12

Влияние электрон-дырочной асимметрии на электронную структуру спиральных краевых состояний в квантовой яме HgTe/HgCdTe

© М.В. Дурнев

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: durnev@mail.ioffe.ru

Поступила в Редакцию 14 ноября 2019 г. В окончательной редакции 14 ноября 2019 г. Принята к публикации 19 ноября 2019 г.

> Изучено влияние электрон-дырочной асимметрии на электронную структуру спиральных краевых состояний в квантовой яме HgTe/HgCdTe. В рамках четырехзонной *kp*-модели, учитывающей отсутствие центра пространственной инверсии, получены аналитические выражения для энергетического спектра и волновых функций краевых состояний, компонент тензора *g*-фактора и матричных элементов электро-дипольных оптических переходов между спиновыми ветвями краевых электронов. Показано, что при одновременном выполнении двух условий — электрон-дырочной асимметрии и отсутствии центра инверсии — спектр краевых электронов отклоняется от линейного, получены выражения для поправок к линейному спектру.

Ключевые слова: Топологические изоляторы, теллурид ртути, краевые состояния, магнитное поле.

DOI: 10.21883/FTT.2020.03.49012.629

1. Введение

Изучение спиральных краевых состояний, возникающих на краю двумерных топологических изоляторов, является важной областью физики двумерных кристаллических систем с нетривиальными топологическими свойствами [1–3]. К ключевым направлениям исследований можно отнести изучение локального и нелокального электронного транспорта по краевым каналам [4–7], механизмов рассеяния назад [8–14] и фотогальванического эффекта [15,16]. Среди различных систем, на краях которых экспериментально обнаружены одномерные спиральные каналы [2,3,17], наибольшее внимание привлекают квантовые ямы HgTe/HgCdTe. В таких ямах переход между тривиальным и топологическим состоянием происходит при изменении ширины квантовой ямы.

Для поиска электронных состояний в квантовых ямах HgTe/HgCdTe вблизи критической ширины обычно используется четырехзонная *кр*-модель, включающая в себя расположенные близко по энергии электронные и дырочные подзоны. Изотропный вариант этой модели носит название модели Bernevig-Hughes-Zhang (BHZ) [1] и широко используется для расчета электронной структуры объемных и краевых состояний [18-25]. Однако, как показывают атомистические расчеты [26,27], отсутствие центра пространственной инверсии в решетке цинковой обманки и низкая симметрия гетероинтерфейсов квантовой ямы HgTe/HgCdTe приводят к сильному смешиванию электронных и дырочных подзон, которое модифицирует *кр*-модель [19,27,28] и приводит к существенной перестройке объемных и краевых электронных состояний [27,29,30]. Отсутствие центра пространственной инверсии в квантовой яме HgTe/HgCdTe ответственно, например, за возникновение оптических переходов

между спиральными состояниями с противоположным спином в рамках сильного электродипольного механизма [31].

Как в изотропной модели ВНZ, так и в гамильтониане нецентросимметричной *kp*-модели присутствуют диагональные слагаемые, пропорциональные квадрату волнового вектора и связанные с наличием далеких энергетических зон. Эти вклады отличаются по величине для электронных и дырочных подзон, что приводит к нарушению электрон-дырочной симметрии: при замене электрона на дырку и одновременной смене знака энергии эффективный *kp*-гамильтониан не переходит сам в себя.

Несмотря на то, что квадратичные по волновому вектору слагаемые сами по себе слабо влияют на групповую скорость и ширину локализации краевых состояний — эти характеристики определяются большим межзонным смешиванием, линейным по волновому вектору, — электрон-дырочная асимметрия, заложенная в диагональных слагаемых, приводит к значительной перестройке энергетического спектра и волновых функций краевых состояний. Электрон-дырочная асимметрия может приводить также к возникновению новых эффектов. Она, например, ответственна за возникновение циркулярного фотогальванического эффекта с участием спиральных состояний [15,24,31,32]. Влияние электрондырочной асимметрии на спектр и структуру краевых состояний изучалось ранее в рамках модели BHZ (см., например, работы [24,25]). Однако подобные исследования не проводились для реалистичных квантовых ям, не обладающих центром пространственной инверсии.

В работе исследовано влияние электрон-дырочной асимметрии на спиральные краевые состояния в квантовых ямах HgTe/HgCdTe. В частности, проанализирован характер дисперсии краевых электронов и получены

Рис. 1. Край топологического изолятора на основе квантовой ямы HgTe/CdHgTe с изображением спиральных краевых состояний.

