Исследование электростатической системы поверхности кристаллов AuNi/GaN диодов Шоттки методом зонда Кельвина атомно-силовой микроскопии

© Н.А. Торхов^{1,2,3}, В.А. Новиков²

¹ АО "НИИПП", 634034 Томск, Россия ² Национальный исследовательский Томский государственный университет, 634050 Томск, Россия ³ Томский университет автоматизированных систем управления (ТУСУР), 634050 Томск, Россия

E-mail: trkf@mail.ru

Поступила в Редакцию 3 июля 2019 г. В окончательной редакции 20 сентября 2019 г. Принята к публикации 21 октября 2019 г.

Атомно-силовые микроскопические исследования электростатической системы поверхности кристаллов плоских AuNi/ $n-n^+$ -GaN диодов Шоттки показали, что значение работы выхода электронов с поверхности металлических контактов Шоттки зависит от их линейного размера — диаметра *D*. При *D* > 120 мкм значение работы выхода центральной области контактов приближается к значению работы выхода сплошной металлической пленки золота $e\phi_{Au} \approx 5.40$ эВ. Уменьшение диаметра приводит к уменьшению работы выхода сплошной до 5.34 эВ для *D* = 120 мкм, 5.21 эВ для *D* = 40 мкм, 5.18 эВ для *D* = 10 мкм и 5.14 эВ для *D* = 5 мкм. Наблюдаемое уменьшение значений работы выхода с уменьшение диаметра связано с увеличивающимся влиянием встроенного электростатического поля периферии **E**_l, которое определяется площадью и периметром контактов Шоттки. Принципиальные отличия термодинамических и электростатических систем омических TiAlNiAu/ n^+ -GaN-контактов (в отличие от аналогичных систем AuNi/n-GaN-контактов Шоттки) указывают на отсутствие в них барьера Шоттки и преобладающую роль термоэмиссионного механизма переноса подвижных носителей электрических зарядов.

Ключевые слова: нитрид галлия, барьер Шоттки, омический контакт, электростатическое поле периферии, размерный эффект, метод зонда Кельвина АСМ.

DOI: 10.21883/FTP.2020.03.49031.9203

1. Введение

Барьер Шоттки (БШ) как физический объект представляет собой сформированный на интерфейсе металл-полупроводник (М–П) управляемый внешним электрическим полем потенциальный барьер, уникальные свойства которого обусловливают его широкое применение в электронике. Физические и приборные модели контактов М–П с БШ (контакт Шоттки) достаточно подробно описаны в современной научной литературе и в настоящее время продолжают уточняться и развиваться [1–5].

Согласно [1–5], возможностей диффузионной и термоэмиссионной теорий (основанных на диффузионном механизме переноса носителей электрических зарядов с учетом процессов рассеяния) достаточно для описания параметров большинства низкочастотных (с диаметром *D* контакта, превышающим десятки и сотни микрометров) контактов Шоттки с толстыми (≥ 0.5 мкм) базами. При этом для расчета приборных характеристик используется всего два параметра барьера Шоттки: его высота φ_b и ширина области пространственного заряда (ОПЗ) *W* [1].

При переходе к описанию высокочастотных характеристик контактов Шоттки (диаметрами от единицы микрон и менее) с тонкими (< 0.5 мкм) базами уже необходимо применение термополевой, а лучше баллистической (тонкую базу электроны проходят без рассеяния) теорий переноса баллистических носителей электрических зарядов в контактах Шоттки с учетом полной формы потенциального барьера [6]. Согласно [7], для описания токопрохождения в таких контактах абсолютно недостаточно параметров φ_b и W, а необходимо учитывать взаимодействие (рассеяние) электронов с полной формой потенциального барьера, включая и область, в которой электроны движутся над барьером.

В настоящий период времени реализация таких контактов традиционно осуществляется путем химического или физического нанесения барьерной металлизации на подготовленную поверхность различных полупроводниковых (узкозонных [8], широкозонных [2–5,9], прямозонных [10,11] и непрямозонных [12]) материалов, включая и органические полупроводники [13].

Умение эффективно управлять свойствами таких контактов открывает широкие возможности их практического использования в приборах в различных областях современной науки и техники для измерения физикохимических и электрофизических параметров различных объектов, контроля и управления быстропротекающими процессами, ключах, детектирования, обнаружения элементарных частиц и квантов излучения, сверхскоростного преобразования и передачи сигналов в высокочастотных оптоволоконных и квантовых линиях связи, спинтронике и квантовых компьютерах, радиовидении, ближней и космической локации, генерации, распространения и поглощения сверхвысокочастотного (СВЧ), крайне высокочастотного (КВЧ), терагерцового (ТГц) радио- (далее высокочастотное радиоизлучение) и оптического излучений, в изучении взаимодействия этих излучений с биологическими объектами на генном и молекулярном уровнях, в радиофотонике и энергоэффективных устройствах преобразования и передачи лучистой энергии и т.п.

