06

Фотоэлектрические поля и особенности вторичной структуры номинально чистых кристаллов ниобата лития, выращенных из шихты, легированной бором

© Н.В. Сидоров, Н.А. Теплякова, Р.А. Титов, М.Н. Палатников

Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Федерального исследовательского центра "Кольский научный центр РАН", 184209 Апатиты, Россия

e-mail: tepl_na@chemy.kolasc.net.ru

Поступило в Редакцию 31 января 2019 г. В окончательной редакции 25 марта 2019 г. Принято к публикации 24 октября 2019 г.

> Показано, что применение для выращивания номинально чистых кристаллов ниобата лития расплава, структурированного неметаллическим элементом бором, позволяет регулировать особенности вторичной структуры, оптическую однородность, величины фотоэлектрических полей и ширину запрещенной зоны. По характеристикам фотоиндуцированного рассеяния света определены напряженности фотовольтаического и диффузионного полей в номинально чистых кристаллах LiNbO₃ : В. Показано, что величина диффузионного поля, определяющая концентрацию мелких электронных ловушек, для кристаллов LiNbO₃ : В имеет промежуточное значение между кристаллами конгруэнтного и стехиометрического составов и зависит от концентрации бора в шихте. При этом ширина запрещенной зоны в кристаллах LiNbO₃ : В соответствует значению для стехиометрического кристалла, но оптическая однородность кристаллов LiNbO₃ : В близка к оптической однородности конгруэнтного кристалла, концентрация OH-групп в кристаллах LiNbO₃ : В меньше, а их расположение в структуре более упорядочено, чем в конгруэнтном кристалле.

> Ключевые слова: ниобат лития, расплав, фотоэлектрические поля, ИК-спектроскопия, оптическая спектроскопия.

DOI: 10.21883/JTF.2020.04.49091.30-19

Введение

Ранее нами методами спектроскопии комбинационного рассеяния света (КРС), фотоиндуцированного рассеяния света (ФИРС) и лазерной коноскопии были исследованы кристаллы LiNbO₃, выращенные из шихты, легированной бором [1-7]. Неметаллический элемент бор не входит в структуру кристалла LiNbO3. Несмотря на высокое содержание бора в шихте (до 2.0 mol.%), его концентрация в кристалле находится на уровне следовых количеств ($\sim 10^{-4} - 10^{-5}$ wt.%), т.е. на порядки ниже концентрации легирующих металлических добавок (Mg, Zn, Gd, Sc,...), обычно используемых для повышения оптической стойкости кристалла ниобата лития. Было показано, что путем направленного структурирования конгруэнтного расплава (Li/Nb = 0.946) бором можно получать номинально чистые кристаллы LiNbO3, обладающие такими же свойствами, как и легированные большими концентрациями "нефоторефрактивных" примесей (Mg, Zn, Gd, Sc, ...) конгруэнтные кристаллы, но по упорядочению структурных единиц катионной подрешетки и количеству дефектов NbLi приближающиеся к кристаллу стехиометрического состава (Li/Nb = 1). Стехиометрические кристаллы отличаются более чем в 5 раз низким коэрцитивным полем по сравнению с конгруэнтными кристаллами и обладают определенными преимуществами для создания преобразователей оптического излучения на периодически поляризованных доменах субмикронных размеров [8]. В то же время монокристаллы LiNbO₃ : В обладают существенно меньшим эффектом фоторефракции, чем стехиометрические кристаллы [5–7,9].

Для объяснения влияния бора на структуру расплава были рассмотрены химические взаимодействия в системе Li₂O-B₂O₃-Nb₂O₅ [5,7]. Было показано, что оксидные соединения бора, как сильные комплексообразователи и растворители, образуя устойчивые в расплаве ковалентные связи с ниобийсодержащими полианионами, связывают избыток катионов ниобия и увеличивают тем самым отношение Li/Nb в расплаве. Кроме того, соединения бора, очевидно, снижают содержание неконтролируемых металлических примесей в расплаве. В результате выращенный кристалл приближается к стехиометрическому кристаллу по степени упорядочения структурных единиц катионной подрешетки, содержанию дефектов Nb_{Li} и литиевых вакансий V_{Li}. При этом увеличивается степень "возмущения" кислородных октаэдров О₆ и снижается фоторефрактивный отклик выращенных кристаллов LiNbO3 : В по сравнению со стехиометрическим кристаллом [2,5,7].

