17,09

Энергетический спектр и спектр оптического поглощения фуллерена С₂₄ в модели Хаббарда

© А.В. Силантьев

Марийский государственный университет, Йошкар-Ола, Россия E-mail: kvvant@rambler.ru

Поступила в Редакцию 5 августа 2019 г. В окончательной редакции 11 ноября 2019 г. Принята к публикации 18 ноября 2019 г.

В рамках модели Хаббарда в приближении статических флуктуаций получены в аналитическом виде антикоммутаторные функции Грина и энергетические спектры фуллерена C₂₄ с группами симметрии D₆, D_{6d}, и O_h. Используя методы теории групп проведена классификация энергетических состояний, а также определены разрешенные переходы в энергетических спектрах фуллерена C₂₄.

Ключевые слова: модель Хаббарда, функции Грина, энергетический спектр, наносистемы, фуллерен С24.

DOI: 10.21883/FTT.2020.03.49016.563

1. Введение

В настоящее время имеется большое число исследований посвященных изучению физических свойств так называемых малых фуллеренов C_n с n < 60 [1,2]. Одним из малых фуллеренов является фуллерен C_{24} , который в первые был зафиксирован в 1993 г. [3]. Достаточно большое количество фуллерена C_{24} было обнаружено также в 2003 г. при исследовании масс-спектра углеродных кластеров [4]. Дальнейшие исследования [5] показали, что фуллерен C_{24} может быть двух типов, т. е. он может состоять, как из пентагонов и гексагонов, так и из гексагонов и квадратов. Исследования фуллерена C_{24} первого типа показали, что пустой фуллерен C_{24} обладает группой симметрии D_6 [6], а эндоэдральные фуллерены $X@C_{24}$ (X=He, Ne, Ar) обладают группой симметрии D_{6d} [7]. Фуллерен C_{24} второго типа был открыт в 2001 г. [8]. Он представляет собой усеченный октаэдр и обладает группой симметрии O_h . Исследованию свойств фуллерена C_{24} посвящено довольно много работ [9–11].

Фуллерен C_{24} с группой симметрии D_6 состоит из 12 пентагонов и 2 гексагонов, как показано на рис. 1. Из диаграммы Шлегеля, изображенной на рис. 1, видно, что фуллерен C_{24} с группой симметрии D_6 содержит четыре неэквивалентных

Рис. 1. Фуллерен С₂₄ с группой симметрии D₆ и его диаграмма Шлегеля с указанием положения атомов углерода и связей между атомами углерода.

Рис. 2. Фуллерен С₂₄ с группой симметрии О_h и его диаграмма Шлегеля с указанием положения атомов углерода и связей между атомами углерода.

связи и две группы неэквивалентных атомов углерода: $G_1 = \{1, 2, 3, 4, 5, 6, 19, 20, 21, 22, 23, 24\}, G_2 = \{7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18\}. К множеству G_1 принадлежат атомы, которые находятся в вершинах сочленения одного гексагона и двух пентагонов. К множеству G_2 принадлежат атомы, которые находятся в вершинах сочленения трех пентагонов.$

Фуллерен C_{24} с группой симметрии O_h состоит из 6 четырехугольников и 8 гексагонов, как показано на рис. 2. Из диаграммы Шлегеля, изображенной на рис. 2, видно, что фуллерен C_{24} с группой симметрии O_h содержит две неэквивалентных связи, а все атомы углерода эквивалентны.

Изучение углеродных наноструктур показало, что электронные свойства этих систем в основном определяются *п*-электронами, причем эффективное взаимодействие двух *п*-электронов, находящихся на одном узле, составляет ~ 5 eV [12,13]. Для описания электронных свойств углеродных наносистем широко используется модель Хаббарда [14]. В рамках модели Хаббарда были изучены электронные и оптические свойства углеродных фуллеренов и нанотрубок [13,15-23]. Отметим, что при исследовании квантовых систем, используются разнообразные приближенные методы. Одним из таких приближенных методов является приближение статических флуктуаций (ПСФ). Это приближение первоначально было разработано для исследования физических свойств спиновых систем [24]. В дальнейшем ПСФ стало использоваться не только при исследовании спиновых систем, но бозе-систем и ферми-систем: жидкий гелий-4 [25], жидкий гелий-3 [26], ³He-HeII [27], конечные фермисистемы [28] и др. В рамках модели Хаббарда в ПСФ были получены энергетические спектры и спектры оптического поглощения фуллерена С₆₀ с группой симметрии І_{*h*} [13], фуллерена С₇₀ с группой симметрии D_{6d} [16], фуллерена C_{20} с группами симметрии I_h , D_{5d} , и D_{3d} [17], а также фуллерена С₃₆ и эндоэдрального фуллерена La@C₃₆ с группами симметрии D_{6h} [18], эндоэдрального фуллерена Cd₂C₂@C₈₂ [22], углеродных нанотрубок [23]. Полученные в работе [13] теоретические результаты достаточно хорошо согласуются с экспериментально наблюдаемыми спектрами оптического поглощения фуллерена С₆₀, находящегося в газовой фазе при температуре 650°C [29], а также находящегося в растворе *п*-гексана [30]. Полученные в работе [16] теоретические результаты достаточно хорошо согласуются с экспериментально наблюдаемыми спектрами оптического поглощения фуллерена С70, находящегося в газовой фазе при температуре 925°К [31], а также находящегося в растворе *п*-гексана [32].

Целью данной работы является исследование энергетического спектра фуллерена C₂₄ с группами симметрии D₆, D_{6d}, и O_h. в рамках модели Хаббарда в приближении статических флуктуаций.

Энергетический спектр фуллерена С₂₄

Для описания *л*-электронной системы фуллерена С₂₄ воспользуемся моделью Хаббарда [14]:

$$H = \sum_{\sigma,i} \varepsilon_i n_{i\sigma} + \sum_{\sigma,i\neq j} t_{ij} c_{i\sigma}^+ c_{j\sigma} + \frac{1}{2} \sum_{\sigma,i} U_i n_{i\sigma} n_{i\overline{\sigma}}, \quad (1)$$

где $c_{i\sigma}^+$, $c_{i\sigma}$ — операторы рождения и уничтожения электронов со спином σ на узле i; $n_{i\sigma}$ — оператор числа

частиц со спином σ на узле і; ε_i — энергия одноэлектронного атомного состояния на узле і; t_{ij} — интеграл переноса, описывающий перескоки электронов с узла і на узел j; U_i — энергия кулоновского отталкивания двух электронов, находящихся на i-ом узле; $\overline{\sigma} = -\sigma$.

Прежде чем искать энергетические спектры фуллерена C_{24} с группами симметрии D_6 , D_{6d} и O_h найдем неэквивалентные интегралы переноса в этих молекулах. Как следует из рис. 1 и 2, в фуллерене C_{24} с группами симметрии D_6 , D_{6d} и O_h можно выделить четыре, три и две неэквивалентные связи соответственно. Таким образом, фуллерену C_{24} с группами симметрии D_6 , D_{6d} и O_h можно сопоставить следующие интегралы переноса.