выражения для волновых функций краевых состояний в рамках нецентросимметричной kp-модели, найден тензор g-фактора краевых электронов, рассчитаны матричные элементы оптических переходов между спиновыми ветвями краевых состояний. Работа имеет следующую структуру: в разделе 2 изложена общая модель и получены выражения для энергии и волновых функций краевых состояний при нулевом волновом векторе вдоль края; в разделе 3 рассчитан тензор g-фактора краевых электронов; в разделе 4 найден спектр и волновые функции краевых состояний в широком диапазоне волновых векторов; в разделе 5 рассчитаны матричные элементы оптических переходов между спиновыми ветвями краевых состояний; наконец, в разделе 6 обсуждается влияние граничных условий на полученные результаты.

2. Структура краевых состояний при нулевом волновом векторе

В этом разделе мы сформулируем модель и получим волновые функции спиральных состояний при нулевом волновом векторе движения вдоль края. Рассмотрим квантовую яму HgTe/CdHgTe, выращенную вдоль кристаллографического направления [001], с шириной, близкой к критической, при которой происходит переход в фазу топологического изолятора. Такая структура обладает точечной симметрией D_{2d} без центра пространственной инверсии. Состояния вблизи уровня Ферми формируются из лежащих близко по энергии электронно-подобных подзон $|E1, \pm 1/2\rangle$ и дырочноподобных подзон $|H1, \pm 3/2\rangle$ [1]. В базисе $|E1, +1/2\rangle$, $|H1, +3/2\rangle$, $|E1, -1/2\rangle$, $|H1, -3/2\rangle$ состояния в квантовой яме описываются следующим гамильтонианом [29]: Здесь $\mathbf{k} = (k_x, k_y)$ — волновой вектор электрона в плоскости квантовой ямы, $k = |\mathbf{k}|$, $k_{\pm} = k_x \pm ik_y$, \mathcal{A} , \mathcal{B} , \mathcal{D} , δ_0 и γ — вещественные параметры зонной структуры. При $\mathcal{B} < 0$ ($\mathcal{B} > 0$) и $\delta_0 < 0$ ($\delta_0 > 0$) квантовая яма находится в режиме топологического изолятора, и на ее краях возникают спиральные краевые состояния. Параметр γ описывает отсутствие центра инверсии в структуре и, в основном, определяется смешиванием подзон $|E1, \pm 1/2\rangle$ и $|H1, \pm 3/2\rangle$ на интерфейсах квантовой ямы [27]. Значение этого параметра пока не установлено экспериментально, а теоретические значения лежат в диапазоне $2 \div 5$ meV для ямы HgTe/Hg_{0.3}Cd_{0.7}Te [19,26–28].

В дальнейшем мы будем пользоваться системой координат, в которой ось z совпадает с осью роста квантовой ямы, край образца параллелен оси у, и образец занимает полупространство x > 0, см. рис. 1. Ось у составляет угол θ с кристаллографической осью [010], что позволяет рассматривать структуры с различными кристаллографическими ориентациями края. В частности, при $\theta = 0$ край образца параллелен оси [010], в то время как при $\theta = \pi/4$ край параллелен оси [110]. При получении аналитических выражений и анализе результатов мы будем считать, что $\mathscr{B} < 0$, $\delta_0 < 0, |\mathcal{D}| < |\mathcal{B}|, \mathcal{A} > 0$ и $\gamma > 0$. Для численных оценок мы будем использовать набор параметров $\mathcal{A} = 3.6 \,\mathrm{eV}\cdot\mathrm{\AA}$, $\mathscr{B} = -68 \,\mathrm{eV} \cdot \mathrm{\AA}^2, \, \mathscr{D} = -51 \,\mathrm{eV} \cdot \mathrm{\AA}^2$ [19], $\gamma = 5 \,\mathrm{meV}$ [27], и $\delta_0 = -10$ meV, что соответствует яме HgTe/Hg_{0.3}Cd_{0.7}Te шириной 8 nm.

Диагональные слагаемые в гамильтониане (1), пропорциональные k^2 , возникают за счет смешивания четырех рассматриваемых подзон с более энергетически далекими подзонами, которые не входят в гамильтониан. Это смешивание описывается параметрами \mathcal{B} и \mathcal{D} . Как видно, в случае $\mathcal{D} \neq 0$ диагональные слагаемые входят несимметрично для электронных и дырочных подзон, и следовательно нарушают симметрию гамильтониана относительно замены электрона на дырку.

