07

Образование множественных сбоев в изделиях электроники под действием протонов и нейтронов

© Н.А. Иванов, 1 О.В. Лобанов, 1 В.В. Пашук, 1 М.О. Прыгунов, 2 К.Г. Сизова 3

¹ Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра Курчатовский институт, 188300 Гатчина, Ленинградская обл., Россия ² ООО "Радиоавтоматика", 111033 Москва, Россия ³ ООО НПЦ "Гранат", 194021 Санкт-Петербург, Россия e-mail: ksizova@npcgranat.ru

Поступило в Редакцию 4 сентября 2019 г. В окончательной редакции 4 сентября 2019 г. Принято к публикации 14 октября 2019 г.

Проведено облучение нуклонами на пучках синхроциклотрона Петербургского института ядерной физики (ПИЯФ) интегральных схем памяти типа SRAM с технологической нормой 90 nm и оптоэлектронных изделий: ССD- и СМОЅ-матриц. Представлены данные по сечениям образования сбоев в интегральных схемах памяти под действием протонов с энергией 1000 MeV и пикселей с большой величиной темнового тока (спайков) в оптоэлектронных изделиях, облученных протонами с энергией 1000 MeV, и нейтронами с энергетическим спектром, подобным спектру атмосферных нейтронов. Основное внимание уделено исследованию возникновения кластеров спайков и множественных сбоев. Установлено, что основная часть спайков и одиночных сбоев находится в составе кластеров.

Ключевые слова: спайки, кластеры, множественные сбои, протоны, нейтроны, интегральные схемы, память, оптоэлектронные изделия.

DOI: 10.21883/JTF.2020.04.49095.311-19

Введение

Широкое применение интегральных схем (ИС) в изделиях космической и авиационной электронной техники сделало актуальной задачу обеспечения их надежного функционирования в условиях воздействия радиационных полей. В ИС, изготовляемых по микронной и субмикронной технологиям, наиболее существенным фактором, определяющим их нормальную работу при облучении быстрыми нуклонами и ионами, являются одиночные эффекты сбоя и отказа (SEE — Single-Event Effects) [1-3]. Данный эффект связан с однократным выделением одной частицей больших величин энергии в объеме чувствительных областей ИС, вследствие чего происходит потеря работоспособности отдельного элемента изделия (сбой, катастрофический отказ). В зависимости от типа ИС вероятность SEE-эффекта под действием частиц пропорциональна их линейным потерям энергии на ионизацию (ЛПЭ) [4] или на упругие столкновения с атомами полупроводникового материала — неионизационные энергетические потери (НИЭП) [5].

Первая работа, в которой был обнаружен эффект воздействия отдельных нуклонов, была опубликована в 1965 г. [6]. Начиная с 1980-х годов эффект воздействия отдельных частиц, как основной фактор, определяющий надежность работы электроники в космосе и ближней

атмосфере, становится приоритетным направлением исследований воздействия излучения на различные типы ИС [7,8]. Продолжающееся снижение технологических норм изготовления ИС сопровождается [9]:

- уменьшением критических величин энергии, необходимых для возникновения сбоя (отказа) элемента изделия, что приводит к увеличению вероятности повреждения ИС под действием отдельных частиц, имеющих меньшее энерговыделение в чувствительной области;
- ростом вероятности повреждения нескольких соседних элементов ИС возникновением множественных сбоев (МС) под действием отдельной частицы.

Настоящая работа направлена на исследование образования МС под действием быстрых нуклонов в оптоэлектронных изделиях и элементах памяти.

1. Исследуемые интегральные схемы

Использовались светочувствительные ИС:

- приборы с зарядовой связью (ССD-матрицы) ICX 259AL фирмы Sony с размером чипа 6×4.96 mm, размером пикселя $6.50\times6.25\,\mu\mathrm{m}$ с числом активных элементов $\sim4\cdot10^5$;
- матрицы на основе комплементарной структуры металл—оксид—полупроводник (СМОS-матрицы) МТ9М034 фирмы AptinaTM Imaging с размером чипа

 4.8×3.6 mm, размером пикселя $3.75 \times 3.75\,\mu m$ с числом активных элементов 10^6 .

Известно [2,8,10], что в оптоэлектронных изделиях эффект воздействия отдельных частиц проявляется в возникновении спайков — пикселей с темновыми токами I_{dc} , существенно превышающими средние значения темновых токов в пикселях матриц. Такие пиксели на изображении с матрицы проявляются в виде белых точек, которые сохраняются и после окончания облучения. Создание спайков обусловлено образованием радиационных дефектов в чувствительной области пикселей и соответственно эффективность возникновения спайков пропорциональна величине НИЭП частиц.