В настоящей работе приведены результаты исследований спектров оптического поглощения и инфракрасных (ИК) спектров поглощения в области валентных колебаний ОН-групп кристаллов LiNbO₃ : В (0.55–0.83 mol.%) В₂О₃ в шихте). Для сравнения исследованы номинально чистые стехиометрический (LiNbO_{3stoich}) и конгруэнтный (LiNbO_{3cong}) кристаллы ниобата лития. Положения атомов водорода в структуре кристалла LiNbO₃ чрезвычайно чувствительны к изменению кристаллического поля, а особенности края фундаментального поглощения — к структурной однородности кристалла [4-7,10,11]. Исследование положения края фундаментального поглощения, а также метод ИК-спектроскопии в области валентных колебаний ОН-групп позволяют оценить отношение Li/Nb, концентрацию в кристалле точечных дефектов NbLi и VLi и характер образуемых ими комплексных дефектов с ОН-группами. По характеристикам индикатрисы спекл-структуры ФИРС, используя подход, предложенный в работе [12], оценены фотоэлектрические поля (фотовольтаическое Е_{pv} и диффузионное E_D) в исследуемых кристаллах.

1. Методика эксперимента

Кристаллы выращивались методом Чохральского в воздушной атмосфере на установке "Кристалл-2", снабженной системой автоматического контроля диаметра кристалла. Номинально чистые конгруэнтный и стехиометрический кристаллы LiNbO3 выращивались из расплавов конгруэнтного состава и расплава с содержанием Li₂O, равным 58.6 mol.% соответственно. Использовалась оригинальная гранулированная шихта ниобата лития с высокой насыпной плотностью, синтезированная в ИХТРЭМС КНЦ РАН [13]. Содержание следовых количеств примесей в кристалле не превышало $0.5-1.0 \cdot 10^{-4}$ wt.%. Легирование кристаллов LiNbO₃ : В осуществлялось методом прямого твердофазного легирования [14], суть которого заключается в твердофазном синтезе смеси пентаоксида ниобия, карбоната лития и борной кислоты с последующим получением гранулированной шихты в процессе прокаливания смеси в температурной области предплавления (1240-1250°С). Содержание бора в выращенных кристаллах находилось на уровне следовых количеств $\sim 10^{-4} - 10^{-5}$ wt.%.

Образцы для исследований имели форму параллелепипедов с ребрами, параллельными кристаллофизическим осям X, Y, Z соответственно. Ось Z совпадает по направлению с полярной осью кристалла P_s . Грани параллелепипедов тщательно полировались.

Регистрация ФИРС осуществлялась с помощью установки, подробно описанной в работах [15, 16]. Для возбуждения ФИРС использовались линии генерации аргонового лазера фирмы Spectra Physics (модель 2018-RM): 476.5 (P = 216 mW); 488.0 (P = 98 mW); 514.5 (P = 282 mW); 532.0 nm (P = 160 mW). Диаметр лазерного пучка составлял 1.8 mm. Регистрация ФИРС осуществлялась в геометрии *ее*-типа, т.е. падающее на кристалл и рассеянное лазерное излучение имеют одну и ту же поляризацию, при этом вектор **E** ориентирован параллельно полярной оси кристалла (ось Z).

По параметрам индикатрисы ФИРС в исследованных кристаллах были определены значения напряженностей фотовольтаического и диффузионного электрических полей. Погрешность вычислений фотоэлектрических полей в условиях эксперимента составляет 1.5–2%. Расчет величины напряженности фотовольтаического и диффузионного полей в кристаллах осуществлялся в программе Mathcad 15.0 с использованием подхода, предложенного в работе [12]. Показатели преломления необыкновенного и обыкновенного лучей определялись из эмпирических уравнений, приведенных в справочнике [17].

Определение края поглощения производилось с помощью спектрофотометра Cary 2300. Для определения ширины запрещенной зоны регистрировался спектр поглощения кристалла. Полученный спектр поглощения в убывающей линейной части графика аппроксимировался прямой до пересечения с осью абсцисс. Точка пересечения этой прямой и оси абсцисс является длиной волны, соответствующей краю поглощения кристалла. Ширина запрещенной зоны определялась по формуле $E = hc/\lambda$, где λ — длина волны, соответствующая краю поглощения, h — постоянная Планка, c — скорость света в вакууме. Точность определения границы края поглощения составляет ± 1.0 nm.

Регистрация ИК-спектров производилась с помощью спектрометра IFS 66 v/s фирмы Bruker.

2. Результаты и их обсуждение

3.2

2.4

На рис. 1 приведены спектры оптического поглощения кристаллов LiNbO_{3cong}, LiNbO_{3stoich} и LiNbO₃ : В (0.55, 0.83 mol.% B_2O_3 в шихте). Видно, что край поглощения кристаллов LiNbO₃ : В смещен в длинноволновую область по сравнению с краем поглощения кристаллов конгруэнтного и стехиометрического составов, однако при этом спектр поглощения кристаллов LiNbO₃ : В имеет более крутой подъем по сравнению со спектром кристалла LiNbO_{3stoich}, что указывает на большую

Рис. 1. Спектры поглощения кристаллов LiNbO_{3cong} (1), LiNbO_{3stoich} (2), LiNbO₃ : B (0.55 mol.% B_2O_3 в шихте) (3), LiNbO₃ : B (0.83 mol.% B_2O_3 в шихте) (4).