Для фуллерена C₂₄ с группой симметрии D₆:

$$t_{1,2} = t_{2,3} = t_{3,4} = t_{4,5} = t_{5,6} = t_{6,1} = t_{19,20}$$
$$= t_{20,21} = t_{21,22} = t_{22,23} = t_{23,24} = t_{24,19} = t_a$$

 $t_{1,9} = t_{2,11} = t_{3,13} = t_{4,15} = t_{5,17} = t_{6,7} = t_{8,20} = t_{10,21}$ $= t_{12,22} = t_{14,23} = t_{16,24} = t_{18,19} = t_b,$

 $t_{8,9} = t_{10,11} = t_{12,13} = t_{14,15} = t_{16,17} = t_{18,7} = t_c,$

$$t_{7,8} = t_{9,10} = t_{11,12} = t_{13,14} = t_{15,16} = t_{17,18} = t_d.$$

Для фуллерена С₂₄ с группой симметрии D_{6d}:

$$t_{1,2} = t_{2,3} = t_{3,4} = t_{4,5} = t_{5,6} = t_{6,1} = t_{19,20} = t_{20,21}$$
$$= t_{21,22} = t_{22,23} = t_{23,24} = t_{24,19} = t_a,$$

$$t_{1,9} = t_{2,11} = t_{3,13} = t_{4,15} = t_{5,17} = t_{6,7} = t_{8,20} = t_{10,21}$$
$$= t_{12,22} = t_{14,23} = t_{16,24} = t_{18,19} = t_b,$$

$$t_{8,9} = t_{10,11} = t_{12,13} = t_{14,15} = t_{16,17} = t_{18,7} = t_{7,8}$$
$$= t_{9,10} = t_{11,12} = t_{12,14} = t_{15,16} = t_{17,18} = t_{7,8}$$

$$= \iota_{9,10} = \iota_{11,12} = \iota_{13,14} = \iota_{15,16} = \iota_{17,18} = \iota_c$$

Для фуллерена C₂₄ с группой симметрии O_h:

$$t_{1,2} = t_{3,4} = t_{5,6} = t_{7,18} = t_{16,17} = t_{12,13} = t_{14,15} = t_{8,9}$$
$$= t_{10,11} = t_{19,20} = t_{21,22} = t_{23,24} = t_a,$$

$$t_{2,3} = t_{4,5} = t_{6,1} = t_{1,8} = t_{9,10} = t_{2,11} = t_{11,12} = t_{3,12}$$
$$= t_{13,14} = t_{4,15} = t_{15,16} = t_{5,16} = t_{17,18} = t_{6,7} = t_{7,8}$$
$$= t_{9,10} = t_{10,21} = t_{20,9} = t_{20,21} = t_{13,22} = t_{14,23}$$
$$= t_{22,23} = t_{17,24} = t_{18,19} = t_{19,24} = t_b.$$

Используя гамильтониан (1), рис. 1 и рис. 2 запишем уравнения движения для всех операторов рождения

 $c^+_{i\sigma}(\tau)$, заданных в представлении Гейзенберга

$$\frac{dc_{1\sigma}^{+}}{d\tau} = \varepsilon \cdot c_{1\sigma}^{+} + t_a (c_{2\sigma}^{+} + c_{6\sigma}^{+}) + t_b c_{k\sigma}^{+} \\
\frac{dc_{1\sigma}^{+} n_{1\overline{\sigma}}}{d\tau} = (\varepsilon + U) \cdot c_{1\sigma}^{+} n_{1\overline{\sigma}} + t_a (c_{2\sigma}^{+} n_{2\overline{\sigma}} + c_{6\sigma}^{+} n_{6\overline{\sigma}}) \\
+ t_b c_{k\sigma}^{+} n_{k\overline{\sigma}} \\
\frac{dc_{24\sigma}^{+}}{d\tau} = (\varepsilon + U) \cdot c_{24\sigma}^{+} + t_a (c_{19\sigma}^{+} + c_{23\sigma}^{+}) + t_b c_{m\sigma}^{+} \\
\frac{dc_{24\sigma}^{+} n_{24\overline{\sigma}}}{d\tau} = (\varepsilon + U) \cdot c_{24\sigma}^{+} n_{24\overline{\sigma}} + t_a (c_{19\sigma}^{+} n_{19\overline{\sigma}} \\
+ c_{23\sigma}^{+} n_{23\overline{\sigma}}) + t_b c_{m\sigma}^{+} n_{m\overline{\sigma}}$$
(2)

где k = 9 и m = 16 для фуллерена C_{24} с группой симметрии D_6 , k = 8 и m = 17 для фуллерена C_{24} с группой симметрии O_h .

Система уравнений (2) имеет точное аналитическое решение. Используя это решение можно найти фурьеобразы антикоммутаторных функций Грина

$$\left\langle \left\langle c_{j\sigma}^{+} | c_{j\sigma} \right\rangle \right\rangle = \frac{i}{2\pi} \cdot \sum_{m=1}^{p} \frac{Q_{j,m}}{E - E_m + ih},$$
$$E_m = \varepsilon + e_m, \tag{3}$$

где – для фуллерена C₂₄ с группой симметрии D₆

$$\begin{split} e_{1} &= \frac{1}{2} \left(2t_{a} + t_{c} + t_{d} - \sqrt{(t_{d} + t_{c} - 2t_{a})^{2} + 4t_{b}^{2}} \right), \\ e_{2} &= \frac{1}{2} \left(t_{a} - \sqrt{A_{1}} - \sqrt{\frac{2t_{a}(t_{d}t_{c} + t_{d}^{2} + t_{c}^{2})}{\sqrt{A_{1}}} + 2A_{1} - 3z_{1}} \right), \\ e_{3} &= \frac{1}{2} \left(2t_{a} - t_{c} - t_{d} - \sqrt{(t_{d} + t_{c} + 2t_{a})^{2} + 4t_{b}^{2}} \right), \\ e_{4} &= \frac{1}{2} \left(-t_{a} - \sqrt{A_{2}} - \sqrt{\frac{2t_{a}(t_{d}t_{c} - t_{d}^{2} - t_{c}^{2})}{\sqrt{A_{2}}} + 2A_{2} - 3z_{2}} \right), \\ e_{5} &= \frac{1}{2} \left(t_{a} - \sqrt{A_{1}} + \sqrt{\frac{2t_{a}(t_{a}t_{c} + t_{d}^{2} + t_{c}^{2})}{\sqrt{A_{1}}} + 2A_{1} - 3z_{1}} \right), \\ e_{6} &= \frac{1}{2} \left(2t_{a} + t_{c} + t_{d} + \sqrt{(t_{d} + t_{c} - 2t_{a})^{2} + 4t_{b}^{2}} \right), \\ e_{7} &= \frac{1}{2} \left(t_{a} + \sqrt{A_{1}} - \sqrt{-\frac{2t_{a}(t_{d}t_{c} + t_{d}^{2} + t_{c}^{2})}{\sqrt{A_{1}}}} + 2A_{1} - 3z_{1} \right), \\ e_{8} &= \frac{1}{2} \left(-2t_{a} + t_{c} - t_{d} - \sqrt{(t_{d} - t_{c} - 2t_{a})^{2} + 4t_{b}^{2}} \right), \\ e_{9} &= \frac{1}{2} \left(-2t_{a} - t_{c} + t_{d} - \sqrt{(t_{d} - t_{c} + 2t_{a})^{2} + 4t_{b}^{2}} \right), \end{split}$$

$$\begin{split} e_{10} &= \frac{1}{2} \left(-t_a - \sqrt{A_2} + \sqrt{\frac{2t_a(t_dt_c - t_d^2 - t_c^2)}{\sqrt{A_2}}} + 2A_2 - 3z_2 \right), \\ e_{11} &= \frac{1}{2} \left(-t_a + \sqrt{A_2} - \sqrt{\frac{2t_a(-t_dt_c + t_d^2 + t_c^2)}{\sqrt{A_2}}} + 2A_2 - 3z_2 \right), \\ e_{12} &= \frac{1}{2} \left(-t_a + \sqrt{A_2} + \sqrt{\frac{2t_a(-t_dt_c + t_d^2 + t_c^2)}{\sqrt{A_2}}} + 2A_2 - 3z_2 \right), \\ e_{13} &= \frac{1}{2} \left(t_a + \sqrt{A_1} + \sqrt{-\frac{2t_a(t_dt_c + t_d^2 + t_c^2)}{\sqrt{A_1}}} + 2A_1 - 3z_1 \right), \\ e_{14} &= \frac{1}{2} \left(2t_a - t_c - t_d + \sqrt{(t_d + t_c + 2t_a)^2 + 4t_b^2} \right), \\ e_{15} &= \frac{1}{2} \left(-2t_a + t_c - t_d + \sqrt{(t_d - t_c - 2t_a)^2 + 4t_b^2} \right), \\ e_{16} &= \frac{1}{2} \left(-2t_a - t_c + t_d + \sqrt{(t_d - t_c - 2t_a)^2 + 4t_b^2} \right), \\ A_1 &= \frac{1}{3} \left(t_a^2 + 2t_c^2 + 2t_d^2 + 2t_ct_d + 4t_b^2 \right) + z_1, \\ A_2 &= \frac{1}{3} \left(t_a^2 + 2t_c^2 + 2t_d^2 - 2t_ct_d + 4t_b^2 \right) + z_2, \\ z_1 &= \frac{2}{3} \sqrt{(t_a^2 - t_c^2 - t_d^2 - t_ct_d + 4t_b^2)^2 + 12t_b^2(t_c^2 + t_d^2 + t_ct_d)} \\ &\times \cos\left(\frac{\varphi_1}{3}\right), \\ z_2 &= \frac{2}{3} \sqrt{(t_a^2 - t_c^2 - t_d^2 + t_ct_d + 4t_b^2)^2 + 12t_b^2(t_c^2 + t_d^2 - t_ct_d)} \\ &\times \cos\left(\frac{\varphi_2}{3}\right), \end{split}$$