Применение матриц для исследования МС сбоев обусловлено тем, что они имеют простую топологию расположения пикселей, что позволяет легко получать информацию о количестве и пространственном распределении поврежденных пикселей. Данная информация полезна для анализа экспериментальных данных о радиационном воздействии излучения на другие типы ИС.

В качестве ИС с низкими технологическими нормами использовалась статическая память типа SRAM производителя Cypress с технологической нормой 90 nm. Данная ИС имеет площадь чипа $5.34\,\mathrm{mm^2}$, содержит свыше $4\cdot10^6$ bit. В отличие от повреждения матриц основной причиной возникновения сбоев в памяти SRAM являются ионизационные процессы в чувствительных областях ячеек. Соответственно эффективность образования сбоев зависит от величины ЛПЭ ионизирующих излучений.

2. Экспериментальные методики

Облучение матриц и элементов памяти SRAM проводилось на синхроциклотроне ПИЯФ [11] при энергии протонов $1000\,\mathrm{MeV}$ и плотности потока $\sim 10^8\,\mathrm{cm}^{-2}\cdot\mathrm{s}^{-1}$. Диаметр пучка протонов составлял 28 mm при неоднородности плотности потока до 5%. Образцы ИС облучались на специализированном стенде, включающем:

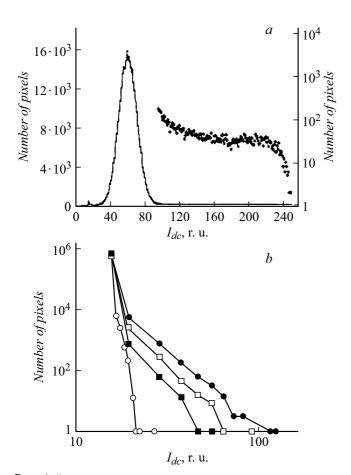
- магнитную систему вывода пучка и лазерную систему фиксирования направления пучка;
- устройства мониторирования пучка протонов: автоматизированный измерительный комплекс на основе двухсекционной ионизационной камеры [12] для измерения плотности потока и флюенса протонов с погрешностью на уровне 5% и полупроводниковый Ge(Li) детектор для измерения потока протонов методом наведенной активности [13] с погрешностью до 30%.

В соответствии с рекомендациями Международного нормативного документа "JEDEC STANDART" [14] для облучения изделий электроники нейтронами должен использоваться пучок нейтронов с энергетическим спектром, подобным атмосферному спектру нейтронов. Нейтроны с таким энергетическим спектром с максимальной энергией 1000 MeV были получены в ПИЯФ

на установке ГНЕЙС (Гатчинский нейтронный спектрометр) [15] в 2010 г. Облучение матриц на этой установке проводилось при плотности потока нейтронов $\sim 1.5 \cdot 10^5 \, {\rm cm}^{-2} \cdot {\rm s}^{-1},$ неоднородности в области расположения ИС менее 5% и погрешности измерения потока нейтронов 5% [15].

Матрицы в составе телевизионных камер в процессе облучения нуклонами были в активном (с включенным питанием) или в пассивном состояниях (с выключенным питанием), с включенной или выключенной системой автоматической регулировки усиления (АРУ). Темновые токи I_{dc} в пикселях определялись по степени яркости пикселя при анализе изображений на экране монитора компьютера с помощью программ Mathcad. Степень яркости пикселя матрицы оценивалась в относительных единицах (г.и.) целым числом в диапазоне от 0 (черное) до 255 (белое).

Два образца памяти SRAM были облучены протонами до флюенса $10^{11}\,\mathrm{cm}^{-2}$. Методика исследования ИС заключалась в следующем:


- до начала облучения производилась запись шаблона данных в массив ячеек памяти;
- в процессе облучения контролировалось состояние каждого байта памяти;
- в процессе контроля над каждым байтом выполнялось три операции:
- первые две заключались в считывании данных и сравнении их с шаблоном;
- если только в одном из двух первых чтений фиксировалась ошибка, то в качестве третьей операции выбиралась также операция "чтение" и ошибка классифицировалась как сбой в процессе чтения;
- если в двух первых чтениях фиксировалась ошибка, то ошибка классифицировалась как сбой, произошедший во время хранения, и производилась перезапись байта.

Обеспечение выполнения одинакового количества операций, производимым над каждым байтом, позволило равномерно распределить время хранения данных в каждом байте. За счет выборочной перезаписи поврежденных ячеек была достигнута минимизация количества выполнений операций записи в процессе воздействия, что позволило уменьшить период обработки байта и выдачи информации опрашивающего устройства до 2 ms. Вследствие этого удалось уменьшить число сбоев в процессе перезаписи и соответственно снизить их влияние на экспериментальные данные.