оптическую однородность кристаллов, выращенных из шихты, легированной бором. Считается, что основной вклад в изменение положения края фундаментального поглощения в номинально чистых конгруэнтных кристаллах ниобата лития вносят дефекты Nb_{Li} [18,19]. По положению края фундаментального поглощения можно оценить концентрацию имеющихся собственных дефектов (Nb_{Li} и V_{Li}), а также отношение Li/Nb (характеризующее отклонение от стехиометрии) и делать выводы о механизме вхождения нефоторефрактивных примесей в кристаллическую решетку.

В [19] обнаружено совпадение концентрационных зависимостей дефектов Nb1; и параметра Урбаха от отношения Li/Nb в кристалле, что согласуется с выводами работы [20] о том, что поглощение Урбаха происходит в кристалле ниобата лития в результате перехода электронов из заполненных состояний "2p" кислорода на пустые состояния "4d" ниобия. Уменьшение концентрации дефектов NbLi при приближении отношения Li/Nb к единице приводит к смещению края фундаментального поглощения в длинноволновую сторону в результате уменьшения плотности связанных с дефектами Nb_{Li} локальных состояний вблизи дна зоны проводимости. Под действием света в кристалле ниобата лития возможен переход из валентной зоны на эти состояния. Из рис. 1 видно, что край поглощения максимально сдвинут в коротковолновую область для кристалла LiNbO_{3cong}. По формулам, предложенным в [19], мы рассчитали отношение Li/Nb, а также концентрацию собственных дефектов в кристалле LiNbO_{3cong} : Li/Nb = 0.89, $C(V_{\text{Li}}) = 7.47 \text{ mol.}\%$ и $C(\text{Nb}_{\text{Li}}) = 1.87 \text{ mol.}\%$, что не совпадает с результатами, полученными авторами работы [19]. Известно, что кристаллы конгруэнтного состава характеризуются дефицитом по Li около 6 mol. (Li/Nb = 0.946) [18]. Согласно модели компенсации Li-вакансий, в кристаллической решетке конгруэнтного кристалла LiNbO₃ существует $\sim 1 \text{ mol.}\%$ точечных дефектов Nb⁴⁺_{Li} и ~ 4 mol.% точечных дефектов V_{Li} [21,22]. В идеальном стехиометрическом кристалле дефектов Nb_{Li} нет вообще.

Кристаллы LiNbO3 : В (0.55 и 0.83 mol.% В2О3 в шихте), исследованные в настоящей работе, по степени упорядочения структурных единиц катионной подрешетки, по содержанию точечных дефектов NbLi и VLi занимают промежуточное положение между конгруэнтным и стехиометрическим кристаллами [5]. Приближение к стехиометрии в кристаллах LiNbO3: В возможно путем связывания избыточного ниобия в конгруэнтном расплаве за счет комплексообразующей способности соединений бора [5]. Очевидно, что положение края фундаментального поглощения определяется не только концентрацией дефектов NbLi и VLi. Кроме глубоких ловушек электронов, создаваемых точечными фоторефрактивными центрами (главным образом, дефектами Nb_{Li}), в кристалле LiNbO₃ существует множество мелких ловушек электронов, влияющих на эффект фоторефракции [18,23-25]. Причем количество мелких элек-

Таблица 1	• Фотоэлект	рические и	параметры	ФИРС и	ширина
запрещенно	й зоны крис	таллов нис	обата лития	при <i>t</i> =	25°C

Кристалл	$\theta,$	λ_k ,	$\Delta E_g,$	$\lambda = 532.0 \text{ nm}$ $I \sim 6.29 \text{ W/cm}^2$			
	U	11111	ev	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$			
LiNbO _{3stoich}	56	367	3.38	4055	1749		
* LiNbO _{3cong}		328	3.78	5003	52		
LiNbO ₃ : B (0.55 mol.%	14	367	3.38	5458	572		
В ₂ О ₃) в шихте)							
LiNbO3 : B (0.83 mol.%	22	368	3.37	5554	25		
В2О3 в шихте)							

Примечание. *Для кристалла LiNbO_{3cong} индикатриса ФИРС не развивается при $I \sim 6.29$ W/cm².

тронных ловушек существенно зависит от отношения Li/Nb [18]. При воздействии лазерного излучения на кристалл LiNbO₃ в результате процессов фотовозбуждения (дрейф и диффузия электронов) происходит пространственное разделение заряда и возникает внутреннее электрическое поле, приводящее к фотоиндуцированному изменению показателей преломления [23–26]. При этом должно происходить изменение ширины запрещенной зоны, которая для номинально чистого конгруэнтного кристалла составляет 3.72 eV, что близко к значению, характерному для широкозонных полупроводников [25].