$$\begin{split} \varphi_{1} &= \arccos\left(\frac{(t_{a}^{2} - t_{c}^{2} - t_{c}t_{d} - t_{d}^{2} + 4t_{b}^{2})[(t_{a}^{2} - t_{c}^{2} - t_{c}t_{d} - t_{d}^{2} + 4t_{b}^{2})^{2} + 18t_{b}^{2}(t_{c}^{2} + t_{d}^{2} + t_{c}t_{d})]}{[(t_{a}^{2} - t_{c}^{2} - t_{c}t_{d} - t_{d}^{2} + 4t_{b}^{2})^{2} + 12t_{b}^{2}(t_{c}^{2} + t_{d}^{2} + t_{c}t_{d})]^{3/2}}\right),\\ \varphi_{2} &= \arccos\left(\frac{(t_{a}^{2} - t_{c}^{2} + t_{c}t_{d} - t_{d}^{2} + 4t_{b}^{2})[(t_{a}^{2} - t_{c}^{2} + t_{c}t_{d} - t_{d}^{2} + 4t_{b}^{2})^{2} + 18t_{b}^{2}(t_{c}^{2} + t_{d}^{2} - t_{c}t_{d})]}{[(t_{a}^{2} - t_{c}^{2} + t_{c}t_{d} - t_{d}^{2} + 4t_{b}^{2})^{2} + 12t_{b}^{2}(t_{c}^{2} + t_{d}^{2} - t_{c}t_{d})]^{3/2}}\right),\\ Q_{x,m} &= \frac{1}{12} \cdot \frac{e_{m} + t_{c} + t_{d}}{2e_{m} + t_{d} + t_{c} - 2t_{a}} \quad m = 3, 14\\ Q_{x,m} &= \frac{1}{12} \cdot \frac{e_{m} + t_{c} - t_{d}}{2e_{m} - t_{d} - t_{c} - 2t_{a}} \quad m = 1, 6\\ Q_{x,m} &= \frac{1}{12} \cdot \frac{e_{m} + t_{c} - t_{d}}{2e_{m} - t_{d} + t_{c} + 2t_{a}} \quad m = 9, 16\\ Q_{x,m} &= \frac{1}{12} \cdot \frac{e_{m} - t_{c} + t_{d}}{2e_{m} + t_{d} - t_{c} + 2t_{a}} \quad m = 8, 15 \end{split}$$

$$\begin{aligned} e_m^3 - t_a e_m^2 - (t_b^2 + t_c^2 + t_d^2 + t_c t_d) e_m + t_a (t_c t_d + t_d^2 + t_c^2) \\ &+ t_c t_d) e_m + t_a (t_c t_d + t_d^2 + t_c^2) \\ \hline 2e_m^3 - 3t_a e_m^2 + (-2t_b^2 - t_c t_d + t_a^2 - t_c^2) \\ &- t_c^2 - t_d^2) e_m + t_a (t_c t_d + t_d^2 + t_b^2 + t_c^2) \\ &m = 2, 5, 7, 13 \end{aligned}$$

$$\begin{aligned} e_m^3 + t_a e_m^2 + (t_c t_d - t_b^2 - t_c^2 - t_d^2) e_m + \\ &+ t_a (t_c t_d - t_d^2 - t_c^2 - t_c^2) e_m + \\ &+ t_a (t_c t_d - t_d^2 - t_c^2 - t_d^2) e_m + \\ &+ t_a (t_c t_d - t_d^2 - t_c^2 - t_d^2) e_m + \\ &+ t_a (t_c t_d - t_d^2 - t_c^2 - t_d^2) e_m + \\ &+ t_a (t_c t_d - t_d^2 - t_c^2 - t_d^2) e_m + \\ &+ t_a (t_c t_d - t_d^2 - t_c^2 - t_d^2) e_m + \\ &+ t_a (t_c t_d - t_d^2 - t_c^2 - t_d^2) e_m + \\ &+ t_a (t_c t_d - t_d^2 - t_c^2 - t_d^2) e_m + \\ &+ t_a (t_c t_d - t_d^2 - t_c^2 - t_d^2) e_m + \\ &+ t_a (t_c t_d - t_d^2 - t_c^2 - t_d^2) e_m + \\ &+ t_a (t_c t_d - t_d^2 - t_d^2 - t_c^2) e_m + \\ &+ t_a (t_c t_d - t_d^2 - t_d^2 - t_d^2) e_m + \\ &+ t_a (t_c t_d - t_d^2$$

$$Q_{y,m} = \frac{1}{6} \cdot \frac{(e_m - t_a)(e_m^2 - t_a e_m - t_b^2)}{2e_m^3 - 3t_a e_m^2 + (-2t_b^2 - t_c t_d + t_a^2 - t_c^2 - t_d^2)e_m + t_a(t_c t_d + t_d^2 + t_b^2 + t_c^2)}$$

$$m = 2, 5, 7, 13$$

$$x \in G_1, \quad y \in G_2.$$
(5)

— для фуллерена C₂₄ с группой симметрии O_h

$$e_{1} = t_{a} + 2t_{b}, \quad e_{2} = -\sqrt{t_{a}^{2} + t_{b}^{2}} + t_{b},$$

$$e_{3} = -\sqrt{t_{a}^{2} - 2t_{a}t_{b} + 4t_{b}^{2}}, \quad e_{4} = t_{a},$$

$$e_{5} = -t_{b} - \sqrt{t_{a}^{2} + t_{b}^{2}}, \quad e_{6} = \sqrt{t_{a}^{2} + t_{b}^{2}} + t_{b}, \quad e_{7} = -t_{a},$$

$$e_{8} = \sqrt{t_{a}^{2} - 2t_{a}t_{b} + 4t_{b}^{2}}, \quad e_{9} = -t_{b} + \sqrt{t_{a}^{2} + t_{b}^{2}},$$

$$e_{10} = -t_{a} - 2t_{b}. \quad (6)$$

$$Q_{j,1} = Q_{j,10} = 1/24,$$

$$Q_{j,2} = Q_{j,3} = Q_{j,5} = Q_{j,6} = Q_{j,8} = Q_{j,9} = 1/8,$$

 $Q_{j,4} = Q_{j,7} = 1/12, \quad p = 20.$ (7)

Зная фурье-образ антикоммутаторной функции Грина, можно найти энергетический спектр квантовой системы,

Рис. 3. Зависимость e_i от интегралов перескока t и t_1 для фуллерена C_{24} с группой симметрии O_h .

который определяется полюсами функции Грина [33]. Следовательно, энергетический спектр фуллерена C_{24} с группами симметрии D_6 , D_{6d} и O_h определяются величинами Ет, которые входят в функцию Грина (3).