Интенсивное развитие материаловедения и 0D, 1D и 2D — нанотехнологий (квантовые точки и провода, двумерный электронный газ и др.) создало технологическую базу для качественно нового этапа в изготовлении и изучении свойств контактов Шоттки субмикронных и наноразмеров (например, [14]).

Несмотря на большой объем имеющихся результатов и продолжающихся исследований, многие свойства контактов $M-\Pi$ с БШ, касаемые их электрофизической природы и механизмов токопрохождения, все еще остаются недостаточно хорошо изученными. Это накладывает серьезные ограничения на эффективность их практического использования для достижения предельных технико-эксплуатационных характеристик разрабатываемых устройств.

Так, остаются открытыми вопросы о физической природе эффекта "резонанса горячих электронов", приводящего к увеличению в рамках теории Фаулера [15] внешней квантовой эффективности фотодиодов с барьером Шоттки [16], нетривиальном влиянии формы контактов Шоттки на их статические и высокочастотные характеристики, вольтовую β_U и токовую β_I фоточувствительности [17]. В частности, в рамках известных представлений о пропускной способности барьера Шоттки невозможно объяснить тот факт, что в микронных контактах Шоттки к широкозонным полупроводникам амплитуда фотоэлектродвижущей силы (фотоэдс) U_{Ph}, как и сила фототока I_{Ph} нетривиальным образом зависит от геометрической формы контактов, а обратные токи насыщения I_{S,r} значительно (на несколько порядков) могут превышать прямые токи насыщения I_{S,f} [17].

Напомним, что контакт М-П с БШ бесконечной площади $(S \to \infty)$ лишен аддитивных геометрических свойств и, как следствие, не имеет аддитивных приборных характеристик, его емкость бесконечна, а сопротивление барьера стремится к нулю и в пределе при $S \to \infty$ не зависит от смещения, т.е. не имеет нелинейных выпрямляющих (диодных) характеристик [17]. Значительная роль периферии проявляется в том, что контакт Шоттки приобретает нелинейные аддитивные электрические характеристики только после формирования у

него границы (периферии) и появления аддитивных геометрических свойств.

Таким образом, уменьшение линейных размеров контактов Шоттки приводит к возрастающему влиянию периферийной области на их электростатическую систему, форму потенциального барьера Шоттки и, как следствие, на их статические и высокочастотные приборные характеристики. Такое влияние обеспечивается электрическими полями периферии, экранирующими термодинамическую систему контакта Шоттки от окружающей среды [4,17].

Возможности современных методов атомно-силовой микроскопии (АСМ) позволили прецизионно исследовать систему электростатических полей периферии плоских контактов М-П с БШ на арсениде галлия и обнаружить зависимость значений работы выхода электронов $A_e = e \varphi_{Au}$ (далее — работа выхода) с поверхности металлических контактов от их линейных размеров (диаметров D) — латеральный размерный эффект [18-21]. Было показано, что зависимость $A_e = A_e(D)$ обусловлена влиянием встроенного электростатического поля периферии $\mathbf{E}_l = \mathbf{E}_l(D)$, модуль которого $|\mathbf{E}_l|$ изменяется при изменении параметра $\xi = P/S$, где Р — периметр контакта. Было обнаружено, что для арсенида галлия *n*-типа проводимости (*n*-GaAs) уменьшение диаметра D < 500 мкм приводит к значительному уменьшению работы выхода A_{e} , а для арсенида галлия р-типа проводимости наоборот — к ее увеличению [22,23]. Подобные эффекты были замечены также для плоских Pt- [24] и RhPt-контактов Шоттки [25] на n-GaAs, а также для контактов Шоттки на фосфиде индия [26].

Несмотря на вышеизложенное, исследования электростатической системы плоских контактов Шоттки на широкозонных полупроводниках крайне ограничены. В связи с этим представляет научно-практический интерес проведение исследований электростатической системы контактов М-П с БШ на нитриде галлия *n*-GaN электронного типа проводимости в связи с его активным использованием в полупроводниковых приборах разного назначения.