3. Экспериментальные результаты

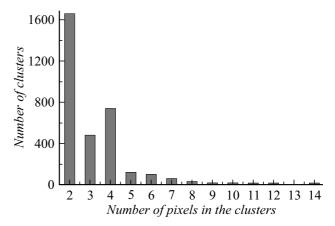
3.1. Облучение ССО-матриц

При облучении нейтронами и протонами образование спайков в ССD-матрицах происходит в основном под действием продуктов ядерных реакций нуклонов с ядрами атомов кремния [2,8,10,16,17]. В процессе облучения протонами телевизионной системы с ССD-матрицей в

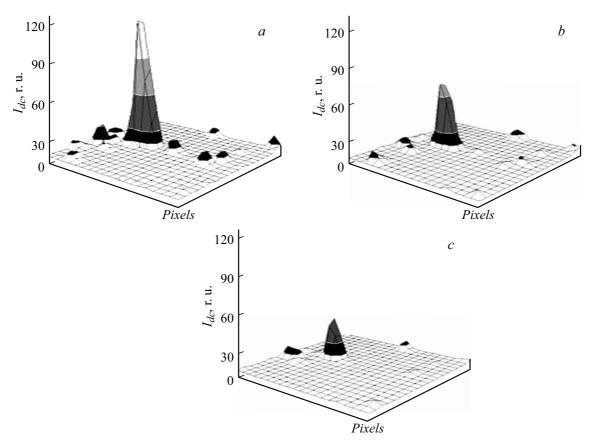
Рис. 1. Распределение по величине темнового тока в пикселях ССD-матрицы, облученной a — протонами (APУ включено): — — исходная, • • • • — флюенс 10^{10} cm $^{-2}$, на правой шкале ординат показаны значения больших темновых токов в спайках; b — нейтронами (APУ выключено): \circ — исходная, флюенсы \blacksquare — $5.3 \cdot 10^8$ cm $^{-2}$, \diamondsuit — $1.6 \cdot 10^9$ cm $^{-2}$, • — $3.2 \cdot 10^9$ cm $^{-2}$.

активном режиме на экране монитора компьютера появлялись кратковременные вспышки, обусловленные ионизационными потерями протонов в объеме пикселей [16]. Следует отметить, что были видны также следы (треки) заряженных частиц, образующихся в неупругих ядерных взаимодействиях протонов с ядрами материалов ССОматриц. Накапливающиеся по мере возрастания флюенса протонов устойчивые дефектные пиксели (спайки) в виде белых пятен оставались и после окончания облучения.

На рис. 1 приведены распределения пикселей по величине темнового тока в исходной и облученной ССО-матрице в следующих условиях:


- флюенс протонов $10^{10}\,\mathrm{cm^{-2}}$, система APУ включена;
- флюенс нейтронов $3.2 \cdot 10^9 \, \mathrm{cm}^{-2}$, система APУ выключена.

Из рисунка видно, что в необлученных матрицах при включенной APУ распределение пикселей по величине I_{dc} описывалось нормальным распределением со сред-


ним значением $\approx 60\,\mathrm{r.u.}$ и стандартным отклонением $\sigma\approx 10\,\mathrm{r.u.}$, при этом не более 10 пикселей в матрице имели яркость свыше $110\,\mathrm{r.u.}$, что превышает максимум нормального распределения на 5σ . В режиме выключенной APУ распределение пикселей по величине I_{dc} имело вид кривой, резко спадающей с ростом темнового тока, и пиксели с величиной I_{dc} более $20\,\mathrm{r.u.}$ практически отсутствовали. В связи с этим спайками мы считали пиксели, величина I_{dc} в которых после облучения превышала в зависимости от состояния APУ 110 или $20\,\mathrm{r.u.}$ Следует отметить, что в результате измерений не обнаружено существенных различий в параметрах матриц, облученных в активном и в пассивном режимах.

Для анализа пространственного распределения пикселей с большими величинами I_{dc} (спайков) была создана программа для поиска областей ССО-матрицы, в пределах которых темновой ток каждого из пикселей превышал заданный порог. В качестве примера на рис. 2 представлено распределение таких областей по числу входящих в них пикселей с $I_{dc} > 170 \, \mathrm{r.u.}$ (АРУ включено) после облучения нейтронами флюенсом $3.2 \cdot 10^9 \, \text{cm}^{-2}$. Отбирались области, в которых не менее двух пикселей удовлетворяли заданному критерию. Наиболее частыми явились области из двух пикселей. Обращает на себя внимание наличие групп — кластеров спайков, включающих до 14 пикселей. В соответствии с результатами работ [17,18] при облучении протонами и нейтронами основная часть спайков (свыше 50%) входит в состав таких кластеров.

