10.3

Параметрическое усиление магнитоакустических колебаний в структуре ферромагнетик-пьезоэлектрик

© Д.А. Бурдин, Д.В. Чашин, Н.А. Экономов, Ю.К. Фетисов

МИРЭА — Российский технологический университет, Москва, Россия E-mail: phantastic@mail.ru

Поступило в Редакцию 18 ноября 2019 г. В окончательной редакции 18 ноября 2019 г. Принято к публикации 22 ноября 2019 г.

> Обнаружено параметрическое усиление магнитоакустических колебаний в дисковом резонаторе, содержащем ферромагнитный слой FeBSiC и пьезоэлектрический слой цирконата-титаната свинца. Колебания с частотой 3.08 kHz возбуждались и регистрировались с помощью двух катушек с ортогональными осями. Накачка проводилась электрическим полем с удвоенной частотой, приложенным к пьезоэлектрическому слою. Усиление колебаний возникает за счет изменения жесткости структуры под действием электрического поля. Показано, что коэффициент усиления можно изменять с помощью постоянного магнитного поля, приложенного к структуре.

> Ключевые слова: параметрическое усиление, магнитоакустические колебания, ферромагнетик, пьезоэлектрик.

DOI: 10.21883/PJTF.2020.04.49053.18116

Параметрическое усиление наблюдается в линейных резонансных системах при возбуждении колебаний с частотой f, близкой к частоте f_0 собственного резонанса системы, и одновременном воздействии на систему внешней накачки с частотой 2f/k (где k = 1, 2, ...), которая изменяет какой-либо параметр системы, задающий ее собственную частоту. Параметрическое усиление реализовано в *LC*-резонаторах в диапазоне радиочастот [1], ферромагнитных резонаторах в сверхвысокочастотном диапазоне [2], оптических резонаторах в оптическом диапазоне [3]. В работах [4–6] наблюдалось параметрическое усиление колебаний микробалок, используемых в атомно-силовых микроскопах.

В настоящей работе обнаружено и исследовано параметрическое усиление магнитоакустических колебаний в дисковом резонаторе, содержащем ферромагнитный (ФМ) и пьезоэлектрический (ПЭ) слои. Резонатор представлял собой диск диаметром $R = 8 \,\mathrm{mm}$, содержащий ФМ-слой аморфного ферромагнетика FeBSiC толщиной $a_m = 20 \,\mu m$ (Metglas 2605 SA1) и ПЭ-слой цирконата-титаната свинца PbZr_{0.52}Ti_{0.48}O₃ (PZT) толщиной $a_p = 100 \,\mu$ m. Магнитострикция насыщения ФМслоя достигала $\lambda_S \approx 23 \cdot 10^{-6}$ в касательном магнитном поле $H_S \sim 8 \,\mathrm{kA/m}$. На поверхности слоя РZT были нанесены Ag-электроды толщиной ~ 2 µm, и он был поляризован перпендикулярно плоскости в постоянном электрическом поле $\sim 15 \, \mathrm{kV/cm}$. Пьезомодуль PZT равнялся $d_{31} \approx 175 \text{ pm/N}$. Слои структуры были соединены под прессом слоем эпоксидного клея толщиной $\sim 2\,\mu$ m.

Резонатор был помещен внутрь плоских, вставленных одна в другую электромагнитных катушек с взаимно перпендикулярными осями, как показано на вставке к рис. 1. Параллельно плоскости структуры вдоль оси x прикладывалось постоянное поле H = 0-8 kA/m. На

внутреннюю катушку с выхода двухканального генератора АКІР3410 подавалось напряжение U(f), которое создавало в образце возбуждающее магнитное поле $h\cos(2\pi ft)$ с амплитудой h = 0.8 А/т и частотой $f = 0.1 - 10 \, \text{kHz}$. Это поле посредством магнитострикции возбуждало в резонаторе магнитоакустические колебания. Внешняя измерительная катушка использовалась для регистрации амплитуды колебаний. На электроды слоя PZT со второго выхода генератора подавалось гармоническое напряжение $U_p(2f)$ с удвоенной частотой, которое создавало в слое PZT электрическое поле накачки $e\cos(4\pi ft)$ с амплитудой до e = 500 V/cm. Генератор позволял регулировать сдвиг фаз φ между возбуждающим напряжением U и напряжением накачки U_p в пределах 0-2 π . Амплитуда напряжения *u*, генерируемого измерительной катушкой, регистрировалась с помощью FFT Network Analyzer SR770 при различных значениях частоты f и магнитных полей h и H.