2. Методическая часть

Для изготовления кристаллов планарных диодов Шоттки использовалась выращенная на подложке сапфира эпитаксиальная $n-n^+$ -GaN(0001)-структура. Толщина эпитаксиального слоя *n*-GaN с концентрацией $N_D \approx 5 \cdot 10^{16}$ см⁻³ составляла 180 нм, слоя n^+ -GaN с концентрацией $2 \cdot 10^{18}$ см⁻³ — 5 мкм. Со стороны эпитаксиального слоя *n*-GaN методом плазменного травления изготавливались мезы высотой 200 нм. Затем вокруг мез на поверхности высоколегированного слоя n^+ -GaN методом взрывной литографии формировались омические TiAlNiAu-контакты с последующим быстрым

термическим отжигом в атмосфере азота при температуре 780°С. После этого на поверхности эпитаксиального *n*-слоя методом взрывной литографии формировались AuNi-контакты Шоттки диаметрами $D_1 = 5$, $D_2 = 10$, $D_3 = 40$ или $D_4 = 120$ мкм. Толщина Ni составляла 50 нм, Au — 200 нм.

Контроль геометрических размеров изготовленных контактов (рис. 1, a и b) и электростатического потенциала поверхности $\varphi_s(m)$ (работы выхода электронов $A_e = e\varphi_{s(m)}$) (1) (рис. 1, c и d) проводился на атомно-силовом микроскопе "Solver-HV" (производства NT MDT) в двухпроходном режиме метода зонда Кельвина. Влияние элементов конструкции кантилевера на результаты измерений — так называемое приборное влияние — не превышало 2.5% на расстоянии 5 мкм от контакта и 10% в непосредственной близости от него:

$$A_e = e\varphi_{s(m)} = e\varphi_p - e\Delta\varphi_{s(m)}.$$
 (1)

Здесь e = 1 — заряд электрона в системе СГС, $e\phi_p(W_2C) = 4.92$ эВ — работа выхода иглы кантилевера (HA–FM/W₂C) с покрытием из карбида вольфрама W₂C, $\phi_{s(m)}$ — электростатический потенциал (далее — потенциал) исследуемой поверхности полупроводника (*s*), или металлического (*m*) контакта, $\Delta \phi_{s(m)}$ — измеряемая АСМ-методом зонда Кельвина контактная разность потенциалов (КРП).

Измерения статических вольт-амперных характеристик (ВАХ) проводились на зондовой станции "Cascade-M150" с использованием измерителя электрических характеристик полупроводниковых приборов В1500А производства Keysight Technologies (рис. 1, *e*).

3. Результаты экспериментов

Изготовленные NiAu/n-GaN-контакты Шоттки имели классические BAX с показателем идеальности n = 1.06 - 1.1 и высотой барьера $e\varphi_b = 0.93 - 0.98$ эВ (рис. 1, *e*). Это позволило интерпретировать полученные результаты с использованием известных физических представлений о выпрямляющих контактах металлполупроводник с барьером Шоттки.

Согласно рис. 1, латеральное распределение электростатического потенциала исследуемых контактов Шоттки на *n*-GaN аналогично латеральному распределению электростатического потенциала плоских Me/*n*-GaAsконтактов Шоттки на *n*-GaAs.

В частности, из рис. 1, a следует, что работа выхода электронов из NiAu-контактов Шоттки к нитриду галлия, как и в случае с контактами Шоттки на арсениде галлия, значительно превышает работу выхода электронов A_e с поверхности сплошной пленки NiAu. А именно барьерный NiAu-контакт, как и металлические контакты Шоттки на GaAs, не находится в термодинамическом равновесии со всем объемом эпитаксиального слоя n-GaN. При этом работа выхода электронов с поверхности NiAu/n-GaN-контактов так же, как и в случае с плоскими контактами Me/*n*-GaAs, имеет зависимость от диаметра D (рис. 2). Так, для AuNi/*n*-GaNконтактов Шоттки диаметрами $D \gg 120$ мкм значение работы выхода приближается к значению работы выхода сплошной золотой пленки $e\varphi_{Au} = e\varphi_{Au}(film) = 5.40$ эВ (рис. 2, *d*). Согласно полученным результатам, уменьшение диаметра приводит к уменьшению работы выхода AuNi NiAu/*n*-GaN-контактов Шоттки, которая для D = 5 мкм составляет $e\varphi_{(m)}(Au) = 5.14$ эВ. Вне периферии контакта наблюдается переходная область плавно изменяющегося потенциала — "ореол" протяженностью *l**, характерный и для плоских контактов Шоттки на арсениде галлия, а также переходная область внутри периферии — "ореол" протяженностью *l*^{*} (рис. 2, *d*).