По всей видимости, возникновение данных кластеров обусловлено в основном тем, что в пикселях, удаленных на десятки микрон от точки ядерного взаимодействия, радиационные дефекты создаются остаточными ядрами из ядерных реакций. В табл. 1 приведены величины пробегов [4] ядер отдачи, образующихся с максимальными энергиями в ядерных реакциях протонов с энергией 1000 MeV с ядрами атомов кремния [19]. Из этой таблицы видно, что такие ядра отдачи как неон, кислород

Рис. 2. Распределение по числу соседних пикселей, величина I_{dc} в каждом из которых больше 170 г.и. (АРУ включено) в ССD-матрице, облученной нейтронами флюенсом $3.2 \cdot 10^9 \, \mathrm{cm}^{-2}$.

Рис. 3. Рельеф кластера спайков в ССD-матрице, облученной нейтронами с флюенсом $3.2 \cdot 10^9$ cm²: a — после облучения: b — через 32 h, c — через 214 h.

Таблица 1. обеги ядер отдачи, образующихся с максимальными энергиями в ядерных реакциях нуклонов с энергией 1000 MeV с ядрами атомов кремния [4,19]

Тип ядра отдачи	²⁷ Al	²⁰ Ne	¹⁶ O	¹² C	
Энергия ядра отдачи, MeV	7.5	24	46	53	
Пробег ядра, μm	4.5	11	30	63	

Таблица 2. Значения параметра t_0 при различной пороговой величине темнового тока

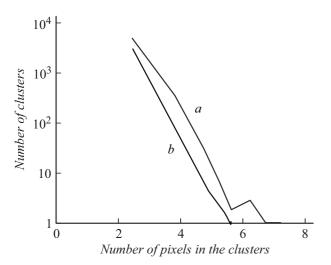
$> I_{dc}$, r.u.	100	125	150	175	200	225
<i>t</i> ₀ , s	179980	152295	136636	118083	100740	82085

и углерод имеют пробеги, достаточные для создания кластеров спайков наблюдаемых размеров. Следует также иметь в виду, что эти ядра отдачи в процессе торможения проходят область максимальных значений линейных потерь энергии на ионизацию и упругие атоматомные соударения [4,5].

После облучения протонами и нейтронами систематические измерения I_{dc} проводились в течение нескольких

месяцев. В промежутках между измерениями камера находилась в пассивном режиме при комнатной температуре и включалась непосредственно перед съемом информации. Вначале проводились измерения в режиме с включенной АРУ, затем — без АРУ. Полученные экспериментальные данные по количеству спайков N в зависимости от времени t после облучения были аппроксимированы экспоненциальной функцией: $N \sim \exp(-t/t_0)$. Величины параметра t_0 для различных пороговых значений I_{dc} при измерениях в режиме с включенной системой АРУ приведены в табл. 2, из которой видно, что в среднем величина t_0 составляет около 10^5 s. Величина параметра t_0 при измерениях в режиме с выключенной системой APУ составила около $4 \cdot 10^4$ s. Полученные величины t_0 качественно согласуются с данными работ [20–22] для разных типов ПЗС-матриц.

Уменьшение количества спайков приводит к изменениям кластеров. В качестве примера на рис. З приведены рельефы одного и того же кластера, который непосредственно после облучения нейтронами с флюенсом $3.2 \cdot 10^9 \, \mathrm{cm}^2$ включал 8 спайков (рис. 3, a). На рис. 3, b, с показаны рельефы этого кластера при временах до 10 суток после окончания облучения. Из этих рисунков видно, что после облучения происходит уменьшение количества спайков в кластерах и поперечных размеров кластеров, а также снижается яркость спайков в


кластере. Наблюдалось исчезновение со временем части кластеров, яркость спайков в которых уменьшалась до величин I_{dc} в необлученной ССD-матрице.

Снижение количества спайков и их яркости обусловлено отжигом радиационных дефектов в облученных изделиях. Вследствие этого при длительном облучении нуклонами ($\gg t_0$) в ССD-матрице должно создаваться равновесное количество спайков и кластеров, которое определяется из условия равенства скорости образования новых спайков и кластеров скорости их отжига. Полученные результаты указывают на влияние плотности потока частиц на распределение темнового тока в пикселях ССD-матриц. Этот фактор должен учитываться при прогнозировании эффектов от воздействия отдельных частиц по данным лабораторных испытаний на моделирующих установках (ускорителях), на которых плотность потока частиц на 3-4 порядка превышает плотности потоков частиц космического излучения.