Энергетические состояния фуллерена С₂₄ с группами симметрии D₆, D_{6d} и O_h можно классифицировать в соответствии с неприводимыми представлениями этих групп. Как известно, группа D₆ имеет четыре одномерных неприводимых представлений a_1, a_2, b_1, b_2 и два двумерных неприводимых представлений е₁, е₂; группа D_{6d} имеет четыре одномерных неприводимых представлений a_1, a_2, b_1, b_2 и пять двумерных неприводимых представлений e_1 , e_2 , e_3 , e_4 , e_5 ; а группа O_h имеет четыре одномерных неприводимых представлений a_{1g} , a_{2g} , a_{1u} , a_{2u} , два двумерных неприводимых представления еg, еu и четыре трехмерных неприводимых представления t_{1g} , t_{2g} , t_{1u} , t_{2u} [34]. Используя теорию групп [34,35] можно показать, что энергетические состояния фуллерена С24, определяемые полюсами функции Грина (3), связаны следующим образом с неприводимыми представлениями группы:

Для фуллерена C₂₄ с группой симметрии D₆

 $\begin{array}{l} E_1(a_1), \ E_2(e_1), \ E_3(a_2), \ E_4(e_2), \ E_5(e_1), \ E_6(a_1), \ E_7(e_1), \\ E_8(b_2), \ E_9(b_1), \ E_{10}(e_2), \ E_{11}(e_2), \ E_{12}(e_2), \ E_{13}(e_1), \ E_{14}(a_2), \\ E_{15}(b_2), \ E_{16}(b_1), \ E_{17}(a_1), \ E_{18}(e_1), \ E_{19}(a_2), \ E_{20}(e_2), \\ E_{21}(e_1), \ E_{22}(a_1), \ E_{23}(e_1), \ E_{24}(b_2), \ E_{25}(b_1), \ E_{26}(e_2), \\ E_{27}(e_2), \ E_{28}(e_2), \ E_{29}(e_1), \ E_{30}(a_2), \ E_{31}(b_2), \ E_{32}(b_1). \end{array}$

Для фуллерена C_{24} с группой симметрии $D_{6{\it d}}$

 $\begin{array}{l} E_1(a_1), \ E_2(e_1), \ E_3(b_2), \ E_4(a_1), \ E_5(e_2), \ E_6(e_5), \ E_7(e_1), \\ E_8(e_3), \ E_{10}(e_4), \ E_{11}(e_2), \ E_{12}(e_4), \ E_{14}(e_3), \ E_{13}(e_5), \ E_{15}(b_2), \\ E_{17}(a_1), \ E_{18}(e_1), \ E_{19}(b_2), \ E_{20}(a_1), \ E_{21}(e_2), \ E_{22}(e_5), \\ E_{23}(e_1), \ E_{24}(e_3), \ E_{26}(e_4), \ E_{27}(e_2), \ E_{28}(e_4), \ E_{30}(e_3), \\ E_{29}(e_5), \ E_{31}(b_2). \end{array}$

Для фуллерена C₂₄ с группой симметрии O_h E₁(a_{1g}), E₂(t_{1u}), E₃(e_g), E₄(t_{2g}), E₅(t_{2u}), E₆(t_{1u}), E₇(t_{1g}), E₈(e_g), E₉(t_{2u}), E₁₀(a_{2g}), E₁₁(a_{1g}), E₁₂(t_{1u}), E₁₃(e_g), E₁₄(t_{2g}), E₁₅(t_{2u}), E₁₆(t_{1u}), E₁₇(t_{1g}), E₁₈(e_g), E₁₉(t_{2u}), E₂₀(a_{2g}).

Важной физической характеристикой энергетического спектра квантовой системы является степень вырождения энергетических уровней спектра. Для того чтобы найти степень вырождения энергетических уровней фуллерена C_{24} , воспользуемся следующим соотношением [13,21]:

$$g_i = \sum_{j=1}^{N} Q_{j,i},$$
 (8)

где N — число узлов в наносистеме.

Подставляя величины $Q_{j,i}$, которые определяются соотношениями (5) и (7), в формулу (8) получим для степеней вырождения энергетических уровней фуллерена C_{24} следующие значения:

Для фуллерена C₂₄ с группой симметрии D₆

$$g_1 = g_3 = g_6 = g_8 = g_9 = g_{14} = g_{15} = g_{16} = g_{17}$$

$$= g_{19} = g_{22} = g_{24} = g_{25} = g_{30} = g_{31} = g_{32} = 1$$

$$g_2 = g_4 = g_5 = g_7 = g_{10} = g_{11} = g_{12} = g_{13} = g_{18}$$

$$=g_{20} = g_{21} = g_{23} = g_{26} = g_{27} = g_{28} = g_{29} = 2.$$
 (9)

Для фуллерена C₂₄ с группой симметрии D_{6d}

$$g_{1} = g_{3} = g_{6} = g_{14} = g_{17} = g_{19} = g_{22} = g_{30} = 1,$$

$$g_{2} = g_{4} = g_{5} = g_{7} = g_{8} = g_{10} = g_{11} = g_{12} = g_{13}$$

$$= g_{15} = g_{18} = g_{20} = g_{21} = g_{23} = g_{24} = g_{26}$$

$$= g_{27} = g_{28} = g_{29} = g_{31} = 2.$$
 (10)

Для фуллерена C₂₄ с группой симметрии O_h

$$g_{1} = g_{10} = g_{11} = g_{20} = 1,$$

$$g_{3} = g_{8} = g_{13} = g_{18} = 2,$$

$$g_{2} = g_{4} = g_{5} = g_{6} = g_{7} = g_{9} = g_{12} = g_{14} = g_{15}$$

$$= g_{16} = g_{17} = g_{19} = 3.$$
(11)

Таким образом, соотношения (4), (6), (9), (10) и (11) описывают энергетические спектры фуллерена C_{24} с группами симметрии D_6 , D_{6d} и O_h в модели Хаббарда в приближении статических флуктуаций.

Относительное расположение энергетических уровней у фуллерена C_{24} зависит от соотношения между интегралами перескока. Это, например, хорошо видно из рис. 3, на котором представлена зависимость величин e_i , которые определяют характер энергетического спектра фуллерена C_{24} с группой симметрии O_h , от интегралов переноса. В этом спектре можно выделить две особенности. Во-первых, при t = 0 ($t_1 = 0$) энергетический спектр фуллерена C_{24} переходит в энергетический спектр димера (квадрата). Это связано с тем, что в этих предельных случаях фуллерен C_{24} распадается на изолированные димеры и квадраты, соответственно. Во-вторых, в энергетическом спектре фуллерена C_{24} при $t_1 = t/2$ происходит случайное вырождение энергетических уровней E_3 и E_4 , E_7 и E_8 , E_{13} и E_{14} , E_{17} и E_{18} .

3. Обсуждение результатов

Исследования, выполненные в работах [6,7,36], показали, что расстояния между атомами углерода в фуллерене C₂₄ имеют следующие значения.

Для фуллерена C₂₄ с группой симметрии D₆ [6]:

$$x_a = 1.437 \text{ Å}, \quad x_b = 1.523 \text{ Å},$$

 $x_c = 1.398 \text{ Å}, \quad x_d = 1.457 \text{ Å}.$ (12)

Для фуллерена С₂₄ с группой симметрии D_{6d} [7]:

$$x_a = 1.421 \text{ Å}, \quad x_b = 1.532 \text{ Å}, \quad x_c = 1.382 \text{ Å}.$$
 (13)

Для фуллерена C₂₄ с группой симметрии O_h [36]:

$$x_a = 1.386 \text{ Å}, \quad x_b = 1.503 \text{ Å}.$$
 (14)

Для того чтобы найти численные значения для интегралов переноса, которые соответствуют фуллерену С₂₄, воспользуемся следующим соотношением [16,17]:

$$t_s = -8.17065 \cdot \exp(-1.69521 \cdot x_s). \tag{15}$$

Подставляя (12)-(14) в формулу (15) мы получим численные значения для интегралов переноса.