Согласно [24–31], результирующий вектор электростатического поля периферии \mathbf{E}_l образован суперпозицией векторов постоянного электростатического поля \mathbf{E}_{grad} , образованного разностью поверхностных потенциалов металлического контакта и свободной полупроводниковой поверхностью, и вектора нескомпенсированного электростатического поля \mathbf{E}^* , выходящего через боковую поверхность ОПЗ:

$$\mathbf{E}_l = \mathbf{E}_{
m grad} + \mathbf{E}^*$$
, и для модулей $|\mathbf{E}_l| = |\mathbf{E}_{
m grad}| - |\mathbf{E}^*|$. (2)

Модуль $|\mathbf{E}^*| = E^*$ зависит от формы (площади *S* и периметра *P*) контакта. Согласно [30,31], встроенное электростатическое поле \mathbf{E}_l формирует в области контакта встроенный электростатический потенциал φ^* (рис. 2, *c*, *d*), который, как было показано в [17], оказывает значительное влияние на работу выхода электронов из металлических контактов Шоттки.

Согласно рис. 1, *d*, максимум электростатического поля E^* приходится на периферию выпрямляющего AuNi-контакта. Величина $e\varphi^*(E_l)$ (1) легко измеряется и в зависимости от диаметра контакта принимает следующие значения: $e\varphi_1^*(D = 5 \text{ мкм}) = 5.14 \text{ зB}$, $e\varphi_2^*(D = 10 \text{ мкм}) = 5.18 \text{ зB}$, $e\varphi_3^*(D = 40 \text{ мкм}) = 5.21 \text{ зB}$ и $e\varphi_4^*(D = 120 \text{ мкм}) = 5.34 \text{ зB}$.

Изучение электростатической системы TiAlNiAu/ n^+ -GaN омических контактов (рис. 3, a) показало, что их поверхностный потенциал практически не отличается от электростатического потенциала свободной полупроводниковой поверхности n^+ -GaN (рис. 3, b), а электростатическое поле в области контакта и по его периферии практически равно нулю (рис. 3, d). Это указывает на то, что TiAlNiAu-металлизация омического контакта находится в термодинамическом равновесии практически со всем объемом контактного слоя n^+ -GaN и, как следствие, на отсутствие в нем барьера Шоттки. Согласно общепринятым представлениям, прохождение электрического тока в таких (без барьера или с очень низким барьером) ОК реализуется по термоэмиссионному механизму на основе диффузионного переноса подвижных носителей электрических зарядов [31].

Рис. 1. АСМ-изображения AuNi/ $n-n^-$ -GaN-контакта Шоттки D = 120 мкм и окружающего его TiAlNiAu/nGaN омического контакта: рельефа h(x, y) (a) и профиля h(x) его поперечного сечения A-A (b), латерального распределения $e\varphi(x, y)$ (c) и профиля $e\varphi(x)$ его поперечного сечения B-B (d). c — прямые BAX диодных AuNi/ $n-n^+$ -GaN контактов Шоттки, D, мкм: I - 5, 2 - 10, 3 - 40 и 4 - 120.

Рис. 2. АСМ-изображения рельефа h(x, y) AuNi/*n*-GaN-контакта Шоттки D = 10 мкм (*a*) и профилей h(x) поперечных сечений (A–A) аналогичных контактов Шоттки, D, мкм: I - 5, 2 - 10, 3 - 40 и 4 - 120 (*b*). АСМ-изображение латерального распределения $e\varphi(x, y)$ контакта Шоттки D = 10 мкм (*c*) и профилей $e\varphi(x)$ поперечных сечений (B–B) аналогичных контактов Шоттки, D, мкм: I - 5, 2 - 10, 3 - 40 и 4 - 120 (*b*).

Данный факт находится в противоречии с известными утверждениями о том, что перенос электронов в омических контактах TiAlNiAu/ n^+ -GaN происходит преимущественно по полевому механизму сквозь туннельнопрозрачный барьер Шоттки с пониженной эффективной высотой барьера $\varphi_{b,eff}$ [32]. Для окончательного ответа на вопрос о механизмах токопрохождения в омических контактах TiAlNiAu/ n^+ -GaN, по всей вероятности, необходимо проведение более подробных исследований.

4. Обсуждение результатов

Из [17] следует, что форма плоских контактов Шоттки играет важную роль в определении их основных приборных характеристик: токов насыщения I_S , емкостей C, высот потенциальных барьеров — φ_b , последовательных сопротивлений R_S , токовой β_I и вольтовой β_U фоточувствительностей и др. Напомним, что плоский контакт Шоттки бесконечной площади $S \to \infty$ не имеет выпрямляющих характеристик. Значение его R_S стремится к нулю, а C к бесконечности. Приборные характеристики у плоских контактов М-П появляются только после придания им определенной формы с периметром *P* и площадью *S*.