Таким образом, отношение \mathscr{D}/\mathscr{B} можно назвать параметром электрон-дырочной асимметрии. Как будет показано дальше, спектр и волновые функции краевых состояний будут в значительной степени определяться этим параметром. Для приведенных выше параметров $\mathscr{D}/\mathscr{B} \approx 0.75$.

$$\mathcal{H}_{0}(k_{x},k_{y}) = \begin{pmatrix} \delta_{0} - (\mathcal{B} + \mathcal{D})k^{2} & i\mathcal{A}k_{+} & 0 & i\gamma e^{-2i\theta} \\ -i\mathcal{A}k_{-} & -\delta_{0} + (\mathcal{B} - \mathcal{D})k^{2} & i\gamma e^{-2i\theta} & 0 \\ 0 & -i\gamma e^{2i\theta} & \delta_{0} - (\mathcal{B} + \mathcal{D})k^{2} & -i\mathcal{A}k_{-} \\ -i\gamma e^{2i\theta} & 0 & i\mathcal{A}k_{+} & -\delta_{0} + (\mathcal{B} - \mathcal{D})k^{2} \end{pmatrix}$$
(1)

Для поиска краевых состояний мы будем решать уравнение Шредингера

$$\mathscr{H}_0\left(-i\frac{\partial}{\partial x},k_y\right)\psi_{k_ys}=\varepsilon_{k_ys}\psi_{k_ys} \tag{2}$$

с граничными условиями $\psi_{k_ys}(x=0) = 0$ и $\psi_{k_ys}(x \to +\infty) = 0$. Для каждого волнового вектора k_y существует пара таких состояний, отличающихся значением псевдоспина $s = \pm 1/2$. Используемые граничные условия являются простейшими, граничные условия более сложного вида будут обсуждаться в разделе 6.

Рассмотрим вначале случай $k_y = 0$. Покажем, что в этом случае существует аналитическое решение уравнения (2) с энергией

$$\varepsilon_{0s} = -\delta_0 \frac{\mathscr{D}}{\mathscr{B}}.\tag{3}$$

Для этого подставим энергию (3) в уравнение (2) и запишем искомые волновые функции в виде

$$\psi_{0+1/2} = \frac{e^{ik_{yy}}}{\sqrt{2L}} \begin{bmatrix} a(x) \\ -\alpha a(x) \\ -ib(x)e^{2i\theta} \\ -i\alpha b(x)e^{2i\theta} \end{bmatrix},$$

$$\psi_{0-1/2} = \frac{e^{ik_{yy}}}{\sqrt{2L}} \begin{bmatrix} -ib(x)e^{-2i\theta} \\ i\alpha b(x)e^{-2i\theta} \\ a(x) \\ \alpha a(x), \end{bmatrix}$$
(4)

где

$$\alpha = \sqrt{\frac{\mathscr{B} + \mathscr{D}}{\mathscr{B} - \mathscr{D}}}.$$
(5)

После такой подстановки уравнения на функции a(x) и b(x) будут аналогичны уравнениям при $\mathcal{D} = 0$. Пользуясь известным решением при $\mathcal{D} = 0$ [29], получим

$$a(x) = \mathcal{N}\left[e^{-x/l_1}\cos\frac{\varphi}{2} - e^{-x/l_2}\cos\left(k_0x - \frac{\varphi}{2}\right)\right],$$

$$b(x) = \mathcal{N}\left[e^{-x/l_1}\sin\frac{\varphi}{2} + e^{-x/l_2}\sin\left(k_0x - \frac{\varphi}{2}\right)\right], \quad (6)$$

где

$$\mathcal{N} = \frac{2}{\sqrt{l_2(1+\alpha^2)}},\tag{7}$$

$$l_1 = -\frac{\varkappa \mathscr{B}}{\mathscr{A}}, \quad l_2 = -\frac{\mathscr{A}}{\varkappa \delta_0}, \quad k_0 = \frac{\gamma}{\mathscr{A}}, \quad \tan \varphi = -\frac{\gamma}{\varkappa \delta_0}, \quad (8)$$

И

$$\varkappa = \frac{\sqrt{\mathscr{B}^2 - \mathscr{D}^2}}{|\mathscr{B}|}.$$
(9)

При выводе уравнения (6) использовалось соотношение $l_1 \ll l_2$, которое выполнено в реалистичных квантовых ямах. Так, из (8) следует, что для приведенных выше параметров $l_1 \approx 10$ Å, $l_2 \approx 540$ Å. В дальнейшем, при получении результатов мы будем считать соотношение $l_1 \ll l_2$ выполненным. Формулы (3)–(9) являются обобщениями результатов работы [32] (случай $\mathcal{D} \neq 0, \gamma = 0$) и работы [29] (случай $\mathcal{D} = 0, \gamma \neq 0$). Из полученных формул видно, что несмотря на малость параметров \mathcal{B} и \mathcal{D} (что проявляется в малости длины l_1), все результаты существенно зависят от отношения \mathcal{D}/\mathcal{B} .