Для фуллерена C₂₄ с группой симметрии D₆:

$$t_a = -0.71501 \,\text{eV}, \quad t_b = -0.61801 \,\text{eV},$$

 $t_c = -0.76387 \,\text{eV}, \quad t_d = -0.69117 \,\text{eV}.$ (16)

Для фуллерена С₂₄ с группой симметрии D_{6d}:

$$t_a = -0.73466 \,\mathrm{eV}, \quad t_b = -0.60865 \,\mathrm{eV},$$

 $t_c = -0.78488 \,\mathrm{eV}.$ (17)

Для фуллерена C₂₄ с группой симметрии O_h:

$$t_a = -0.77957 \,\mathrm{eV}, \quad t_b = -0.63932 \,\mathrm{eV}.$$
 (18)

Подставляя численные значения для интегралов переноса (16)-(18) в соотношения (4) и (6) получим для фуллерена С₂₄ численные значения для величин e_k , которые приведены в табл. 1–3.

Теперь для того чтобы получить энергетические спектры фуллерена C_{24} с группами симметрии D_6 , D_{6d} и O_h воспользуемся формулой, которая следует из функции Грина (3):

$$E_k = \varepsilon + \frac{U}{2} + \overline{e}_k, \tag{19}$$

где \overline{e}_k — это энергия k-го энергетического уровня относительно энергии $\varepsilon + U/2$

$$\overline{e}_{k} = \begin{cases} e_{k} - \frac{U}{2}, & k = 1 \dots p/2 \\ & & \\ e_{k} + \frac{U}{2}, & k = p/2 + 1 \dots p \end{cases}$$
(20)

Как видно из соотношений (19) и (20) для того чтобы найти энергетический спектр фуллерена С₂₄, необходимо определить еще численные значения параметров є и U. В работе [13] исходя из экспериментально наблюдаемого оптического спектра поглощения фуллерена С₆₀ в рамках модели Хаббарда в ПСФ были вычислены эти параметры $\varepsilon = -7.824 \,\text{eV}, U = 5.662 \,\text{eV}.$ Поэтому при вычислении энергетического спектра фуллерена С₂₄ воспользуемся этими значениями. Отметим, что $U = 5.662 \,\mathrm{eV}$ согласуется с результатами работы [12], где было показано, что $U \sim 5 \, {\rm eV}$. Подставляя численные значения для e_k из табл. 1–3, а также численные значения для є и U в соотношения (19) и (20) получим энергетический спектр фуллерена С₂₄ с группами симметрии D₆, D_{6d} и O_h. Результаты вычислений приведены в табл. 4-6, а также на рис. 4-6. Как видно из соотношений (24), (25) и рис. 2-4, энергетические состояния фуллерена С24 образуют две подзоны Хаббарда, при чем энергетические состояния, образующие нижнюю подзону Хаббарда, сосредоточены вблизи энергии є, а энергетические состояния, образующие верхнюю подзону Хаббарда, сосредоточены вблизи энергии $\varepsilon + U$.

Из соотношений (4), (9) и (10) следует, что при понижении симметрии фуллерена C_{24} от D_{6d} до D_6 энергетические уровни данного фуллерена изменяются

N⁰	e_j , eV	E_j , eV	g j	$\mathrm{E}(\Gamma_j)$	N₂	e_j , eV	E_j , eV	g j	$\mathrm{E}(\Gamma_j)$
1	-4.892	-9.885	1	$E_1(a_1)$	17	0.770	-4.223	1	$E_{17}(a_1)$
2	-4.494	-9.487	2	$E_2(e_1)$	18	1.168	-3.825	2	$E_{18}(e_1)$
3	-4.388	-9.381	1	$E_3(a_2)$	19	1.274	-3.719	1	$E_{19}(a_2)$
4	-3.789	-8.782	2	$E_4(e_2)$	20	1.873	-3.120	2	$E_{20}(e_2)$
5	-3.723	-8.716	2	$E_5(e_1)$	21	1.939	-3.054	2	$E_{21}(e_1)$
6	-3.655	-8.648	1	$E_{6}(a_{1})$	22	2.007	-2.986	1	$E_{22}(a_1)$
7	-3.143	-8.136	2	$E_7(e_1)$	23	2.519	-2.474	2	$E_{23}(e_1)$
8	-3.125	-8.118	1	$E_8(b_2)$	24	2.537	-2.456	1	$E_{24}(b_2)$
9	-2.997	-7.991	1	$E_{9}(b_{1})$	25	2.664	-2.329	1	$E_{25}(b_1)$
10	-2.726	-7.719	2	$E_{10}(e_2)$	26	2.936	-2.057	2	$E_{26}(e_2)$
11	-1.888	-6.881	2	$E_{11}(e_2)$	27	3.774	-1.219	2	$E_{27}(e_2)$
12	-1.490	-6.483	2	$E_{12}(e_2)$	28	4.172	-0.821	2	$E_{28}(e_2)$
13	-1.393	-6.386	2	$E_{13}(e_1)$	29	4.269	-0.724	2	$E_{29}(e_1)$
14	-1.249	-6.242	1	$E_{14}(a_2)$	30	4.413	-0.580	1	$E_{30}(a_2)$
15	-1.179	-6.172	1	$E_{15}(b_2)$	31	4.483	-0.510	1	$E_{31}(b_2)$
16	-1.162	-6.155	1	$E_{16}(b_1)$	32	4.500	-0.493	1	$E_{32}(b_1)$

Таблица 1. Энергетический спектр фуллерена С₂₄ с группой симметрии D₆: значения энергии уровней, кратность их вырождения и неприводимые представления группы D₆, к которым они относятся

Таблица 2. Энергетический спектр фуллерена C₂₄ с группой симметрии D_{6d}: значения энергии уровней, кратность их вырождения и неприводимые представления группы D_{6d}, к которым они относятся

Nº	e_j , eV	E_j , eV	g j	$\mathrm{E}(\Gamma_j)$	N₂	e_j , eV	E_j , eV	g j	$\mathrm{E}(\Gamma_j)$
1	-4.961	-9.954	1	$E_1(a_1)$	15	0.701	-4.292	1	$E_{17}(a_1)$
2	-4.562	-9.555	2	$E_2(e_1)$	16	1.100	-3.893	2	$E_{18}(e_1)$
3	-4.418	-9.411	1	$E_3(b_2)$	17	1.244	-3.749	1	$E_{19}(b_2)$
4	-3.830	-8.823	2	$E_4(e_2)$	18	1.832	-3.161	2	$E_{20}(e_2)$
5	-3.740	-8.733	1	$E_{6}(a_{1})$	19	1.922	-3.071	1	$E_{22}(a_1)$
6	-3.730	-8.723	2	$E_5(e_5)$	20	1.932	-3.061	2	$E_{21}(e_5)$
7	-3.194	-8.187	2	$E_7(e_1)$	21	2.468	-2.525	2	$E_{23}(e_1)$
8	-3.050	-8.043	2	$E_8(e_3)$	22	2.612	-2.381	2	$E_{24}(e_3)$
9	-2.680	-7.673	2	$E_{10}(e_4)$	23	2.982	-2.011	2	$E_{26}(e_4)$
10	-1.883	-6.876	2	$E_{11}(e_2)$	24	3.779	-1.214	2	$E_{27}(e_2)$
11	-1.462	-6.455	2	$E_{12}(e_4)$	25	4.200	-0.793	2	$E_{28}(e_4)$
12	-1.308	-6.301	2	$E_{13}(e_5)$	26	4.354	-0.639	2	$E_{29}(e_5)$
13	-1.144	-6.137	1	$E_{14}(b_2)$	27	4.518	-0.475	1	$E_{30}(b_2)$
14	-1.142	-6.135	2	$E_{15}(e_3)$	28	4.520	-0.473	2	$E_{31}(e_3)$

Таблица 3. Энергетический спектр фуллерена С₂₄ с группой симметрии О_h: значения энергии уровней, кратность их вырождения и неприводимые представления группы О_h, к которым они относятся