В табл. 1 приведены результаты расчета ширины запрещенной зоны по спектрам поглощения кристаллов LiNbO₃ разного состава, значения угла раскрытия спеклструктуры индикатрисы ФИРС и фотоэлектрических полей (фотовольтаического E_{pv} и диффузионного E_D), рассчитанные по формулам [12]:

$$E_{pv} = \frac{\lambda(\Gamma_{-c} + \Gamma_{+c})}{2\pi \left[\begin{array}{c} n_e^3 r_{33} \sqrt{\cos \theta_S^{in}} \cos \left(\frac{\theta_S^{\varsigma}}{2}\right) + n_e n_o^2 r_{51} \times \\ \times \sqrt{\tan \theta_S^{in}} \sin \theta_S^{in} \sin \left(\frac{\theta_S^{in}}{2}\right) \end{array} \right]}, \quad (1)$$

$$E_D = \frac{\lambda(\Gamma_{-c} - \Gamma_{+c})}{2\pi \begin{bmatrix} n_e^3 r_{33} \sqrt{\cos \theta_S^{in}} \cos \left(\frac{\theta_S^{\in}}{2}\right) + n_e n_o^2 r_{51} \times \\ \times \sqrt{\tan \theta_S^{in}} \sin \theta_S^{in} \sin \left(\frac{\theta_S^{in}}{2}\right) \end{bmatrix}}, \quad (2)$$

где E_{pv} — фотовольтаическое поле, E_D — диффузионное поле, λ — длина волны, θ_S^{in} — угол рассеянного излучения, Γ_{-c} и Γ_{+c} — коэффициенты усиления (индексы "—" и "+" указывают направление рассеянного излучения против и вдоль направления полярной оси кристалла соответственно), n_e и n_0 — показатели преломления необыкновенного и обыкновенного луча соответственно, r_{33} и r_{51} — электрооптические коэффициенты для LiNbO₃. Коэффициент усиления $\Gamma(\theta_S^{in})$ зависимости от угла ФИРС можно вычислить по формуле [12]:

$$\Gamma(\theta_{S}^{in}) = \frac{1}{l_{\text{eff}}}(\theta_{S}^{in}) \ln \frac{I_{s}(\theta_{S}^{in})}{I_{SO}^{\Omega}(\theta_{S}^{in})},$$
(3)

где I_s — интенсивность рассеянного излучения, I_{SO}^{Ω} — интенсивность первичного рассеяния (падающего луча), l_{eff} — эффективный интервал взаимодействия, который вычисляется в зависимости от угла рассеяния, согласно следующим формулам [12]:

$$l_{\text{eff}} = \frac{d}{\cos \theta_S^{in}}$$
 при $\theta_S^{in} < \arctan\left(\frac{w_p}{2d}\right),$ (4)

$$l_{\rm eff} = rac{d}{\sin heta_S^{in}}$$
 при $heta_S^{in} > \arctan\left(rac{w_p}{2d}
ight),$ (5)

где *d* — толщина кристалла, *w_p* — диаметр лазерного луча.

На рис. 2, 3 показано угловое распределение интенсивности рассеянного излучения при разных длинах волн и зависимости $E_D(a)$ и $E_{pv}(b)$ от длины волны для исследованных кристаллов LiNbO₃.

Видно, что ширина запрещенной зоны для исследованных кристаллов находится в диапазоне 3.37-3.78 eV (табл. 1). Наименьшую ширину запрещенной зоны имеют кристаллы LiNbO3: В и LiNbO3stoich (табл. 1), а наибольшую — кристалл LiNbO_{3cong} = 3.78 eV (согласно [27], ширина запрещенной зоны для номинально чистого конгруэнтного кристалла составляет 3.72 eV). Преимущественным механизмом фоторефракции в кристалле LiNbO₃ является фотовольтаический механизм, т.е. значение величины фотовольтаического поля (E_{pv}) значительно больше значения величины диффузионного поля (E_D) [25]. Из табл. 1 и рис. 2, 3 видно, что чем большие фотоэлектрические поля создаются в кристалле, тем больше угол рассеяния θ и тем асимметричнее индикатриса ФИРС. При этом наименьшим значением фотовольтаического поля E_{mv} , которое определяет величину наведенного двулучепреломления (эффекта фоторефракции), при длинах волн возбуждающего излучения 476.5, 488.0, 514.5 и 532.0 nm обладает кристалл LiNbO_{3stoich}. Полученные данные свидетельствуют и о том, что в кристалле LiNbO3stoich сильнее, чем в других кристаллах, проявляется диффузионный механизм переноса заряда, что характерно для кристаллов с большим количеством мелких ловушек электронов.