Ключевое следствие электрон-дырочной асимметрии — это сдвиг дираковской точки (ε_{0s}) из середины щели ($\varepsilon = 0$). Из формулы (3) следует, что дираковская точка сдвигается пропорционально отношению \mathscr{D}/\mathscr{B} : при $\mathscr{D} < 0$ сдвиг происходит в сторону зоны проводимости, в случае $\mathscr{D} > 0$ — в сторону валентной зоны. Сдвиг дираковской точки приводит к перераспределению относительных вкладов подзон $|E1, \pm 1/2\rangle$ и $|H1, \pm 3/2\rangle$ в волновые функции, увеличению длины затухания l_2 и изменению скорости краевых электронов. В предельных случаях $\mathscr{D} = \pm \mathscr{B}$ дираковская точка попадает на границу энергетической щели, и краевые состояния при $k_y = 0$ гибридизуются с объемными. Как следует из (8), в этом случае $l_2 \to \infty$.

Спроецировав часть гамильтониана (1), в которую входят слагаемые с k_y , на волновые функции (4), получим энергию краевых состояний с точностью до линейных по k_y вкладов

$$\varepsilon_{k_ys} = -\delta_0 \, \frac{\mathscr{D}}{\mathscr{B}} + 2s \hbar v_0 k_y, \tag{10}$$

где скорость краевых электронов

$$v_0 = \frac{\mathscr{A}}{\hbar} \frac{|\delta_0| \varkappa^2}{\sqrt{\varkappa^2 \delta_0^2 + \gamma^2}}.$$
 (11)

3. Эффект Зеемана для краевых состояний

В рамках рассматриваемой kp-модели взаимодействие электрона с магнитным полем **В** характеризуется суммой орбитального вклада, описываемого гамильтонианом (1) с подстановкой Пайерлса $\mathcal{H}_0[\mathbf{k} - (e/c\hbar)\mathbf{A}]$, где **А** — векторный потенциал магнитного поля, и зеемановского вклада [26]

$$\mathcal{H}_{Z} = \frac{\mu_{B}}{2} \begin{pmatrix} g_{e}^{\perp}B_{z} & 0 & g_{e}^{\parallel}B_{-} & 0\\ 0 & g_{h}^{\perp}B_{z} & 0 & g_{h}^{\parallel}e^{-4i\theta}B_{+}\\ g_{e}^{\parallel}B_{+} & 0 & -g_{e}^{\perp}B_{z} & 0\\ 0 & g_{h}^{\parallel}e^{4i\theta}B_{-} & 0 & -g_{h}^{\perp}B_{z} \end{pmatrix},$$
(12)

где g_e^{\parallel} , g_e^{\perp} , g_h^{\parallel} и g_h^{\perp} — *g*-факторы подзон $|E1\rangle$ и $|H1\rangle$, содержащие вклады от смешивания с далекими электронными и дырочными подзонами, $B_{\pm} = B_x \pm iB_y$, и μ_B — магнетон Бора.

Взаимодействие магнитного поля с краевыми электронами в базисе ($\psi_{0+1/2}, \psi_{0-1/2}$) описывается эффективным гамильтонианом

$$\mathscr{H}_{edge}^{(\mathbf{B})} = \frac{\mu_B}{2} \sum_{\alpha,\beta=x,y,z} g_{\alpha\beta} \sigma_{\alpha} B_{\beta}, \qquad (13)$$

где $g_{\alpha\beta}$ — компоненты тензора *g*-фактора краевых электронов, и $\sigma_x, \sigma_y, \sigma_z$ — матрицы Паули. Спроецировав гамильтониан (12) на волновые функции (4), получим компоненты *g*-фактора для поля **B** в плоскости ямы

$$g_{xx} = g_1 \cos^2 2\theta + g_2 \sin^2 2\theta,$$

$$g_{yy} = g_1 \sin^2 2\theta + g_2 \cos^2 2\theta,$$

$$g_{xy} = g_{yx} = \frac{1}{2} (g_1 - g_2) \sin 4\theta,$$
 (14)