N⁰	e_j , eV	E_j , eV	g j	$\mathrm{E}(\Gamma_j)$	N₂	e_j , eV	E_j , eV	g j	$\mathrm{E}(\Gamma_j)$
1	-4.889	-9.882	1	$E_1(a_{1g})$	11	0.773	-4.220	1	$E_{11}(a_{1g})$
2	-4.479	-9.472	3	$E_2(t_{1u})$	12	1.183	-3.810	3	$E_{12}(t_{1u})$
3	-3.947	-8.940	2	$E_3(e_g)$	13	1.715	-3.278	2	$E_{13}(e_g)$
4	-3.611	-8.604	3	$E_4(t_{2g})$	14	2.051	-2.942	3	$E_{14}(t_{2g})$
5	-3.200	-8.193	3	$E_5(t_{2u})$	15	2.462	-2531	3	$E_{15}(t_{2u})$
6	-2.462	-7.455	3	$E_6(t_{1u})$	16	3.200	-1.793	3	$E_{16}(t_{1u})$
7	-2.051	-7.044	3	$E_7(t_{1g})$	17	3.611	-1.382	3	$E_{17}(t_{1g})$
8	-1.715	-6.708	2	$E_8(e_g)$	18	3.947	-1.046	2	$E_{18}(e_g)$
9	-1.183	-6.176	3	$E_9(t_{2u})$	19	4.479	-0.514	3	$E_{19}(t_{2u})$
10	-0.773	-5.766	1	$E_{10}(a_{2g})$	20	4.889	-0.104	1	$E_{20}(a_{2g})$

		1	1			1					
N⁰	ΔE	$\Delta E, eV$	N⁰	ΔE	$\Delta E, eV$	N₂	ΔE	$\Delta E, eV$	N⁰	ΔE	$\Delta E, eV$
1	$E_{17} - E_{14}$	2.019	37	$E_{25} - E_{11}$	4.552	73	$E_{27} - E_{11}$	5.662	109	$E_{27} - E_9$	6.772
2	$E_{17} - E_{13}$	2.163	38	$E_{20} - E_{10}$	4.599	74	$E_{26} - E_{10}$	5.662	110	$E_{21} - E_1$	6.830
3	$E_{18} - E_{14}$	2.417	39	$E_{21} - E_{10}$	4.665	75	$E_{28} - E_{12}$	5.662	111	$E_{28} - E_{10}$	6.898
4	$E_{18} - E_{13}$	2.561	40	$E_{26} - E_{11}$	4.823	76	$E_{31} - E_{16}$	5.644	112	$E_{27} - E_8$	6.899
5	$E_{18} - E_{12}$	2.658	41	$E_{18} - E_6$	4.823	77	$E_{32} - E_{15}$	5.680	113	$E_{23} - E_3$	6.907
6	$E_{19} - E_{13}$	2.667	42	$E_{20} - E_9$	4.870	78	$E_{21} - E_4$	5.728	114	$E_{27} - E_7$	6.918
7	$E_{20} - E_{16}$	3.034	43	$E_{18} - E_5$	4.891	79	$E_{22} - E_5$	5.730	115	$E_{29} - E_{10}$	6.995
8	$E_{20} - E_{15}$	3.052	44	$E_{19} - E_6$	4.930	80	$E_{29} - E_{12}$	5.759	116	$E_{23} - E_2$	7.013
9	$E_{18} - E_{11}$	3.055	45	$E_{27} - E_{16}$	4.936	81	$E_{19} - E_2$	5.769	117	$E_{28} - E_9$	7.169
10	$E_{21} - E_{14}$	3.188	46	$E_{27} - E_{15}$	4.954	82	$E_{25} - E_8$	5.790	118	$E_{31} - E_{10}$	7.209
11	$E_{22} - E_{14}$	3.256	47	$E_{18} - E_4$	4.957	83	$E_{30} - E_{13}$	5.806	119	$E_{32} - E_{10}$	7.227
12	$E_{20} - E_{13}$	3.266	48	$E_{19} - E_5$	4.998	84	$E_{26} - E_9$	5.933	120	$E_{28} - E_8$	7.297
13	$E_{21} - E_{13}$	3.332	49	$E_{20} - E_8$	4.998	85	$E_{31} - E_{12}$	5.973	121	$E_{23} - E_1$	7.410
14	$E_{20} - E_{12}$	3.363	50	$E_{20} - E_7$	5.016	86	$E_{32} - E_{12}$	5.991	122	$E_{29} - E_7$	7.412
15	$E_{22} - E_{13}$	3.400	51	$E_{21} - E_7$	5.082	87	$E_{28} - E_{11}$	6.059	123	$E_{26} - E_2$	7.430
16	$E_{21} - E_{12}$	3.429	52	$E_{22} - E_7$	5.150	88	$E_{18} - E_1$	6.059	124	$E_{31} - E_9$	7.480
17	$E_{24} - E_{16}$	3.699	53	$E_{17} - E_3$	5.158	89	$E_{26} - E_8$	6.061	125	$E_{27} - E_5$	7.498
18	$E_{20} - E_{11}$	3.760	54	$E_{27} - E_{13}$	5.167	90	$E_{26} - E_7$	6.079	126	$E_{30} - E_7$	7.556
19	$E_{23} - E_{14}$	3.768	55	$E_{23} - E_{10}$	5.245	91	$E_{29} - E_{11}$	6.157	127	$E_{27} - E_4$	7.564
20	$E_{21} - E_{11}$	3.826	56	$E_{24} - E_{10}$	5.263	92	$E_{19} - E_1$	6.166	128	$E_{32} - E_8$	7.625
21	$E_{25} - E_{15}$	3.844	57	$E_{17} - E_2$	5.265	93	$E_{23} - E_6$	6.174	129	$E_{28} - E_5$	7.895
22	$E_{18} - E_{10}$	3.894	58	$E_{27} - E_{12}$	5.265	94	$E_{23} - E_5$	6.242	130	$E_{29} - E_6$	7.924
23	$E_{23} - E_{13}$	3.912	59	$E_{28} - E_{16}$	5.333	95	$E_{23} - E_4$	6.308	131	$E_{28} - E_4$	7.961
24	$E_{17} - E_7$	3.914	60	$E_{28} - E_{15}$	5.351	96	$E_{28} - E_7$	7.315	132	$E_{29} - E_5$	7.992
25	$E_{23} - E_{12}$	4.009	61	$E_{25} - E_{10}$	5.391	97	$E_{24} - E_4$	6.326	133	$E_{29} - E_4$	8.058
26	$E_{24} - E_{12}$	4.027	62	$E_{29} - E_{14}$	5.518	98	$E_{21} - E_3$	6.326	134	$E_{30} - E_6$	8.068
27	$E_{26} - E_{16}$	4.097	63	$E_{24} - E_9$	5.534	99	$E_{20} - E_2$	6.367	135	$E_{30} - E_5$	8.136
28	$E_{26} - E_{15}$	4.115	64	$E_{18} - E_3$	5.555	100	$E_{31} - E_{11}$	6.370	136	$E_{27} - E_2$	8.269
29	$E_{25} - E_{12}$	4.155	65	$E_{28} - E_{13}$	5.565	101	$E_{32} - E_{11}$	6.388	137	$E_{31} - E_4$	8.272
30	$E_{18} - E_7$	4.311	66	$E_{21} - E_6$	5.594	102	$E_{22} - E_3$	6.394	138	$E_{32} - E_4$	8.290
31	$E_{26} - E_{13}$	4.329	67	$E_{20} - E_5$	5.596	103	$E_{21} - E_2$	6.433	139	$E_{29} - E_3$	8.657
32	$E_{23} - E_{11}$	4.406	68	$E_{21} - E_5$	5.662	104	$E_{25} - E_4$	6.454	140	$E_{28} - E_2$	8.666
33	$E_{19} - E_7$	4.417	69	$E_{23} - E_7$	5.662	105	$E_{22} - E_2$	6.501	141	$E_{29} - E_2$	8.763
34	$E_{24} - E_{11}$	4.425	70	$E_{20} - E_4$	5.662	106	$E_{27} - E_{10}$	6.501	142	$E_{30} - E_2$	8.907
35	$E_{26} - E_{12}$	4.426	71	$E_{18} - E_2$	5.662	107	$E_{26} - E_5$	6.659	143	$E_{29} - E_1$	9.161
36	$E_{17} - E_5$	4.494	72	$E_{29} - E_{13}$	5.662	108	$E_{26} - E_4$	6.725	144	$E_{30} - E_1$	9.305