На рис. 1 приведена зависимость напряжения u от частоты f возбуждающего магнитного поля амплитудой h = 0.8 A/m в отсутствие электрической накачки (e = 0). Пики напряжения с частотами $f_1 \approx 3.26$ kHz и $f_2 \approx 5.86$ kHz и добротностями $Q_{1,2} \approx 30$ по уровню 0.7 соответствуют, как показало моделирование с использованием пакета COMSOL Multiphysics, возбуждению низших мод изгибных колебаний резонатора. Благодаря ортогональной ориентации осей возбуждающей и измерительной катушек амплитуда наводки на частотах вдали от резонансов не превышала $\sim 5 \mu$ V. Стрелками на рисунке обозначены положения частоты f_s возбуждающего магнитного поля и частоты $f_p = 2f_s$ электрического поля накачки при последующем исследовании параметрического усиления.

Рис. 1. Зависимость напряжения *u* с приемной катушки от частоты *f* возбуждающего магнитного поля. На вставке схематически изображена дисковая ФМ-ПЭ-структура.

На рис. 2 показан спектр частот напряжения u(f), генерируемого измерительной катушкой при возбуждении структуры магнитным полем с фиксированной частотой $f_s = 3.08$ kHz. В отсутствие накачки в спектре присутствовала только составляющая с частотой f_s малой амплитуды $u_s = u_0$, обусловленная прямой электромагнитной наводкой. При включении накачки с амплитудой e = 280 V/cm в спектре появлялась составляющая с частотой f_p амплитудой u_p . Амплитуда составляющей u_s с частотой f_s при этом значительно возрастала.

На рис. 3, *а* приведена зависимость амплитуды составляющей u_s от амплитуды поля накачки *e*. Видно, что с увеличением *e* напряжение u_s сначала медленно растет, а затем экспоненциально возрастает при приближении к пороговому полю $e_{th} \approx 300$ V/cm. Максимальный коэффициент усиления напряжения составлял $K = 10 \log(u_s/u_0) \approx 22$. При полях накачки выше порога $e > e_{th}$ наблюдалась устойчивая генерация напряжения с частотой $f_s = 3.08$ kHz и амплитудой $u_g \approx 100 \,\mu$ V.

На рис. 3, b приведена зависимость напряжения u_s от магнитного поля H в отсутствие электрической накачки (e = 0) и при поле накачки $e \approx 270$ V/cm. В обоих случаях напряжение u_s сначала растет с увеличением H, достигает максимума при определенном H_m , а затем падает до нуля при насыщении ФМ-слоя резонатора. Поле максимума H_m возрастает от ~ 1.3 до ~ 1.6 kA/m с увеличением накачки.

Для объяснения измерений воспользуемся результатами работы [7], где решена задача о параметрическом усилении колебаний пьезоэлектрической микробалки при накачке на удвоенной частоте. Параметрическое усиление описывалось уравнением для линейного гармонического осциллятора с переменной константой жесткости

$$m\frac{\partial^2 x}{\partial t^2} + \frac{m\omega_0}{Q}\frac{\partial x}{\partial t} + [k_0 + k_p(t)]x = F(t).$$
(1)

Здесь m — масса, x(t) — амплитуда колебаний, $\omega_0 = 2\pi f_0$ — собственная частота, Q — добротность в отсутствие накачки, k_0 — константа жесткости, $k_p(t)$ изменение константы жесткости, F(t) — внешняя вынуждающая сила.

В нашем случае роль возбуждающей силы F(t) выполняет магнитное поле $h(t) = h \cos(\omega_0 t + \varphi)$, создаваемое возбуждающей катушкой, которое за счет магнитострикции λ приводит к возбуждению магнитоакустических колебаний в резонаторе. Роль x(t) играет механическая деформация S(t). Эта деформация вследствие обратного эффекта (эластомагнитный эффект или эффект Виллари) приводит к изменению намагниченности резонатора $\delta M(t) = \delta M \cos(\omega_0 t)$. Изменение намагниченности δM регистрируется приемной катушкой. Изменение жесткости осциллятора $k_p(t) = \Delta k \cos(2\omega_0 t)$ вызывается электрическим полем накачки $e(t) = e \cos(2\omega_0 t)$ с удвоенной частотой, приложенным к слою РZT структуры.

Для подтверждения механизма параметрической накачки была измерена зависимость частоты f_2 колебаний структуры от постоянного поля E. Коэффициент перестройки частоты составил $\delta f/\delta E \approx 53 \,\mathrm{Hz} \cdot (\mathrm{kV/cm})^{-1}$, что соответствует изменению модуля Юнга структуры Y в зависимости от поля E с коэффициентом $\delta Y/\delta E \approx 0.27 \cdot 10^{10} \,(\mathrm{N/m^2}) \cdot (\mathrm{kV/cm})^{-1}$. Таким образом, изменение жесткости Δk пропорционально амплитуде электрического поля, приложенного к слою PZT, что согласуется с данными [8].