Обращает на себя внимание, что для кристалла LiNbO₃ : В (0.55 mol.% B_2O_3 в шихте) в отличие от остальных кристаллов отсутствует максимум в зависимости E_D при длине возбуждающей лазерной линии 514.5 nm (рис. 3). Для всех остальных кристаллов при длине возбуждающей лазерной линии 514.5 nm наблюдается максимум в зависимости E_{pv} (рис. 3). В случае кристаллов LiNbO₃, выращенных из шихты с содержанием бора 0.55 и 0.83 mol.%, значения E_{pv} близки 5458 и 5554 V/ст соответственно. Бросается в глаза и то, что значение диффузионного поля E_D для кристалла LiNbO₃ : В (0.83 mol. % В₂O₃ в шихте) близко к значению E_D для конгруэнтного кристалла, что может указывать на практически равное количество мелких ловушек электронов в этих кристаллах. Для кристалла LiNbO₃ : В (0.55 mol.% В₂O₃ в шихте) значение диффузионного поля E_D значительно больше, чем для кристаллов LiNbO_{3cong} и LiNbO₃ : В (0.83 mol.% В₂O₃ в шихте), при этом угол раскрытия индикатрисы ФИРС минимален (табл. 1).

Заметное влияние на распределение зарядов в кристалле оказывают особенности локализации протонов, которые всегда присутствуют в структуре кристаллов LiNbO₃, выращенных в воздушной атмосфере [10,11]. Причем протоны чрезвычайно чувствительны к изменению кристаллического поля. Присутствие ОН- групп в структуре кристалла LiNbO₃ повышает проводимость и эффект фоторефракции, а также понижает величину коэрцитивного поля [10,28]. Валентные и деформационные колебания ОН- групп хорошо проявляются в ИК-спектре поглощения кристалла LiNbO3 в области $3450-3550\,\mathrm{cm}^{-1}$. Причем, количество линий, соответствующих колебаниям ОН-групп, их основные параметры (частота, ширина, интенсивность) зависят от стехиометрии, особенностей легирования и выращивания монокристалла [11], т.е. от состава кристалла LiNbO3 и условий его получения. В спектре ИК-поглощения стехиометрического кристалла LiNbO3 высокой степени структурного совершенства, в котором практически отсутствуют точечные дефекты NbLi и связанные с ними комплексные дефекты, обусловленные наличием водородных связей, в области валентных колебаний ОН-групп наблюдается одна узкая полоса поглощения $(S = 3 \text{ cm}^{-1}$ при 300 K) с частотой 3466 cm⁻¹ [10,29]. При отклонении от стехиометрии, в частности, в спектре конгруэнтного кристалла, наблюдаются три широких компонента одинаковой поляризации: полосы поглощения с частотами 3466, 3481 и 3489 cm⁻¹ [30]. Исследуя концентрационные зависимости параметров линий и полос в ИК-спектре, соответствующих валентным колебаниям ОН-групп, можно получить важную информацию о характере точечных (Nb_{Li} и V_{Li}) дефектов и многочисленных комплексных дефектов, обусловленных наличием водородных связей, и их локализации в структуре.

На рис. 4 приведены спектры ИК-поглощения в области валентных колебаний ОН-групп кристаллов: LiNbO_{3stoich}, LiNbO_{3cong} и LiNbO₃ : В (0.55–0.83 mol.% B₂O₃ в шихте). В табл. 2 приведены значения частот, ширин и интенсивностей наблюдаемых линий. Из рис. 4 и табл. 2 видно, что в области валентных колебаний ОН⁻ групп для кристаллов LiNbO_{3cong} и LiNbO₃ : В наблюдается расщепление полосы поглощения ОН-групп на три компонента одинаковой поляризации с частотами ~ 3470, ~ 3483 и ~ 3486 cm⁻¹, что свидетельствует об одинаковом характере водородных связей в структуре этих кристаллов. В литературе три

Рис. 2. Угловое распределение интенсивности рассеянного излучения при $\lambda = 476.5$ (*a*), 488.0 (*b*), 514.5 (*c*), 532.0 nm (*d*) для кристаллов: LiNbO_{3stoich} — *1*, LiNbO₃ = 0, LiNbO₃ : B (0.55 mol.% B₂O₃) — *3*, LiNbO₃ : B (0.83 mol.% B₂O₃ в шихте) — *4*.

Рис. 3. Зависимость $E_D(a)$ и $E_{pv}(b)$ от длины волны для кристаллов LiNbO₃ разного состава: LiNbO_{3stoich} — 1, LiNbO_{3cong} — 2, LiNbO₃ : B (0.55 mol.% B₂O₃) — 3, LiNbO₃ : B (0.83 mol.% B₂O₃ в шихте) — 4.