где

g

$$g_{1} = \frac{1}{2} \left(\frac{\mathscr{B} - \mathscr{D}}{\mathscr{B}} g_{e}^{\parallel} - \frac{\mathscr{B} + \mathscr{D}}{\mathscr{B}} g_{h}^{\parallel} \right),$$

$$_{2} = \frac{1}{2} \left(\frac{\mathscr{B} - \mathscr{D}}{\mathscr{B}} g_{e}^{\parallel} + \frac{\mathscr{B} + \mathscr{D}}{\mathscr{B}} g_{h}^{\parallel} \right) \frac{|\delta_{0}|\varkappa}{\sqrt{\varkappa^{2}\delta_{0}^{2} + \gamma^{2}}}.$$
(15)

Формула (15) является обобщением результатов работы [29] на случай $\mathcal{D} \neq 0$. Поскольку *g*-фактор тяжелой дырки g_h^{\parallel} близок к нулю в квантовых ямах из материалов с решеткой цинковой обманки [33], то основной вклад в g_1 и g_2 дается первыми слагаемыми в (15). В реальных структурах множитель ($\mathcal{B} - \mathcal{D}$)/ \mathcal{B} может сильно отличаться от единицы, например, для параметров, приведенных в разделе II, ($\mathcal{B} - \mathcal{D}$)/ $\mathcal{B} \approx 1/4$, то есть *g*-факторы для поля в плоскости ямы уменьшаются примерно в четыре раза по сравнению со случаем $\mathcal{D} = 0$. Оценки дают $g_1 \approx 2.5$, $g_2 \approx 2$, что согласуется с результатами численного моделирования спектра краевых состояний в работе [31].

Магнитное поле, направленное по нормали к квантовой яме, смешивает подзоны $|E1\rangle$ и $|H1\rangle$, что приводит к большим орбитальным вкладам в компоненты $g_{\alpha z}$. Диагональная компонента g_{zz} , как и в случае $\mathcal{D} = 0$, зависит от калибровки векторного потенциала и может быть выбрана нулем [29], в то время как недиагональные компоненты не зависят от калибровки и имеют следующий вид:

 $g_{xz} = -g_3 \sin 2\theta, \quad g_{yz} = g_3 \cos 2\theta, \quad (16)$

где

$$g_3 = \frac{2m_0\mathcal{A}^2}{\hbar^2} \frac{\gamma |\delta_0| \varkappa^2}{(\delta_0^2 \varkappa^2 + \gamma^2)^{3/2}}.$$
 (17)

Оценки дают $g_3 \approx 130$, то есть $g_3 \gg g_1$, g_2 .

Магнитное поле смешивает краевые состояния и открывает щель в их спектре. Величина щели при $\theta = 0$

$$\varepsilon_g = \mu_B \sqrt{g_1^2 B_x^2 + (g_2 B_y + g_3 B_z)^2}.$$
 (18)

Как следует из (18), щель открывается для любого направления поля за исключением случая, когда поле лежит в плоскости yz и направлено под углом – arctan g_2/g_3 к оси у. Отметим, что для любой ориентации края (любого θ) существует направление в пространстве, вдоль которого приложенное поле не открывает щель.

Гигантская анизотропия *g*-фактора подтверждается в экспериментах по магнитотранспорту. В работе [7] обнаружено, что перпендикулярное магнитное поле приводит к подавлению проводимости по краевым каналам за счет открытия зеемановской щели, тогда как влияние продольного магнитного поля на проводимость значительно слабее.

Структура краевых состояний при ненулевом волновом векторе

Для того чтобы изучать электронный транспорт и оптические переходы с участием краевых электронов, необходимо знать волновые функции и спектр краевых состояний при ненулевом волновом векторе движения вдоль края. В этом разделе мы найдем спектр и волновые функции краевых состояний при $k_y \neq 0$. В рамках изотропной модели, соответствующей $\gamma = 0$ в гамильтониане (1), а также в рамках модели без центра инверсии, но при наличии электрон-дырочной симметрии ($\gamma \neq 0$, $\mathcal{D} = 0$), приведены аналитические выражения для спектра и волновых функций во всем диапазоне волновых векторов. В более общем случае получены приближенные результаты, справедливые при малой величине отношения \mathcal{D}/\mathcal{B} или $\gamma/|\delta_0|$.