3.2. Облучение CMOS-матриц

Интерес к исследованию СМОS-матриц обусловлен тем, что благодаря своим техническим характеристикам и низкой стоимости они в последнее десятилетие активно заменяют ССD-матрицы в электронной аппаратуре. СМОS-матрицы были облучены протонами до флюенса $10^{10}\,\mathrm{cm}^{-2}$ и нейтронами до флюенса $2.8\cdot10^7\,\mathrm{cm}^{-2}$. Величины I_{dc} определялись, так же как и для ССD-матриц. Поскольку в исходных СМОS-матрицах величины I_{dc} при измерениях без АРУ не превышали $20\,\mathrm{r.u.}$, спайками мы считали пиксели, величина I_{dc} в которых после облучения превышала $20\,\mathrm{r.u.}$

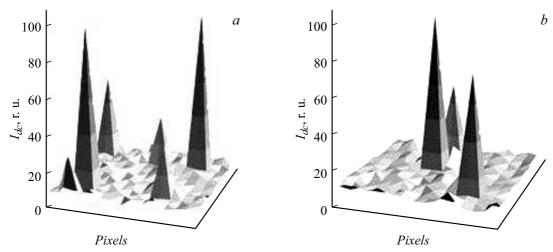
На рис. 4 приведены распределения количества кластеров по числу входящих в них спайков в облученных матрицах. В качестве примера на рис. 5 приведен участок матрицы с типичными "рельефами" кластеров спайков после облучения СМОS-матрицы протонами и

Рис. 4. Распределения количества кластеров по числу входящих в них спайков в матрицах, облученных протонами (a) и нейтронами (b).

нейтронами. Видно, что размеры кластеров и величины темновых токов в спайках, входящих в их состав, практически не зависят от природы нуклонов. Максимальный размер кластеров, приведенных на рис. 5, составляет $\sim 11.75 \times 11.75\,\mu\text{m}$ и включает в себя 9 спайков. К образованию кластеров таких размеров, так же как и в ССD-матрицах, способны приводить длиннопробежные остаточные ядра из ядерных реакций нуклонов с ядрами кремния (табл. 1).

При флюенсе протонов $10^{10}\,\mathrm{cm^{-2}}$ количество событий n от отдельных частиц составило 28 926, в том числе 20 194 кластеров и 8 732 спайков вне кластеров. Соответственно сечение возникновения событий от отдельных протонов в СМОЅ-матрице Σ_{sp} , равное $\Sigma_{\mathrm{sp}}=n/F_p$, где F_p — флюенс протонов, составило $2.9\cdot 10^{-6}\,\mathrm{cm^{-2}}$, которое качественно согласуется с величиной сечения ядерных реакций в объеме СМОЅ-матрицы Σ_{nr} :

$$\Sigma_{\rm nr} = \sigma n_{\rm Si} V_{\rm CMOS} \approx 2.2 \cdot 10^{-6} \, {\rm cm}^2$$


где $\sigma=5\cdot 10^{-25}\,\mathrm{cm^2}$ — сечение ядерных реакций нуклонов с энергией 1000 MeV с ядрами атомов кремния [21]; $n_{\mathrm{Si}}=5.19\cdot 10^{22}\,\mathrm{cm^{-3}}$ — плотность атомов кремния; V_{CMOS} — объем CMOS-матрицы, принятый нами равным $0.86\cdot 10^{-4}\,\mathrm{cm^3}$ при толщине чувствительной области матрицы 5 μ m.

Полученное соотношение — $20\,194$ кластеров и $8\,732$ спайков вне кластеров — указывает на то, что большая часть спайков (около 80%) возникает в составе кластеров.

В разд. 3.1 и 3.2 было показано, что в ССD- и СМОЅматрицах, облученных протонами и нейтронами, под действием продуктов ядерных реакций образуются локальные скопления (кластеры) с линейными размерами до $20\,\mu$ m, состоящие из соседних поврежденных пикселей (спайков). Эти кластеры спайков являются, фактически, аналогом МС, что указывает на возможность возникновения МС под действием нуклонов в других типах ИС, имеющих близкие или меньшие значения размеров элементарной ячейки и/или чувствительной области, чем размеры пикселя матрицы.