компонента полосы поглощения в ИК-спектре конгруэнтных кристаллов LiNbO₃ связывают с валентными колебаниями OH-групп, находящихся вблизи дефектов $Nb_{Li}^{4+} - V_{Li}^{-}$ [30,31]. Однако в ИК-спектре кристаллов LiNbO₃ : В интенсивности всех компонентов полосы поглощения выше, чем в спектре конгруэнтного кри-

Таблица 2. Значения частот (ν , cm⁻¹), ширин (S, cm⁻¹) и интенсивностей (I, a.u.) линий в ИК-спектрах поглощения и концентрации ОН-групп ($C(OH^-)/cm^{-3}$) в кристаллах LiNbO_{3stoich}, LiNbO_{3cong}, LiNbO₃ : В (0.55–0.83 mol% B₂O₃ в шихте) при $t = 25^{\circ}$ С

LiNbO _{3stoich}		LiNbO _{3cong}		LiNbO ₃ : В (0.55 mol.% В ₂ О ₃ в шихте)		LiNbO ₃ : B (0.69 mol.% B ₂ O ₃ в шихте)			LiNbO ₃ : B (0.83 mol.% B ₂ O ₃ в шихте)					
ν	Ι	S	ν	Ι	S	ν	Ι	S	ν	Ι	S	ν	Ι	S
3465 3480 3488	0.14 0.11 0.07	4.28 5.37 8.18	3470 3483 3486	0.12 0.49 0.33	16.4 24.8 27.1	3466 3480 3485	0.144 0.077 0.333	12.5 17.7 27.7	3466 3481 3485	0.100 0.130 0.104	16.2 20.1 22.6	3467 3480 3485	0.142 0.119 0.288	12.5 19.9 27.2
C(OH ⁻)/cm ⁻³														
$1.6 \cdot 10^{17}$ $3.3 \cdot 10^{17}$		$6.4 \cdot 10^{17}$		$3.4 \cdot 10^{17}$			$6.3 \cdot 10^{17}$							

Рис. 4. Спектры ИК-поглощения кристаллов: $I - LiNbO_{3stoich}$, 2 — LiNbO_{3cong}, 3 — LiNbO₃ : В (0.55 mol.% B₂O₃ в шихте), 4 — LiNbO₃ : В (0.69 mol.% B₂O₃ в шихте), 5 — LiNbO₃ : В (0.83 mol.% B₂O₃ в шихте).

сталла (табл. 2). При этом ширины всех компонентов полосы поглощения кристаллов LiNbO₃ : В меньше, чем

для кристалла LiNbO3cong, за исключением полосы с частотой $3485\,\mathrm{cm}^{-1}$ (табл. 2), что свидетельствует об упорядочении в расположении ОН-групп в структуре кристаллов LiNbO3 : В. В ИК-спектре LiNbO3stoich также наблюдается три компонента полосы поглощения с частотами 3465, 3480 и 3488 ст $^{-1}$ (рис. 4) в отличие от данных работы [10], согласно которым в спектре стехиометрического кристалла в области валентных колебаний ОН-групп наблюдается одна полоса поглощения (3465 cm⁻¹). Этот факт свидетельствует о наличии в структуре выращенного нами кристалла LiNbO_{3stoich} комплексных дефектов. Авторы работы [10] предполагают, что LiNbO3stoich можно рассматривать как кристалл, легированный примесью Nb⁵⁺, таким образом, в структуре LiNbO3stoich существует дефектный комплекс Nb⁵⁺_{Nb}-OH. Полоса поглощения с частотой 3465 ст⁻¹ соответствует валентным колебаниям комплексного дефекта Nb_{Nb}^{5+} -OH в кристалле LiNbO_{3stoich}. По сравнению с другими исследованными кристаллами ширины компонентов ИК-спектра кристалла LiNbO3stoich значительно более узкие (рис. 4, табл. 2), что указывает на большую упорядоченность подрешетки протонов в стехиометрическом кристалле по сравнению с конгруэнтным кристаллом и кристаллами LiNbO₃ : В.

Концентрация ОН-групп в исследованных кристаллах, рассчитанная из ИК-спектра поглощения по методу Клавира [32], минимальна для кристаллов LiNbO_{3stoich} и максимальна для кристаллов LiNbO₃ : В (0.55 и 0.83 mol.% B_2O_3 в шихте) (табл. 2). Кристаллы LiNbO_{3cong} и LiNbO₃ : В (0.69 mol.% B_2O_3 в шихте) по концентрации ОН-групп занимают промежуточное значение (табл. 2). Необходимо отметить, что для кристаллов LiNbO_{3cong} и LiNbO₃ : В (0.69 mol.% B_2O_3 в шихте) не наблюдалось раскрытия индикатрисы ФИРС [5] в отличие от кристаллов LiNbO_{3stoich} и LiNbO₃ : В (0.55 и 0.83 mol.% B_2O_3 в шихте), в которых индикатриса ФИРС раскрывается, угол фотоиндуцированного рассеяния света составляет 56, 14 и 22° соответственно (табл. 1).