А. Изотропная модель

Рассмотрим для начала случай $\gamma = 0$, соответствующий изотропной модели. Детальный анализ структуры краевых состояний в изотропной модели приведен в работе [25]. В этом случае гамильтониан (1) распадается на два независимых блока размерностью 2×2. При $\gamma = 0$ уравнение Шредингера (2) имеет аналитическое решение, справедливое во всем диапазоне k_y [20,25]

$$\varepsilon_{k_ys}^{(0)} = -q\delta_0 + 2s\varkappa \mathcal{A}k_y, \qquad (19)$$

$$\psi_{k_{y}+1/2}^{(0)} = \frac{e^{ik_{y}y}}{\sqrt{2L}} \begin{bmatrix} a(x, k_{y}) \\ -\alpha a(x, k_{y}) \\ 0 \\ 0 \end{bmatrix},$$

$$\psi_{k_{y}-1/2}^{(0)} = \frac{e^{ik_{y}y}}{\sqrt{2L}} \begin{bmatrix} 0 \\ 0 \\ a(x, -k_{y}) \\ \alpha a(x, -k_{y}) \end{bmatrix}.$$
 (20)

Здесь $q = \mathscr{D}/\mathscr{B}$, функция *а* имеет вид [см. (6) при $\gamma = 0$]

$$a(x, k_y) = \frac{2}{\sqrt{l_2(k_y)(1+\alpha^2)}} \left[e^{-x/l_1} - e^{-x/l_2(k_y)} \right], \quad (21)$$

с учетом зависимости длины локализации краевых состояний l_2 от волнового вектора

$$l_2(k_y)^{-1} = l_2^{-1} - qk_y - k_y^2 l_1,$$
(22)

и длины l_1 и l_2 даются формулами (8). Полученное выражение для $a(x, k_y)$ справедливо, как и ранее, при $l_1 \ll l_2(k_y)$. Член $k_y^2 l_1$ мал во всем диапазоне исследуемых k_y , поэтому в дальнейшем он не будет учитываться.

Важным следствием электрон-дырочной асимметрии $(q \neq 0)$ является зависимость длины затухания краевого состояния от k_y . Как будет показано ниже, эта зависимость приводит к ненулевому матричному элементу оператора электрического дипольного момента между краевыми состояниями.

Рассмотрим подробнее случай q > 0. Как следует из (22), длина $l_2(k_y)$ обращается в бесконечность при $k_y = k^* = 1/(ql_2)$ для краевого состояния с s = +1/2и при $k_y = -k^*$ для состояния с s = -1/2. Можно показать, что в точках $k_y = \pm k^*$ дисперсионные ветви краевых состояний (19) касаются нижней границы зоны проводимости $\varepsilon_c = \sqrt{\delta_0^2 + \mathscr{A}^2 k_y^2}$. В этих точках краевые состояния "сливаются" с объемными (двумерными) состояниями. Однако отметим, что процессы упругого рассеяния из краевых состояний в состояния зоны проводимости включаются значительно раньше, уже при $\varepsilon_{k_ys} = -\delta_0$, то есть при $k_y = 1/l_2(1+q)$.

При движении по дисперсионным ветвям краевых состояний в сторону валентной зоны длина $l_2(k_y)$ уменьшается. При $\varepsilon_{k_ys} = \delta_0$, когда энергия краевых состояний сравнивается с энергией потолка валентной зоны, $l_2(k_y) = l_2(1-q)$. При дальнейшем увеличении волнового вектора $l_2(k_y)$ может стать сравнимой с l_1 , и формулы (21), (22) перестают быть применимы. Аккуратный анализ этой ситуации изложен в работе [25].

В. Модель без центра инверсии

Перейдем теперь к модели реалистичных квантовых ям без центра пространственной инверсии, которая описывается гамильтонианом (1) с $\gamma \neq 0$. Мы получим аналитические результаты в двух пределах: в пределе $\gamma/|\delta_0| \ll 1$, когда антидиагональные члены гамильтониана (1) можно считать малым возмущением, и в пределе $|\mathcal{D}/\mathcal{B}| \ll 1$, то есть в пределе малой электрон-дырочной асимметрии.

1. Предел $\gamma/|\delta_0| \ll 1$

В этом разделе будем считать антидиагональные члены гамильтониана (1) малым возмущением.

Невозмущенные волновые функции $\psi_{k_y\pm 1/2}^{(0)}$ краевых состояний найдены в разделе 4 для произвольного k_y ,

см. (20). Обратим внимание, что в первом порядке теории возмущений по γ краевые состояния $\psi_{k_y\pm 1/2}^{(0)}$ не смешиваются и не сдвигаются по энергии. Это означает, что поправки к волновым функциям краевых состояний связаны с подмешиванием к краевым состояниям объемных состояний зоны проводимости и валентной зоны.