Таблица 4. Разрешенные переходы в энергетическом спектре фуллерена С24 с группой симметрии D6

Таблица 5. Разрешенные переходы в энергетическом спектре фуллерена C24 с группой симметрии D6d

N₂	ΔE	$\Delta E, eV$	N⁰	ΔE	$\Delta E, eV$	N₂	ΔE	$\Delta E, eV$	N⁰	ΔE	$\Delta E, eV$
1	$E_{17} - E_{14}$	1.845	20	$E_{18} - E_5$	4.830	39	$E_{29} - E_{12}$	5.817	58	$E_{27} - E_8$	6.830
2	$E_{18} - E_{13}$	2.407	21	$E_{18} - E_6$	4.840	40	$E_{30} - E_{13}$	5.826	59	$E_{27} - E_7$	6.973
3	$E_{19} - E_{13}$	2.552	22	$E_{26} - E_{11}$	4.864	41	$E_{31} - E_{12}$	5.982	60	$E_{17} - E_{10}$	7.035
4	$E_{20} - E_{15}$	2.975	23	$E_{20} - E_8$	4.883	42	$E_{26} - E_8$	6.032	61	$E_{17} - E_{10}$	7.200
5	$E_{18} - E_{11}$	2.982	24	$E_{27} - E_{15}$	4.922	43	$E_{18} - E_1$	6.061	62	$E_{28} - E_8$	7.250
6	$E_{22} - E_{14}$	3.066	25	$E_{18} - E_4$	4.929	44	$E_{28} - E_{11}$	6.083	63	$E_{23} - E_1$	7.429
7	$E_{21} - E_{14}$	3.076	26	$E_{19} - E_5$	4.974	45	$E_{23} - E_5$	6.198	64	$E_{29} - E_7$	7.548
8	$E_{20} - E_{12}$	3.294	27	$E_{19} - E_6$	4.984	46	$E_{19} - E_1$	6.206	65	$E_{31} - E_8$	7.570
9	$E_{21} - E_{12}$	3.394	28	$E_{20} - E_7$	5.026	47	$E_{23} - E_6$	6.210	66	$E_{28} - E_5$	7.930
10	$E_{24} - E_{15}$	3.754	29	$E_{22} - E_7$	5.116	48	$E_{23} - E_4$	6.298	67	$E_{28} - E_4$	8.030
11	$E_{23} - E_{13}$	3.776	30	$E_{17} - E_3$	5.118	49	$E_{22} - E_3$	6.340	68	$E_{30} - E_5$	8.248
12	$E_{17} - E_7$	3.895	31	$E_{27} - E_{12}$	5.241	50	$E_{21} - E_3$	6.350	69	$E_{30} - E_6$	8.258
13	$E_{24} - E_{12}$	4.074	32	$E_{17} - E_2$	5.263	51	$E_{20} - E_2$	6.395	70	$E_{27} - E_2$	8.342
14	$E_{26} - E_{15}$	4.124	33	$E_{24} - E_{10}$	5.292	52	$E_{31} - E_{11}$	6.402	71	$E_{31} - E_4$	8.349
15	$E_{26} - E_{13}$	4.289	34	$E_{28} - E_{15}$	5.342	53	$E_{24} - E_4$	6.441	72	$E_{29} - E_3$	8.772
16	$E_{23} - E_{11}$	4.351	35	$E_{29} - E_{14}$	5.498	54	$E_{27} - E_{10}$	6.460	73	$E_{29} - E_2$	8.917
17	$E_{24} - E_{11}$	4.494	36	$E_{28} - E_{13}$	5.507	55	$E_{22} - E_2$	6.484	74	$E_{30} - E_1$	9.479
18	$E_{20} - E_{10}$	4.513	37	$E_{24} - E_8$	5.662	56	$E_{26} - E_5$	6.711			
19	$E_{21} - E_{10}$	4.613	38	$E_{31} - E_{15}$	5.662	57	$E_{26} - E_4$	6.811			

N⁰	ΔE	$\Delta E, eV$	N₂	ΔE	$\Delta E, eV$	N⁰	ΔE	$\Delta E, eV$	N₂	ΔE	$\Delta E, eV$
1	$E_{12} - E_8$	2.898	11	$E_{17} - E_9$	4.794	21	$E_{15} - E_4$	6.073	31	$E_{16} - E_4$	6.810
2	$E_{13} - E_9$	2.898	12	$E_{12} - E_4$	4.794	22	$E_{17} - E_6$	6.073	32	$E_{17} - E_5$	6.810
3	$E_{14} - E_9$	3.235	13	$E_{13} - E_5$	4.915	23	$E_{20} - E_9$	6.073	33	$E_{16} - E_3$	7.147
4	$E_{15} - E_{10}$	3.235	14	$E_{16} - E_8$	4.915	24	$E_{12} - E_1$	6.073	34	$E_{18} - E_5$	7.147
5	$E_{11} - E_6$	3.235	15	$E_{18} - E_{9}$	5.131	25	$E_{13} - E_2$	6.193	35	$E_{16} - E_1$	8.089
6	$E_{12} - E_7$	3.235	16	$E_{12} - E_3$	5.131	26	$E_{19} - E_8$	6.193	36	$E_{17} - E_2$	8.089
7	$E_{13} - E_6$	4.177	17	$E_{11} - E_2$	5.251	27	$E_{15} - E_3$	6.409	37	$E_{19} - E_4$	8.089
8	$E_{15} - E_8$	4.177	18	$E_{14} - E_5$	5.251	28	$E_{18} - E_6$	6.409	38	$E_{20} - E_5$	8.089
9	$E_{14} - E_6$	4.514	19	$E_{16} - E_7$	5.251	29	$E_{14} - E_2$	6.530	39	$E_{18} - E_2$	8.426
10	$E_{15} - E_7$	4.514	20	$E_{19} - E_{10}$	5.251	30	$E_{19} - E_7$	6.530	40	$E_{19} - E_3$	8.426

Таблица 6. Разрешенные переходы в энергетическом спектре фуллерена С₂₄ с группой симметрии О_h

следующим образом:

$$\begin{split} E_1(a_1) &\to E_1(a_1), \quad E_2(e_1) \to E_2(e_1), \\ E_3(b_2) &\to E_3(a_2), \quad E_4(e_2) \to E_4(e_2), \\ E_5(e_5) \to E_5(e_1), \quad E_6(a_1) \to E_6(a_1), \\ E_7(e_1) \to E_7(e_1), \quad E_8(e_3) \to \{E_8(b_2), E_9(b_1)\} \\ E_{10}(e_4) \to E_{10}(e_2), \quad E_{11}(e_2) \to E_{11}(e_2), \\ E_{12}(e_4) \to E_{12}(e_2), \quad E_{13}(e_5) \to E_{13}(e_1), \\ E_{14}(b_2) \to E_{14}(a_2), \quad E_{15}(e_3) \to \{E_{15}(b_2), E_{16}(b_1)\}, \\ E_{17}(a_1) \to E_{17}(a_1), \quad E_{18}(e_1) \to E_{18}(e_1), \\ E_{19}(b_2) \to E_{19}(a_2), \quad E_{20}(e_2) \to E_{20}(e_2), \\ E_{21}(e_5) \to E_{21}(e_1), \quad E_{22}(a_1) \to E_{22}(a_1), \\ E_{23}(e_1) \to E_{23}(e_1), \quad E_{24}(e_3) \to \{E_{24}(b_2), E_{25}(b_1)\}, \\ E_{26}(e_4) \to E_{28}(e_2), \quad E_{29}(e_5) \to E_{29}(e_1), \\ E_{30}(b_2) \to E_{30}(a_2), \quad E_{31}(e_3) \to \{E_{31}(b_2), E_{32}(b_1)\}. \end{split}$$

$$(21)$$

Из (21) следует, что при понижении симметрии фуллерена С₂₄ от D_{6d} до D₆ энергетические уровни $E_8(e_3)$, $E_{15}(e_3)$, $E_{24}(e_3)$ и $E_{31}(e_3)$, расщепляются.