На возможность влияния периферии плоских контактов М-П с БШ на их электростатическую систему впервые было обращено внимание в монографии Мамедова [4]. В частности, там указывалось на то, что вокруг периметра металлических контактов Шоттки существует дополнительное электростатическое поле E_D , образованное разностью поверхностных потенциалов металлического контакта φ_m и свободной полупроводниковой поверхности φ_S . Согласно [4], вектор напряженности \mathbf{E}_D направлен противоположно вектору напряженности электростатического поля ОПЗ \mathbf{E}_W . Максимальное значение модуля $|\mathbf{E}D| = \mathbf{E}_D = \text{const постоянно,}$ равно $|\mathbf{E}_W|$, определяется только природой контакта и никак не связано с его формой — ни с их площадью *S*, ни с периметром *P*.

Согласно [17], наличие только $\mathbf{E}_D \equiv \mathbf{E}_{\text{grad}}$ недостаточно для объяснения зависимости поверхностного потенциала плоского контакта Шоттки от его линейных размеров [17]. Там же сообщалось, что вокруг периметра контактов М-П с БШ, кроме постоянного $|\mathbf{E}_{\text{grad}}| = |\mathbf{E}_W| = \text{const, существует еще выходящее в по-$

Рис. 3. ACM-изображение поверхности tiAlNiAu/ n^+ -GaN омического контакта D = 15 мкм: рельефа поверхности h(x, y) (a) и профиля h(x) его попереченого сечения (A–A) (b), латерального распределения $e\varphi(x, y)$ (стрелками указан электростатический потенциал адсорбата) (c) и профиля $e\varphi(x)$ его поперечного сечения (B–B) (d).

лупроводник через боковую поверхность ОПЗ и зависящее от площади и периметра контакта нескомпенсированное электростатическое поле **E**^{*} (рис. 1, *d* и 4). В данном случае вектор **E**_{grad} сонаправлен с вектором электростатического поля **E**_W (рис. 4, *a*, SCh). В общем случае, для заданной системы M–П максимальное значение $|\mathbf{E}_{grad}| = |\mathbf{E}_W|$, а среднее значение $\langle |\mathbf{E}_{grad}| \rangle$:

$$\langle |\mathbf{E}_{\text{grad}}(\mathbf{r})| \rangle = \frac{\varphi_{\text{Au, film}} - \varphi_{S}(x)}{\Delta \mathbf{r}}.$$
 (3)

Вектор **E***, согласно теореме Остроградского–Гаусса, определяется плотностью потока вектора смещения электростатического поля через боковую поверхность ОПЗ [30]. Площадь боковой поверхности ОПЗ можно рассчитать как $S^* = W_{\text{SCh}} \cdot P$, где W_{SCh} — ширина ОПЗ при нулевом смещении.

Для плоских круглых контактов Шоттки уменьшение диаметра D приводит к квадратичному уменьшению площади $S \sim D^2$ и, соответственно, полного электрического при этом уменьшается линейно, как $S^* = W_{\rm SCh} \cdot \pi D/2$. Согласно теореме Остроградского–Гаусса, это ведет к уменьшению плотности потока вектора смещения электростатического поля через боковую поверхность ОПЗ, уменьшению модуля $|\mathbf{E}^*|$ и, согласно (2), увеличению $|\mathbf{E}_l|$, что приводит к увеличению встроенного в контакт электростатического потенциала φ^* и уменьшению работы выхода электронов A_e с Аu-поверхности AuNi-контактов Шоттки.

заряда Q_W ОПЗ. Площадь же боковой поверхности ОПЗ

Для плоских контактов больших площадей $S \to \infty$ модуль $|\mathbf{E}^*| \approx |\mathbf{E}_{\text{grad}}|$ максимален, а, согласно (2), $|\mathbf{E}_l| \to 0$ минимально и, соответственно, $\varphi^0 \to 0$ имеет минимальное значение. Поэтому, как показывают эксперименты, для AuNi/*n*-GaN-контактов Шоттки с большими диаметрами $D \ge 120$ мкм поверхностный потенциал плоских металлических контактов (работа выхода A_e) практически не зависит от их размеров и приближается к работе выхода сплошной металлической пленки. Для понимания вышеизложенного рассмотрим термодинамическую систему выпрямляющих контактов М-П с БШ.

Необходимым условием приведения неравновесных систем в состояние термодинамического равновесия является наличие между ними механизмов обмена неравновесными частицами.