3.3. Облучение SRAM

Два образца SRAM памяти были облучены протонами с энергией $1000\,\mathrm{MeV}$ при плотности потока $10^8\,\mathrm{cm^{-2}\cdot s^{-1}}$ до флюенса $10^{11}\,\mathrm{cm^{-2}}$. В образцах были обнаружены сбои, характеризуемые как ошибки хранения, а ошибок чтения не было зафиксировано. В результате исследования за весь сеанс облучения в образцах было обнаружено $16\,169$ и $17\,414$ ошибок хранения в различных байтах. Сечение сбоев Σ , равное $\Sigma = n/(FN_{\mathrm{bit}}C)$, где n — количество сбоев, $F = 10^{11}\,\mathrm{cm^{-2}}$ — флюенс протонов, $N_{\mathrm{bit}} = 4\cdot10^6$ — количество бит в ИС, составило $\sim 4\cdot10^{-14}\,\mathrm{cm^{-2}}\cdot\mathrm{bit^{-1}},$ что согласуется с данными работы [23] для аналогичных по типу и технологическим нормам изделий.

Рис. 5. Рельефы кластеров спайков в CMOS-матрице при облучении: a — протонами до флюенса 10^{10} cm $^{-2}$, b — нейтронами до флюенса $2.8 \cdot 10^7$ cm $^{-2}$.

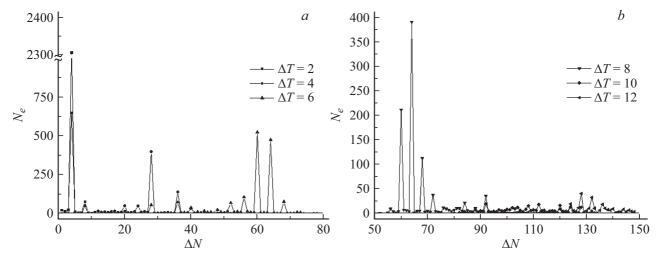
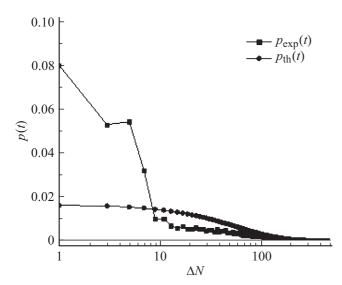


Рис. 6. Распределение числа пар последовательных сбоев N_e в зависимости от интервалов в их адресах ΔN для временных интервалов между ними $\Delta T=2$, 4, 6 (a) и $\Delta T=8$, 10, 12 ms (b) для образца № 1 SRAM.


В процессе облучения регистрировались время и адрес сбоя поврежденного байта. Анализ полученных данных показал, что в пределах каждого цикла чтения всего объема памяти существуют сбои с малой разницей во времени регистрации (ΔT), а также малой и характерно кратной разницей в адресе (ΔN) байтов. На рис. 6 приведены распределения количества последовательных сбоев N_e в образце SRAM, идущих через определенные временные интервалы ΔT , в зависимости от разницы в адресах поврежденных ячеек ΔN . Кратность временных интервалов величине 2 ms между сбоями обусловлена минимальным периодом обработки информации опрашивающего устройства. Выбор конкретных значений ΔT объясняется наибольшей статистикой сбоев в диапазоне ΔT от 2 до 12 ms.

Из рис. 6 видно, что имеют место ярко выраженные максимумы при $\Delta N=4,\ 28,\ 60,\ 64,\$ означающие, что близкие по времени образования сбои разнесены друг

Таблица 3. Количество "кластеров" N в зависимости от количества входящих в состав кластера сбоев n для образца SRAM № 1 при условии $\Delta T \leq 8$ ms и $\Delta N \leq 92$ byte (на 10^4 сбоев)

n	2	3	4	5	6	7	8	9	11	12
N	695	331	124	62	42	20	9	8	4	4

относительно друга преимущественно на определенные величины ΔN . Наличие таких максимумов указывает на возможность возникновения групп сбоев в байтах, расположенных близко друг от друга. По экспериментальным данным определены распределения количества таких групп по числу одиночных сбоев, входящих в их состав. В состав групп были включены сбои со значениями интервалов $\Delta T \leq 8$, 10 и 12 ms и с разницей в адресах $\Delta N \leq 92$, 128 и 148 соответственно. В табл. 3

Рис. 7. Теоретическая $p_{\text{th}}(t)$ и экспериментальная $p_{\text{ехр}}(t)$ зависимости вероятностей интервалов времени между сбоями для образца SRAM № 1.

приведены такие данные в образце SRAM № 1 при условии $\Delta T \leq 8$ ms и $\Delta N \leq 92$ byte. Из таблицы видно, что количество последовательных сбоев при выбранных граничных условиях в группах может составлять свыше 10, а доля сбоев, входящих в состав групп, достигает 35%. К образованию групп таких размеров, так же как и в матрицах, способны приводить остаточные ядра из ядерных реакций нуклонов с ядрами кремния (табл. 1).