Найдем теперь какие переходы у молекулы C_{24} с группами симметрии D_6 , D_{6d} и O_h разрешены, а какие запрещены с точки зрения симметрии. Используя теорию групп [34,35] можно показать, что в энергетическом спектре молекулы разрешены следующие переходы.

Для молекулы с группой симметрии D₆:

$$a_1 \leftrightarrow a_2, \quad b_1 \leftrightarrow b_2, \quad e_1 \leftrightarrow e_1, \quad e_2 \leftrightarrow e_2; \\ e_1 \leftrightarrow \{a_1, a_2, e_2\}, \qquad e_2 \leftrightarrow \{b_1, b_2\},$$
(22)

Рис. 4. Энергетический спектр фуллерена C_{24} с группой симметрии D_{6d} .

Для молекулы с группой симметрии D_{6d}

$$a_1 \leftrightarrow b_2, \quad a_2 \leftrightarrow b_1, \quad e_1 \leftrightarrow e_5, \quad e_2 \leftrightarrow e_4, \quad e_3 \leftrightarrow e_3;$$

$$e_1 \leftrightarrow \{a_1, a_2, e_2\}, \quad e_3 \leftrightarrow \{e_2, e_4\}, \quad e_5 \leftrightarrow \{b_1, b_2, e_4\},$$

(23)

Рис. 5. Энергетический спектр фуллерена C₂₄ с группой симметрии D₆.

Для молекулы с группой симметрии O_h:

$$t_{1g} \leftrightarrow \{a_{1u}, e_u, t_{1u}, t_{2u}\}, \quad t_{2g} \leftrightarrow \{a_{2u}, e_u, t_{1u}, t_{2u}\},$$

$$t_{1u} \leftrightarrow \{a_{1g}, e_g, t_{1g}, t_{2g}\}, \quad t_{2u} \leftrightarrow \{a_{2g}, e_g, t_{1g}, t_{2g}\}.$$
(24)

Остальные переходы являются запрещенными.

Из энергетических спектров молекулы C_{24} с группами симметрии D_6 , D_{6d} , O_h , представленных на рис. 4–6, и соотношений (22)–(24) следует, что у фуллерена C_{24} с группой симметрии D_6 имеется 144 разрешенных переходов, у фуллерена C_{24} с группой симметрии D_{6d} имеется 74 разрешенных переходов, а у фуллерена C_{24} с группой симметрии O_h имеется 40 разрешенных переходов. На рис. 4 и 5 приведены разрешенные переходы для фуллерена C_{24} с группами симметрии D_6 , D_{6d} в видимой и ультрафиолетовой областях, а на рис. 6 приведены все разрешенные переходы для фуллерена C_{24} с группой симметрии O_h .

Рис. 6. Энергетический спектр фуллерена C₂₄ с группой симметрии O_h.

4. Заключение

Исследование фуллерена C_{24} с группами симметрии D_6 , D_{6d} , O_h в рамках модели Хаббарда в приближении статических флуктуаций показало, что в этих молекулах нижняя подзона Хаббарда полностью занята, в то время как верхняя подзона Хаббарда свободна. Кроме того, данные исследования показали, что при понижении симметрии фуллерена C_{24} от D_{6d} до D_6 происходит расщепление четырех энергетических уровня: двух энергетических уровней $E_8(e_3)$, $E_{15}(e_3)$, расположенных в нижней подзоне Хаббарда, и двух энергетических уровней и $E_{24}(e_3)$, $E_{31}(e_3)$, расположенных в верхней подзоне Хаббарда.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- О.Е. Глухова, А.И. Жбанов, А.Г. Резков. ФТТ 47, 376 (2005).
- [2] K.S. Grishakov, K.P. Katin, M.M. Maslov. Diamond Rel. Mater. 84, 112 (2018).
- [3] G. von Helden, M.T. Hsu, N.G. Gotts, P.R. Kemper, M.T. Bowers. Chem. Phys. Lett. 204, 15 (1993).
- [4] M.N. Akhtar, B. Ahmad, S. Ahmad. Nuclear Instrumen. Meth. Phys. Res. B 207, 333 (2003).
- [5] H.S. Wu, J.F. Jia. Chinese J. Struct. Chem. 23, 580 (2004).
- [6] F. Jensen. J. Chem. Phys. 108, 3213 (1998).
- [7] N.N. Breslavskaya, A.A. Levin, A.L. Buchachenko. Russ. Chem. Bull. **53**, 18 (2004).
- [8] T. Oku, M. Kuno, H. Kitahara, I. Navita. Int. J. Inorg. Mater. 3, 597 (2001).
- [9] W. An, N. Shao, S. Bulusu, X.C. Zeng. J. Chem. Phys. 128, 084301 (2008)
- [10] V.A. Greshnyakov, E.A. Belenkov. J. Phys. Conf. Ser. 447, 012018 (2018).
- [11] Y. Zhang, X. Chem. Phys. 505, 26 (2018).
- [12] R.A. Harris, L.M. Falicov. J. Chem. Phys. 51, 5034 (1969).
- [13] А.В. Силантьев. ЖЭТФ 148, 749 (2015).
- [14] J. Hubbard. Proc. Roy. Soc. London A 276, 238 (1963).
- [15] Г.С. Иванченко, Н.Г. Лебедев. ФТТ 49, 183 (2007).
- [16] А.В. Силантьев. Изв. вуз. Физика 60, 6, 50 (2017).
- [17] А.В. Силантьев. ФТТ 61, 2, 395 (2019).
- [18] А.В. Силантьев. Изв. вуз. Физика 62, 6, 60 (2019).
 [19] А.В. Силантьев. Изв. вуз. Физика 57, 11, 37 (2014).
- [20] А.В. Силантьев. Изв. вуз. Поволжский регион. Физико-
- математические науки. *1*, 168 (2015).
- [21] А.В. Силантьев, Изв. вуз. Физика 56, 2, 70 (2013).
 [22] И.Е. Кареев, В.П. Бубнов, А.И. Мурзашев, Б.В. Лобанов.
- ΦΤΤ 57, 2254 (2015).
 [23] N. Melnikova, A. Murzashev, T. Nazarova, E. Shadrin, A. Ponomarev. Fullerenes, Nanotub. Carbon Nanostruct. 25, 379 (2017).
- [24] R.R. Nigmatullin. Physica A 116, 612 (1982).
- [25] M.K. Al-Sugheir, H.B. Ghassib, R.R. Nigmatullin. Int. J. Theor. Phys. 40, 1033 (2001).
- [26] M.K. Al-Sugheir, H.B. Ghassib. Int. J. Theor. Phys. 41, 705 (2002).
- [27] M.K. Al-Sugheir. Int. J. Theor. Phys. 43, 1527 (2004).
- [28] А.А. Хамзин, А.С. Никитин, А.С. Ситдиков. Ядерная физика **78**, 909 (2015).
- [29] G. Zimmerman, A.L. Smith, Chemical Properties of the Fullerenes. Drexel university, Philadelphia (1993).
- [30] E. Menendez-Proupin, A. Delgado, A.L. Montero-Alejo, J.M. Garcia de la Vega. Chem. Phys. Lett. 593, 72 (2014).
- [31] P.F. Coheur, M. Carleer, R. Colin. J. Phys. B 29, 4987 (1996).
- [32] J.P. Hare, H.W. Kroto, R. Taylor. Chem. Phys. Lett. 177, 394 (1991).
- [33] С.В. Тябликов. Методы квантовой теории магнетизма. Наука, М. (1975).
- [34] И.Г. Каплан. Симметрия многоэлектронных систем. Наука, М. (1969).
- [35] М. Хамермеш. Теория групп и ее применение к физическим проблемам. Мир, М. (1966).
- [36] В.В. Покропивный, А.Л. Ивановский. Успехи химии 77, 899 (2008).

Редактор Т.Н. Василевская

 10^{*}