Таким образом, в первом порядке теории возмущений по γ энергия краевых состояний не меняется и совпадает с (19). Волновые функции краевых состояний будем искать в виде

$$\psi_{k_{y}+1/2} = \frac{e^{ik_{yy}}}{\sqrt{2L}} \begin{bmatrix} a_{1}(x, k_{y}) \\ -\alpha a_{2}(x, k_{y}) \\ -ib_{1}(x, k_{y})e^{2i\theta} \\ -i\alpha b_{2}(x, k_{y})e^{2i\theta} \end{bmatrix},$$

$$\psi_{k_{y}-1/2} = \frac{e^{ik_{yy}}}{\sqrt{2L}} \begin{bmatrix} -ib_{1}(x, -k_{y})e^{-2i\theta} \\ i\alpha b_{2}(x, -k_{y})e^{-2i\theta} \\ a_{1}(x, -k_{y}) \\ \alpha a_{2}(x, -k_{y}) \end{bmatrix},$$
(23)

где b_1 и b_2 — искомые функции $\propto \gamma$. В первом порядке теории возмущений функции a_1 и a_2 равны и совпадают с невозмущенной функцией (21). Функция $\psi_{k_y-1/2}$ связана с $\psi_{k_y+1/2}$ операцией инверсией времени. Уравнение (2) с невозмущенной энергией (19) приводит к следующей системе уравнений на b_1 и b_2

$$l_{1}b_{1}'' + b_{2}' + \left[l_{2}(k_{y})^{-1} + k_{y}\right]b_{1} + k_{y}b_{2} = -k_{0}a,$$

$$l_{1}b_{2}'' + b_{1}' + \left[l_{2}(k_{y})^{-1} - k_{y}\right]b_{2} - k_{y}b_{1} = -k_{0}a.$$
 (24)

Решение этой системы, удовлетворяющее граничным условиям, имеет вид

$$b_1 = b(x) + B(x), \quad b_2 = b(x) - B(x),$$
 (25)

где

$$b(x) = \frac{\mathcal{N}(k_y)k_0 l_2(k_y)}{2} \left\{ e^{-x/l_1} + \left[\frac{2x}{l_2(k_y)} - 1 \right] e^{-x/l_2(k_y)} \right\},$$
$$B(x) = -\mathcal{N}(k_y)k_0k_y l_2(k_y) \ x e^{-x/l_2(k_y)}, \tag{26}$$

И

$$\mathcal{N}(k_y) = \frac{2}{\sqrt{l_2(k_y)(1+\alpha^2)}}$$

При $k_y = 0$ функции b_1 и b_2 равны и совпадают с выражением (6), взятым в пределе $\gamma/|\delta_0| \ll 1$. Для применимости теории возмущений нужно, чтобы функции $b_{1,2}$ были малы по сравнению с *a*, то есть $k_0 l_2(k_y) \ll 1$. Это накладывает ограничение на диапазон применимости полученных формул по k_y .

Используя полученные в первом порядке теории возмущений по $\gamma/|\delta_0|$ поправки к волновым функциям,

Рис. 2. Дисперсия электронных состояний в квантовой яме HgTe/HgCdTe для зонных параметров, приведенных в тексте, и $\gamma = 2 \text{ meV}$, так что $\gamma/|\delta_0| = 0.2$. Ветви краевых состояний выделены. На панели *b*) показан увеличенный фрагмент дисперсии краевых состояний. Сплошные линии — численный расчет, штриховые линии — линейная зависимость со скоростью, рассчитанной по формуле (11), штрих-пунктирные линии — зависимость $\varepsilon_{k_ys}^{(0)} + \varepsilon_{k_ys}^{(2)}$, учитывающая отклонение от линейного поведения.

найдем поправки второго порядка к энергии краевых состояний:

$$\varepsilon_{k_ys}^{(2)} = \left\langle \psi_{k_ys}^{(0)} | V_{\gamma} | \psi_{k_ys}^{(1)} \right\rangle, \qquad (27)$$

где $\psi_{k_{ys}}^{(0)}$ — волновые функции нулевого приближения (20), $\psi_{k_{ys}}^{(1)}$ — линейная по γ часть волновых функций (23), и V_{γ} — антидиагональная часть гамильтониана (1). Расчет показывает, что

$$\varepsilon_{k_ys}^{(2)} = -\frac{\gamma^2}{2|\delta_0|} \frac{k_y l_2}{(1-qk_y l_2)^2}.$$
 (28)

Формула (28) содержит как квадратичную по γ поправку к скорости краевых электронов, так и, в случае $q \neq 0$, члены более высоких степеней по k_y . Таким образом, при одновременном выполнении двух условий — электрон-дырочной асимметрии и отсутствии центра инверсии ($q \neq 0$ и $\gamma \neq 0$) — спектр краевых электронов отклоняется от линейного. Как и прежде, формула (28) применима в случае $k_0 l_2(k_y) \ll 1$, то есть при $1 - qk_y l_2 \gg k_0 l_2$.