Рассмотренные группы сбоев могут представлять собой МС. В связи с отсутствием информации о топологии исследуемых SRAM для подтверждения возможности образования МС был использован статистический анализ временных промежутков между сбоями. При отсутствии эффекта образования МС временной интервал между созданием отдельных сбоев является случайным событием и теоретическая вероятность того, что интервал времени между двумя последовательными сбоями лежит в пределах от t до t^+ Δt равна [24]

$$p_{\rm th}(t) = n_0 \exp(-n_0 t) \Delta t, \tag{1}$$

где $n_0 = n/T_{\rm ir}$ — число сбоев в единицу времени, $T_{\rm ir}$ — продолжительность облучения, $n_0 \exp(-n_0 t)$ — плотность распределения вероятностей интервалов t между сбоями

Для образца SRAM № 1 величина n_0 равна $n_0 = n/T_{\rm ir} = 16\,169/767.4 - 1 = 0.0164\,{\rm s}^{-1}$. Соответственно теоретическая зависимость плотности распределения вероятности случайных сбоев имеет вид: $p_{\rm th}(t) = 0.0164n_0\exp(-0.0164t)$. Экспериментальные данные по распределению времени между сбоями ΔT для образца SRAM № 1 приведены в табл. 4. На рис. 7 представлены теоретическая $p_{\rm th}(t)$ (1) и полученная по данным табл. 4 экспериментальная $p_{\rm exp}(t)$ зависимости плотности вероятности от времени облучения. Превышение

Таблица 4. Распределение сбоев по времени между сбоями ΔT для образца SRAM № 1

ΔT , ms	2	4	6	8	10	14	18	22	24	28	32
N	2590	1712	1755	1037	321	223	214	171	195	173	160
ΔT , mc	34	36	38	40	42	46	50	54	56	60	64
N	161	134	169	142	144	156	118	127	108	124	126

экспериментальной зависимости $p_{\rm exp}(t)$ над теоретической $p_{\rm th}(t)$ означает то, что значительная часть сбоев, по крайней мере при $\Delta T \leq 10$ ms, не является случайными независимыми событиями и входит в состав МС. По нашим оценкам, при $\Delta T \leq 10$ ms около 50% всех сбоев содержатся в МС, что согласуется с данными работ [9,25].

Заключение

Проведенные исследования показали, что:

- под действием быстрых протонов и нейтронов в светочувствительных ИС образуются кластеры, включающие до 14 соседних спайков, которые представляют собой аналог МС в ИС памяти;
- под действием быстрых протонов в изделиях памяти SRAM возникают МС, включающие до 10 байтов (в заданных граничных условиях);
- механизм образования кластеров в матрицах и MC изделиях памяти под действием быстрых нуклонов аналогичен и обусловлен вторичными частицами, возникающими в результате ядерных реакций нуклонов с ядрами атомов кремния;
- предложенный статистический анализ временных промежутков между сбоями может быть полезным методическим подходом при анализе экспериментальных данных на предмет выявления МС при отсутствии данных о топологии ИС;
- в облученных матрицах размеры кластеров и величины темновых токов спайков, входящих в их состав, практически не зависят от типа нуклонов;
- в исследованных матрицах и изделиях памяти SRAM значительная часть повреждений (до 50%) входит в состав кластеров и MC.

Возможность образования в изделиях памяти SRAM множественных сбоев должна учитываться при разработке электронной аппаратуры, а именно