Заключение

Исследованы рэлеевское фототоиндуцированное рассеяние света, край фундаментального оптического поглощения, ИК-спектры поглощения в области валентных колебаний ОН-групп в номинально чистых стехиометрическом и конгруэнтном кристаллах LiNbO₃, а также в номинально чистых кристаллах LiNbO₃ : В, выращенных из шихты, легированной неметаллическим элементом бором. По характеристикам ФИРС для всех исследованных кристаллов выполнена количественная оценка напряженностей фотовольтаического и диффузионного полей. Показано, что величина диффузионного поля, отвечающего за диффузионный механизм переноса заряда для кристаллов LiNbO3 : В, имеет промежуточное значение между кристаллами конгруэнтного и стехиометрического состава и зависит от концентрации бора в шихте. При этом кристаллы LiNbO3 : В по сравнению со стехиометрическим кристаллом отличаются меньшим углом раскрытия индикатрисы ФИРС, также зависящим от концентрации бора в шихте. Ширина запрещенной зоны кристаллов LiNbO3 : В соответствует значению для стехиометрического кристалла, но при этом кристаллы LiNbO3 : В отличаются большей оптической однородностью по сравнению со стехиометрическим кристаллом. Показано, что расположение в структуре ОН-групп в кристаллах LiNbO3 : В более упорядочено, чем в конгруэнтном кристалле. Таким образом, применение для выращивания номинально чистых кристаллов ниобата лития расплава, структурированного неметаллическим элементом бором, позволяет регулировать особенности вторичной структуры, оптическую однородность, величины фотоэлектрических полей и ширину запрещенной зоны в кристалле.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Сидоров Н.В., Палатников М.Н., Яничев А.А., Титов Р.А., Теплякова Н.А. // Опт. и спектр. 2016.
 Т. 121. № 1. С. 40–49. DOI: 10.7868/S0030403416070199
 [Sidorov N.V., Palatnikov M.N., Yanichev A.A., Titov R.A., Teplyakova N.A. // Opt. Spectr. 2016. Vol. 121. N 1.
 P. 1024–1032. DOI: 10.1134/S0030400X16070195]
- [2] Сидоров Н.В., Палатников М.Н., Яничев А.А., Титов Р.А., Теплякова Н.А. // ЖПС. 2016. Т. 83. № 5. С. 707–714.
 [Sidorov N.V., Palatnikov M.N., Yanichev A.A., Titov R.A., Teplyakova N.A. // J. Appl. Spectr. 2016. Vol. 83. N 5. P. 750–756.]
- [3] Палатников М.Н., Сидоров Н.В., Титов Р.А., Теплякова Н.А., Макарова О.В. // Персп. матер. 2018. № 6. С. 5–15. DOI: 10.30791/1028-978Х-2018-6-5-15