Такие механизмы между металлическим контактом и полупроводником возникают при достаточном их сближении. В результате этого контактирующие области металлического контакта и полупроводника за время релаксации т обмениваются подвижными неравновесными носителями электрических зарядов (электронами и дырками) и приходят в состояние термодинамического равновесия, формируя таким образом равновесные области пространственного заряда в полупроводнике шириной W_{SCh} и слоя Томаса-Ферми в металлическом контакте W_{TF} (рис. 4, *a*). Данный процесс сопровождается выравниванием уровней Ферми $E_{\text{FSCh}} = E_{\text{FTF}}$ на интерфейсе контакта и формированием вокруг него экранирующего электростатического поля E_W, препятствующего дальнейшему переносу подвижных частиц в неравновесные области и переходу остальных объемов контактирующих металла и полупроводника в состояние термодинамического равновесия.

Релаксация системы металл-полупроводник исследуемых контактов au — время перехода в состояние термодинамического равновесия составляет $\tau = 1/(2\omega f_{\rm th})$ [33]. С учетом измеренных емкостей C и последовательных сопротивлений R_s исследуемых контактов их предельные частоты $f_{\rm th}$ на 5-6 порядков больше резонансной частоты колебаний балки кантилевера $f_{\rm res} = 400\,{\rm k}\Gamma$ ц. Это означает, что менее чем за одну миллионную периода колебания балки кантилевера система контакта металл-полупроводник с БШ за счет протекания токов насыщения $I_S = 10^{-10} - 10^{-16} \, \mathrm{A}$ (рис. 1, е) успеет прийти в состояние термодинамического равновесия и выравнивания уровней Ферми $E_{\text{FSCh}} = E_{\text{FTF}}$ на интерфейсе. Согласно [34], в этом случае становится возможным измерение с достаточной точностью компенсирующего напряжения $U_0 = \Delta \varphi = \varphi_{ ext{Au-Contact}} - \varphi_{ ext{Au-Cantileve}}$ в измерительной схеме АСМ, равного по значению КРП между поверхностными потенциалами Аи-контакта и острием иглы кантилевера. В отсутствие токов компенсирующее напряжение U₀ будет полностью соответствовать контактной разности поверхностных потенциалов без дополнительного падения напряжения на ОПЗ и приповерхностной области. Падением напряжения на ОПЗ, например, нельзя пренебречь в тех случаях, когда резонансная частота колебаний балки кантилевера соизмерима с частотой релаксации измеряемой системы при протекании выравнивающих токов, или в случае отсутствия токов насыщения I_S. Последнее противоречит теории выпрямляющих контактов и практическим результатам.

Те области полупроводника и металлического контакта, между которыми не произошел обмен электро-

Рис. 4. Схематическое изображение способа измерения методом зонда Кельвина АСМ электростатического потенциала поверхности контакта металл–полупроводник с барьером Шоттки (a) и латеральное распределение его поверхностного потенциала $\varphi(x)$ (b).

нами по причине возникновения в ОПЗ экранирующего поля E_W , являются неравновесными по отношению друг к другу и, соответственно, будут иметь разный поверхностный электростатический потенциал и работу выхода, что мы и наблюдаем в экспериментах.

Согласно вышеизложеному, внешнее нескомпенсированное электростатическое поле Е* будет также участвовать в перераспределении частиц и внутренней энергии в окружающем AuNi-контакт тонком приповерхностном *n*-слое полупроводника в данном случае n-GaN, что приводит к изменению его поверхностного электростатического потенциала в окружающем контакт ореоле l*. Значение E* может быть непосредственно измерено АСМ-методом Кельвина. Такое измерение возможно потому, что Е* входит в состав электрического контура измерительной системы атомно-силового микроскопа: земля-ОПЗ-поверхность-F_Z-кантилеверземля (graund–SCh–surface–F_Z–cantilever–graund) и, согласно условиям термодинамического равновесия, принимает участие в механизмах обмена заряженными частицами измеряемого участка поверхности с иглой кантилевера через заземленный graund-контакт (рис. 4, *a*).

Кроме внешнего ореола l^* , на рис. 2, d показано наличие другой переходной области внутри периметра AuNi-контакта — внутренний ореол протяженностью l_C^* . Согласно рис. 2, d, внутренний ореол l_C^* определяет эффективную периферийную область контакта, в которой влияние \mathbf{E}_l на контакт максимально [17].

Электростатический потенциал, формируемый другой составляющей электростатического поля периферии $E_{\rm grad}$, в АСМ-методе зонда Кельвина напрямую измерить невозможно по причине того, что поле $E_{\rm grad}$, согласно рис. 4, b, возникает в другом замкнутом электрическом контуре контакт-поверхность-ОПЗ-контакт (contact-surface-SCh-contact), не входящем в состав измерительной электрической схемы АСМ. О наличии $E_{\rm grad}$ в системе контакта металл-полупроводник можно судить лишь исходя из косвенных результатов измерений значений электростатических потенциалов поверхностей металлических контактов $\varphi_{\rm contact}$ и полупроводниковой поверхности $\varphi_{\rm GaN}$.