- необходимо разрабатывать методы парирования таких эффектов,
- становится недопустимым использовать ячейки одной и той же ИС на разных параллельных информационных каналах.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Srour J.R., Hartmann R.A., Kitazaki K.S. // IEEE Trans. Nucl. Sci. 1986. Vol. 33. Dec. P. 1597–1604.
- [2] Srour J., Marshall C.J., Marshall P.W. // IEEE Trans. Nucl. Sci. 2003. Vol. 50. Jan. P. 653–670.
- [3] Чумаков А.И. Действие космической радиации на интегральные схемы. М.: Радио и связь, 2004. 320 с.
- [4] Janni J.F. // Atomic data and nuclear data tables. 1982.Vol. 27. P. 147–529.
- [5] Messenger R., Burke E.A., Xapsos M.A., Summers G.P., Walters R.J., Jun I., Jordan T. // IEEE Trans. Nucl. Sci. 2003. Vol. 50. Dec. P. 1929–1933.
- [6] Gereth R.H., Haitz, Smits F.M. // J. Appl. Phys. 1965. Vol. 36. N 12. Dec. P. 3884–3894.
- [7] Marshall P., Marshall C. // Proc. Short Course NSREC. 1999.P. 51–100.
- [8] Pickel A.H., Calmfa G.R., Hopkinson C.J. Marshall // IEEE Trans. Nucl. Sci. 2003. Vol. 50. June. P. 671–688.
- [9] Mavis D.G., Eaton P.H., Sibley M.D., Lacoe R.C., Smith E.J., Avery K.A. // IEEE Trans. Nucl. Sci. 2008. Vol. 55. N 6. Dec. P. 3288–3294.
- [10] Hopkinson G., Dale C.J., Marshall P.W. // IEEE Trans. Nucl. Sci. 1996. Vol. 43. Apr. P. 614–627.
- [11] Абросимов Н.К., Воробьев А.С., Иванов Е.М., Михеев Г.Ф., Рябов Г.А., Тверской М.Г, Щербаков О.А. // ВАНТ. Сер. Физика радиационного воздействия на радиоэлектронную аппаратуру. Научно-технический сборник. 2010. Вып. 4. С. 107–112.
- [12] *Иванов Н.А., Лобанов О.В., Пашук В.В.* // ПТЭ. 2009. № 6. С. 5–10. [*Ivanov N.A., Lobanov O.V., Pashuk V.V.* // Instruments and Experiment. Techniq. 2009. Vol. 52. N 6. P. 763–768.]
- [13] Cumming J.B. // Phys. Rev. 1963. Vol. 13. P. 261.
- [14] *Measurement* and reporting of alpha particle and terrestrial cosmic ray-induced soft errors in semiconductor devices. JEDEC Standard JESD89A, Oct. 2006.
- [15] Абросимов Н.К., Вайшнене Л.А., Воробьёв А.С., Иванов Е.М., Михеев Г.Ф., Рябов Г.А., Тверской М.Г., Щербаков О.А. // ПТЭ. 2010. № 4. С. 5–12. [Abrosimov N.K., Vaishnene L.A., Vorob'ev A.S., Ivanov E.M., Mikheev G.F., Ryabov G.A., Tverskoi M.G., Shcherbakov О.А. // Instrum. Experiment. Techniq. 2010. Vol. 53. N 4. P. 469–476.]
- [16] Ермаков К.Н., Иванов Н.А., Лобанов О.В., Пашук В.В., Тверской М.Г., Любинский С.М. // Письма в ЖТФ. 2010. Т. 36. Вып. 13. С. 54–60. [Ermakov K.N., Ivanov N.A., Lobanov O.V., Pashuk V.V., Tverskoy M.G., Lyubinskii S.M. // Tech. Phys. Lett. 2010. Vol. 36. N 7. P. 610–612.]
- [17] Иванов Н.А., Лобанов О.В., Митин Е.В., Пашук В.В., Тверской М.Г. // Письма в ЖТФ. 2013. Т. 39. Вып. 17. С. 35–43. [Ivanov N.A., Lobanov O.V., Mitin E.V., Pashuk V.V., Tverskoy M.G. // Techn. Phys. Lett. 2013. Vol. 39. N 9. P. 711–774].
- [18] Иванов Н.А., Пашук В.В., Понежа Т.Е., Тверской М.Г. // ВАНТ. Сер. "Физика радиационного воздействия на радиоэлектронную аппаратуру", Научно-технический сборник. 2012. Вып. 2 (апрель—июнь). С. 61–63.
- [19] Ермаков К.Н., Иванов Н.А., Маркелов В.В., Пашук В.В., Тверской М.Г. // ВАНТ. Сер. "Физика радиационного воздействия на радиоэлектронную аппаратуру". Научнотехнический сборник. 2006. Вып. 1–2. С. 54–57.

- [20] Sirianni M., Mutchler M., Clampin M., Ford H., Illingworth G., Hartig G., Van Orsow D., Wheeler T. // Proc. SPIE. 2004. Vol. 5499. P. 173–184.
- [21] Dawson K., Bebek C., Emes J., Holland S., Jelinsky S., Karcher A., Kolbe W., Palaio N., Roe N., Saha J., Takasaki K., Wang G. // IEEE Trans. Nucl. Sci. 2008. Vol. 55. N 3. P. 1725– 1735.
- [22] Барашенков В.С. Сечения взаимодействия частиц и ядер с ядрами. Дубна: ОИЯИ, 1993. 346 с.
- [23] Cannon E.H., Cabanas-Holmen M., Wert J., Amort T., Brees R., Koehn J., Meaker B., Normand E. // IEEE Trans. Nucl. Sci. 2010. Vol. 57. N 6. Dec. P. 3493–3499.
- [24] Калашников В.И., Козодаев М.С. Детекторы элементарных частиц. М.: Наука, 1966. С. 246.
- [25] Secondo R., Foucard G., Danzeca S., Losito R., Peronnard P., Masi A., Brugger M., Dusseau L. RADECS 2015. Moscow. Russia. 14–18 September.