В результате решения уравнения (1) в [7] получена зависимость амплитуды колебаний от амплитуды модуляции константы жесткости при оптимальной разнице фаз между возбуждающей силой и накачкой $\varphi = \pi/2$, которая в наших обозначениях имеет вид

$$u_s(e) = u_0/(1 - e/e_{th}).$$
 (2)

Здесь $u_s(e)$ и u_0 — амплитуды напряжения с измерительной катушки в режиме усиления и в отсутствие накачки, e_{th} — пороговая амплитуда поля накачки, при которой u_s стремится к бесконечности. Сплошной кривой на рис. 3, *а* изображена зависимость $u_s(e)$, рассчитанная

Рис. 2. Спектр частот напряжения с измерительной катушки при накачке *e* = 280 V/cm.

Рис. 3. Зависимости напряжения u_s от поля накачки e(a) и от поля H при e = 0 и в режиме усиления при e = 270 V/cm (b).

по формуле (2) при значениях подгоночных параметров $u_0 = 3.3 \,\mu\text{V}$ и $e_{th} = 310 \,\text{V/cm}$. Видно, что теория хорошо описывает экспериментальные данные. При амплитудах поля накачки выше пороговой $e > e_{th}$ резонатор переходит в режим параметрической генерации. Амплитуда генерируемого напряжения при этом ограничивается из-за нелинейных процессов в ФМ-слое, приводящих к сдвигу частоты резонанса [9]. В описанном резонаторе частота возбуждающего поля f_s и частота поля накачки f_p оказались расположены вблизи двух акустических резонансов структуры (рис. 1), что облегчило наблюдение вырожденного параметрического усиления при сравнительно небольших амплитудах поля накачки.

Зависимость амплитуды напряжения u_s от постоянного поля H, приведенная на рис. 3, b, обусловлена полевой зависимостью пьезомагнитного коэффициента ФМ-слоя $q(H) = \partial \lambda / \partial H$ (где $\lambda(H)$ — зависимость магнитострикционной деформации от поля), который определяет эффективность возбуждения магнитоакустических колебаний. Увеличение поля H_m , соответствующего максимуму пьезомагнитного коэффициента, с увеличением амплитуды колебаний согласуется с данными измерений при больших амплитудах возбуждающего поля [10].

Таким образом, в работе экспериментально обнаружено параметрическое усиление низкочастотных магнитоакустических колебаний в дисковом резонаторе ферромагнетик—пьезоэлектрик. Усиление возникает вследствие изменения жесткости пьезоэлектрического слоя под действием электрического поля накачки с удвоенной частотой. Коэффициент усиления можно изменять с помощью постоянного магнитного поля, приложенного к структуре.

Финансирование работы

Работа поддержана Министерством науки и высшего образования РФ, проект МК-2639.2018.2, и Российским фондом фундаментальных исследований, грант 19-17-00594/19.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] *Louisell W.H.* Coupled mode and parametric electronics. N.Y.: Wiley, 1960. 268 p.
- [2] Suhl H. // Phys. Rev. 1957. V. 106. P. 384-385.
- [3] Hansryd J., Andrekson P.A., Westlund M., Lie J., Hedekvist P.O. // IEEE J. Sel. Top. Quant. Electron. 2002. V. 8. P. 506–520.
- [4] Dana A., Ho F., Yamamoto Y. // Appl. Phys. Lett. 1998. V. 72.
 P. 1152–1154. doi.org/10.1063/1.120998
- [5] Tomas O., Mathieu F., Mansfield W., Huang C., Trolier-McKinstry S., Nicu L. // Appl. Phys. Lett. 2013. V. 102. P. 163504. doi.org/10.1063/1.4802786
- [6] Wang Y., Onuta T.-D., Long C.J., Cheng Y., Takeuchi I. // Appl. Phys. Lett. 2015. V. 107. P. 192902. http://dx.doi.org/10.1063/1.4935332
- [7] Rugar D., Grutter P. // Phys. Rev. Lett. 1991. V. 67. P. 699– 702.
- [8] Fetisov Y.K., Fetisov L.Y., Srinivasan G. // Appl. Phys. Lett. 2009. V. 94. P. 132507. doi.org/10.1063/1.3114406
- [9] Fetisov Y.K., Burdin D.A., Ekonomov N.A., Fetisov L.Y., Berzin A.A., Hayes P., Quandt E. // Appl. Phys. Lett. 2018.
 V. 113. P. 022903. https://doi.org/10.1063/1.5032182
- [10] Fetisov L.Y., Burdin D.A., Ekonomov N.A., Chashin D.V., Zhang J., Srinivasan G., Fetisov Y.K. // J. Phys. D: Appl. Phys. 2018. V. 51. P. 154003. DOI: 10.1088/1361-6463/aab384