5. Заключение

Предлагаемая физическая модель электростатической системы плоских контактов М-П с БШ на широкозонных полупроводниках основана на значительном влиянии периферийной области контакта на формирование его основных электрофизических и приборных характеристик. Столь сильное влияние периферии осуществляется посредством электростатического поля периферии E_l, образованного суперпозицией выходящего за боковую поверхность ОПЗ и зависящего от линейных размеров контакта нескомпенсированного электростатического поля Е* и электростатического поля, образованного градиентом между поверхностными потенциалами металлического контакта и свободной полупроводниковой поверхностью Egrad. Для заданной системы контакта $M-\Pi$ с БШ $|\mathbf{E}_{grad}| = const$ — постоянно (определяется только физическими свойствами системы М-П), а |E*| изменяется в зависимости от формы и размеров контакта [17].

Данная модель может использоваться в качестве дополнения к физическим моделям плоских выпрямляющих контактов металл-полупроводник Шоттки– Мотта [35], или Бардина [36].

Обнаруженные принципиальные отличия термодинамических и электростатических систем омических TiAlNiAu/n⁺-GaN-контактов (в отличие от аналогичных систем AuNi/n-GaN-контактов Шоттки) указывают на отсутствие в них барьера Шоттки и преобладающую роль термоэмиссионного механизма переноса подвижных носителей электрических зарядов.

Из вышеизложенного следует, что наибольшее влияние встроенные электростатические поля периферии будут оказывать на электростатическую систему выпрямляющих контактов М-П микронных и наноразмеров.

Финансирование работы

Работа выполнена при финансовой поддержке ПНИЭР "Исследование и разработка технологии изготовления сверхвысокочастотных монолитных интегральных схем на основе гетероструктур InAlN/GaN для изделий космического применения" № 14.578.21.0240 от 26.09.2017 г. УИР REMEFI 57817Х240.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S.M. Sze, Kwok K. Ng. *Physics of Semiconductor Devices*, 3nd edn (John Wiley& Sons, Inc., Publication, 2007) p. 764.
- [2] R.T. Tung. Appl. Phys. Rev., 1, 011304 (2014).
- [3] R.T. Tung. Mater. Sci. Engin. R: Reports, 35, 1 (2001).
- [4] Р. Мамедов. Контакты металл-полупроводник с электрическим полем пятен (Баку, БГУ, 2003).
- [5] В.Г. Божков. Контакты металл-полупроводник: физика и модели (Томск, Изд. Дом Томского гос. ун-та, 2016).
- [6] Н.А. Торхов, С.В. Еремеев. ФТП, **34** (1), 106 (2000).
- [7] Н.А. Торхов. ФТП, **35** (7), 823 (2001).
- [8] Л.А. Косяченко, А.В. Макаров, С.Э. Остапов, И.М. Раренко. Технология и конструирование в электронной аппаратуре, 3, 3 (2002).
- [9] Rüdiger Quay. *Gallium Nitride Electronics* (Springer Series in Materials Sciences. 2008) p. 492. DOI: 10.1007/978-3-540-71892-5.
- [10] Nitride Semiconductor Devices. Principles and Simulation, ed. by Joachim Piprek (Wiley–VCH Verlag GmbH& Co. KGaA, 2007).
- [11] M.D. Barlow. Metal-Semiconductor Contacts for Schottky Diode Fabrication (Youngstown State University, 2007).
- [12] M. Siva Pratap Reddy, Hee-Sung Kang, Jung-Hee Lee, V. Rajagopal Reddy, Ja-Soon Jang. J. Appl. Polym. Sci., 131 39773 (2014). DOI: 10.1002/app.39773
- [13] M.G. Helander, Z.B. Wang, J. Qiu, Z.H. Lu. Appl. Phys. Lett., 93, 193310 (2008).
- [14] Moh'd Rezeq, Khouloud Eledlebi, Mohammed Ismail, Ripon Kumar Dey, Bo Cui. J. Appl. Phys., **120**, 044302 (2016).
- [15] R.H. Fowler. Phys. Rev., 38, 45 (1931).
- [16] H. Elabd, W. Kosonoky. RCA Rev., 43, 569 (1982).
- [17] Н.А. Торхов. ФТП, **52** (10), 1150 (2018).
- [18] K.L. Sorokina, A.L. Tolstikhina. Crystallography Reports, 49 (3), 476 (2004).
- [19] M. Wicinski, W. Burgstaller, A.W. Hassel. Corrosion Sci., 104, 1 (2016).
- [20] S.Y. Luchkin, K.J. Stevenson. Microscopy and Microanalysis, 24 (2), 126 (2018). DOI: 10.1017/S1431927618000156
- [21] Н.М. Коровкина. Автореф. канд. дис. (СПб., РГБб, 2006).
- [22] Н.А. Торхов, В.А. Новиков. ФТП, 45 (1), 69 (2011).
- [23] Н.А. Торхов. ФТП, 44 (5), 1 (2010).
- [24] Н.А. Торхов, В.Г. Божков, И.В. Ивонин, В.А. Новиков. Поверхность, **11**, 1 (2009)ю
- [25] Н.А. Торхов, В.Г. Божков, С.М. Гущин, В.А. Новиков. В сб.: Тез. докл. 22-я Междунар. Крымская конф. "СВЧ-техника и телекоммуникационные технологии" (Крым, Украина, 2012) с. 635.