- [4] Сидоров Н.В., Теплякова Н.А., Титов Р.А., Палатников М.Н. // Сибирский физический журн. 2018. Т. 13. № 2. С. 70–79. DOI: 10.25205/2541-9447-2018-13-2-70-79
- [5] Сидоров Н.В., Теплякова Н.А., Титов Р.А., Палатников М.Н. // ЖТФ. 2018. Т. 88. Вып. 12. С. 1820– 1828. DOI: 10.21883/JTF.2018.12.46783.39-18 [Sidorov N.V., Teplyakova N.A., Titov R.A., Palatnikov M.N. // Tech. Phys. 2018. Vol. 63. N 12. P. 1758–1766. DOI: 10.1134/S1063784218120198]
- [6] Макарова О.В., Палатников М.Н., Бирюкова И.В., Теплякова Н.А., Сидоров Н.В. // Неорган. матер. 2018.
 Т. 54. № 1. С. 53–58. DOI: 10.7868/S0002337X18010104 [Makarova O.V., Palatnikov M.N., Biryukova I.V., Teplyakova N.A., Sidorov N.V. // Inorg. Mater. 2018.
 Vol. 54. N 1. P. 49–54. DOI: 10.1134/S0020168518010089]
- [7] Сидоров Н.В., Палатников М.Н., Теплякова Н.А., Сюй А.В. // ЖПС. 2018. Т. 85. № 4. С. 666–672.
- [8] Shur V.Ya., Akhmatkhanov A.R., Baturin I.S. // Appl. Phys. Rev. 2015. Vol. 2. P. 040604–0406015.
 DOI: 10.1063/1.4928591
- [9] Sidorov N.V., Serebryakov Yu.A. // Ferroelectrics. 1994.
 Vol. 160. P. 101–105.
- [10] Lengyel K., Peter A., Kovacs L., Corradi G., Palfavi L, Hebling J., Unferdorben M., Dravecz G., Hajdara I., Szaller Zs., Polgar K. // Appl. Phys. Rev. 2015. Vol. 2. P. 040601–040628. doi.org/10.1063/1.4929917
- [11] Cabrera J.M., Olivares J., Carrascosa M., Rams J., Müller R., Diéguez E. // Adv. Phys. 1996. Vol. 45. N 5. P. 349–392.
 DOI: 10.1080/00018739600101517
- [12] Goulkov M., Imlau M., Woike Th. // Phys. Rev. B. 2008.
 Vol. 77. P. 235110-1–23510-7.
 DOI: 10.1103/PhysRevB.77.235110
- [13] Палатников М.Н., Сидоров Н.В., Бирюкова И.В., Щербина О.Б., Калинников В.Т. // Персп. матер. 2011. № 2. С. 93-97.
- [14] Палатников М.Н., Сидоров Н.В., Макарова О.В., Бирюкова И.В. Фундаментальные аспекты технологии сильно легированных кристаллов ниобата лития. Апатиты: Издво КНЦ РАН, 2017. 241 с.
- [15] Syuy A.V., Sidorov N.V., Gaponov A.Y., Palatnikov M.N., Efremenko V.G. // Optik. 2013. Vol. 124. N 21. P. 5259–5261. DOI: 10.1016/j.ijleo.2013.03.082
- [16] Сюй А.В., Сидоров Н.В., Палатников М.Н., Штарев Д.С., Антонычева Е.А., Гапонов А.Ю., Чехонин К.А. // Оптич. журн. 2015. Т. 82. № 5. С. 71–75.
- [17] Гурзадян Г.Г., Дмитриев В.Г., Никогосян Д.Н. Нелинейнооптические кристаллы. Свойства и применение в квантовой электронике. М.: Радио и связь, 1991. 160 с.
- [18] Сидоров Н.В., Волк Т.Р., Маврин Б.Н., Калинников В.Т. Ниобат лития: дефекты, фоторефракция, колебательный спектр, поляритоны. М.: Наука, 2003. 255 с.
- [19] Автореф. канд. дис. *Саллум М.И.* Влияние стехиометрии и допирующих примесей на электрические и оптические свойства кристаллов ниобата лития. СПб, 2009. 19 с.
- [20] Nahm H.H., Park C.H. // Phys. Rev. B. 2008. Vol. 78. N 18. P. 184108/1.

DOI: https://doi.org/10.1103/PhysRevB.78.184108

- [21] Iyi N., Kitamura K., Izumi F., Yamamoto J.K., Hayashi T., Asano H., Kimura S. // J. Solid State Chem. 1992. Vol. 101. P. 340–352. DOI: 10.1016/0022-4596(92)90189-3.
- Blümel J., Born E., Metzger T. // J. Phys. Chem. Solid. 1994.
 Vol. 55. P. 589–593. DOI: 10.1016/0022-3697(94)90057-4

- [23] Volk T., Wöhlecke M. Lithium niobate. Defects, photorefraction and ferroelectric switching. Berlin: Springer, 2008. 250 p.
- [24] Блистанов А.А., Любченко В.М., Горюнова А.Н. // Кристаллография. 1998. Т. 43. № 1. С. 86–91.
- [25] Лайнс М., Гласс А. Сегнетоэлектрики и родственные им материалы. М.: Мир, 1981. 736 с.
- [26] Автореф. канд. дис. *Обуховский В.В.* Процессы фоторефрактивного рассеяния света в кристаллах. Киев, 1989. 24 с.
- [27] Ахмадуллин И.Ш., Голенищев-Кутузов В.А., Мигачев С.А., Миронов С.П. // ФТТ. 1998. Т. 40.
 Вып. 7. С. 1307–1309. [Akhmadullin I.Sh., Golenishchev-Kutuzov V.A., Migachev S.A., Mironov S.P. // Phys. Sol. State. 1998. Т. 40. N 7. С. 1190–1192. DOI: 10.1134/1.1130517]
- [28] Fontana M.D., Bourson P. // Appl. Phys. Rev. 2015. N 2.
 P. 040602-1–040602-14. https://doi.org/10.1063/1.4934203
- [29] Polgar K., Peter A., Kovacs L., Corradi G., Szaller Zs. // J. Cryst. Growth. 1997. Vol. 177. N 3.4. P. 211–216. https://doi.org/10.1016/S0022-0248(96)01098-6
- [30] Kong Y., Zhang W., Chen X., Xu J., Zhang G. // J. Phys. Cond. Matter. 1999. Vol. 11. P. 2139–2143.
- [31] Kong Y., Zhang W., Xu J., Yan W., Liu H., Xie X., Li X., Shi L., Zhang G. // Infrared Phys. Techn. 2004. Vol. 45. P. 281–289. DOI: 10.1016/j.infrared.2003.12.001
- [32] Klauer S., Wöhlecke M., Kapphan S. // Phys. Rev. B. 1992.
 Vol. 45. P. 2786–2799. https://doi.org/10.1103/PhysRevB.45.2786