геометрии рассеяния вследствие частичной деполяризации спектра. При $T_{c1} \approx 230$ К мода E_g трансформируется в A_g - и B_g -моды. Появляющуюся же с низкочастотной стороны от этих линий при температуре 150 К еще одну слабую полосу с частотой 382 сm⁻¹ можно интерпретировать как результат удвоения линий связанного с удвоением элементарной ячейки.

Анализируя далее высокочастотную область спектра (рис. 3), мы приходим к заключению, что в высокосимметричной фазе $P\bar{3}m1$ интенсивную линию 861 сm⁻¹ (v_3 -колебание) следует интерпретировать как активную в $y(xz)\bar{y}$ -геометрии рассеяния E_g -моду. Поведение этой линии аналогично поведению обсуждавшихся выше E_g -колебаний: при $T_{c1} \approx 230$ K она расщепляется на A_g и B_g -моды, причем активной в этой геометрии рассеяния является лишь B_g -мода. Затем при $T_{c2} \approx 150$ K появляется дублет из B_g -компонент.

Вторая, менее интенсивная линия 941 сm⁻¹ (v_1 -колебание) может быть интерпретирована как A_{1g} -колебание, проявляющееся в этой геометрии рассеяния вследствие частичной деполяризации. При $T_{c2} \approx 150$ К происходит трансформация этой линии, причем одна из компонент — B_g является активной в данной геометрии рассеяния. Поэтому интенсивность этой линии увеличивается. Появление очень слабой линии с частотой 974 сm⁻¹ можно объяснить как трансформацию третьей A_{1g} -моды (не проявляющейся при комнатной температуре в этой геометрии рассеяния) при удвоении ячейки в возникновение активной B_g -компоненты.

Таким образом, общее число и симметрии наблюдаемых в эксперименте мод полностью соответствуют результатам теоретико-группового анализа (см. выражения (4)–(6) и табл 2).

6. Заключение

Проведенные теоретические и экспериментальные исследования ферроэластического кристалла $K_3Na(CrO_4)_2$ позволили установить, что фазовый переход из высокотемпературной тригональной фазы $P\bar{3}m1$ в низкотемпературную моноклинную фазу C2/c происходит через промежуточную моноклинную фазу C2/m.

Список литературы

- J. Fabry, T. Breczewski, G. Madariaga. Acta. Cryst. B 50, 13 (1994).
- J. Díaz-Hernández, J.L. Mañes, M.J. Tello, A. López-Echarri, T. Breczewsli, I. Ruiz-Larria. Phys. Rev. B 53, 14097 (1996).
- [3] M. Kaczmarski, B. Mróz. Phys. Rev. B 57, 13 589 (1998).
- [4] A.R. Lim. J. Phys.: Cond. Matter 20, 13 212 (2008).
- [5] Г.Р. Асатрян, В.С. Вихнин, Т.И. Максимова, М. Mączka, К. Hermanowicz, J. Hanuza. ФТТ 48, 1035 (2006).
- [6] T. Maksimova, V.S. Vikhnin, H.R. Asatrian, K. Hermanowicz, M. Mączka, J. Hanuza. Phys. Status Solidi C 4, 843 (2007).
- [7] V.S. Vikhnin, H.R. Asatryan, T.I. Maksimova, M. Mączka, J. Hanuza. Ferroelectrics 359, 28 (2007).
- [8] В.С. Вихнин, Г.Р. Асатрян, Т.И. Максимова, J. Hanuza, M. Mączka. ФТТ 50, 1642 (2008).
- [9] B. Mróz, H. Kiefte, M.J. Clouter, J.A. Tuszynski. Phys. Rev. B 43, 641 (1991).
- [10] A. Eicher, M. Kaczmarski, M. Wiesner, B. Mróz. Ferroelectrics 303, 31 (2004).
- [11] F. Bernardin III, W.S. Hammack. Phys. Rev. B 54, 7076 (1996).
- [12] J. Fábry, V. Petříček, P. Vaněk, I. Císařová. Acta Cryst. B 53, 596 (1997).
- [13] M.I. Aroyo, A. Kirov, V. Capillas, J.M. Perez-Mato, A. Wondratschek. Acta Cryst. A 62, 115 (2006); www.cryst.ehu.es.
- [14] M.I. Aroyo, J.M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, A. Wondratschek. Z. Kristallogr. 221, 15 (2006).
- [15] International tables for crystallogtaphy. Vol. A. Space group symmetry / Ed. Th. Hahn. 5th ed. Kluwer Academic Publ., Dordrecht (2002).