- [26] Н.А. Торхов, В.Г. Божков, В.А. Новиков, А.А. Мармалюк, Ю.Л. Рябоштан. В сб.: Тез. докл. 22-я Междунар. Крымская конф. "СВЧ-техника и телекоммуникационные технологии" (Крым, Украина, 2012) с. 633.
- [27] Н.А. Торхов, В.Г. Божков, В.А. Новиков, А.А. Мармалюк, Ю.Л. Рябоштан. В сб.: Тез. докл. 25-я Междунар. Крымская конф. "СВЧ-техника и телекоммуникационные технологии" (Крым, Россия, 2015) с. 611.
- [28] Н.А. Торхов, В.А. Новиков, В.Н. Брудный. В сб.: Тез. докл. VII Всеросс. науч.-техн. конф. "Обмен опытом в области создания сверхширокополосных радиоэлектронных систем" (Омск, 2018) с. 296.
- [29] Н.А. Торхов. ФТП, 45 (7) 965 (2011).
- [30] Н.А. Торхов. Изв. вузов. Физика. Деп. в ВИНИТИ. № 334-В2008 от 18.04.2008.
- [31] Т.В. Бланк, Ю.А. Гольдберг. ФТП, 41 (11), 1281 (2007).
- [32] S.N. Mohammad. J. Appl. Phys., 95 (12), 7940 (2004).
- [33] N.A. Torkhov, L.I. Babak, A.A. Kokolov, A.S. Salnikov, I.M. Dobash, V.A. Novikov, I.V. Ivonin. J. App. Phys., 119, 094505 (2016).
- [34] В.Л. Миронов. Основы сканирующей зондовой микроскопии (Техносфера, Н. Новгород, 2004) с. 144.
- [35] W.E. Meyerhof. Phys. Rev., 71 (10), 727 (1947).
- [36] E.H. Rhoderick, R.H. Williams. *Metall-semiconductor contacts*, 2nd ed. (Clarendon, Oxford, 1988).

Редактор Г.А. Оганесян

Study of the electrostatic system of the surface of AuNi/GaN Schottky diodes by the Kelvin Probe Force Microscopy

N.A. Torkhov^{1,2,3}, V.A. Novikov²

 ¹ Scientific-Research Institute of Semiconductors, 634034 Tomsk, Russia
 ² Tomsk State University, 634050 Tomsk, Russia
 ³ Tomsk State University of Control System and Radioelecrtronics, 634050 Tomsk, Russia

Abstract The AFM investigation of electrostatic system of crystal surface of flat AuNi/ $n-n^+$ -GaN Schottky diode shown that the value of work function for the electron dependence on the lateral dimention (diameter -D) of metal Schottky contacts. For $D > 120 \,\mu$ m value of work function of the electron in the center of contact almost equal to value of work function of infinite metal film $-e\varphi_{Au} \approx 5.40 \text{ eV}$. If diameter of contact decreases then value of work function of the electron in the center also: 5.34 eV for $D = 120 \,\mu$ m, 5.21 eV for $D = 40 \,\mu$ m, 5.18 eV for $D = 10 \,\mu$ m and 5.14 eV for $D = 5 \,\mu$ m. This effect is associated with influence inbuilt electric field of periferia $bf E_l$, which depend on area *S* and perimeter *P* of Schottky contacts. The investogation of electrostatic system of ohmic contacts TiAlNiAu/ n^+ -GaN by Kelvin probe mycroscopy shown that for carriers of charge the dominant role is a diffusion mechanism.