На рис. 2 приведены результаты численного расчета краевых и объемных состояний в яме HgTe/CdHgTe и сравнение с полученными аналитическими зависимостями. Видно, что спектр краевых электронов отклоняется от линейного со скоростью (11), и это отклонение хорошо описывается зависимостью $\varepsilon_{kys} = \varepsilon_{kys}^{(0)} + \varepsilon_{kys}^{(2)}$. Поправки к линейной дисперсии краевых электронов исследовались также в работе [25] в рамках изотропной модели, но с граничными условиями более сложного

вида. Нелинейность спектра приводит, например, к генерации краевого фототока в краевых каналах за счет непрямых оптических переходов [16].

2. Предел малой электрон-дырочной асимметрии

В случае произвольной величины γ , но при $q = \mathscr{D}/\mathscr{B} \ll 1$ можно также получить аналитические выражения для краевых состояний. По-прежнему, будем искать волновые функции краевых состояний в виде (23). Рассмотрим подробно состояние $\psi_{k_y+1/2}$. Волновая функция состояния $\psi_{k_y-1/2}$ связана с $\psi_{k_y+1/2}$ формулой (23), а энергия $\varepsilon_{k_y-1/2} = \varepsilon_{-k_y+1/2}$. Уравнение Шредингера (2) на функцию $\psi_{k_y+1/2}$ приводит к следующей системе

$$l_{1}a_{1}'' + a_{2}' + \left(l_{2}^{-1} + \frac{E}{\alpha\mathcal{A}}\right)a_{1} - k_{y}a_{2} - k_{0}b_{2} = 0,$$

$$l_{1}a_{2}'' + a_{1}' + \left(l_{2}^{-1} - \frac{\alpha E}{\mathcal{A}}\right)a_{2} + k_{y}a_{1} - k_{0}b_{1} = 0,$$

$$l_{1}b_{1}'' + b_{2}' + \left(l_{2}^{-1} + \frac{E}{\alpha\mathcal{A}}\right)b_{1} + k_{y}b_{2} + k_{0}a_{2} = 0,$$

$$l_{1}b_{2}'' + b_{1}' + \left(l_{2}^{-1} - \frac{\alpha E}{\mathcal{A}}\right)b_{2} - k_{y}b_{1} + k_{0}a_{1} = 0,$$
(29)

где мы представили энергию краевого состояния в виде $\varepsilon_{k_y+1/2} = -q\delta_0 + E.$

Система (29) имеет аналитическое решение при q = 0($\alpha = 1$) с энергией

$$E^{(0)} = \frac{\mathscr{A}k_{y}|\delta_{0}|}{\sqrt{\delta_{0}^{2} + \gamma^{2}}}.$$
 (30)

Таким образом, спектр краевых состояний, полученный в разделе 2 по теории возмущений при малых k_y , остается в случае q = 0 линейным во всем диапазоне волновых векторов. Подробности решения, а также выражения для функций $a_{1,2}$ и $b_{1,2}$ приведены в приложении.

При $q \ll 1$ с точностью до линейных по q слагаемых имеем $\alpha \approx 1 + q$ и $\alpha^{-1} \approx 1 - q$. Таким образом, система (29) имеет такой же вид, что и при q = 0, только теперь длина l_2 зависит от энергии

$$l_2^{-1}(E) = l_2^{-1} - \frac{qE}{\mathscr{A}}.$$
 (31)

В этой формуле с точностью до членов, линейных по q, можно положить $E = E^{(0)}$, и тогда получим

$$l_2^{-1}(k_y) \approx l_2^{-1} - \frac{qk_y |\delta_0|}{\sqrt{\delta_0^2 + \gamma^2}}.$$
 (32)

Формула (32) описывает зависимость длины затухания краевого состояния s = +1/2 от k_y при $q \ll 1$.

Чтобы найти поправки к дисперсии краевых состояний (30) при $q \ll 1$ подставим выражение (32) для $l_2(k_y)$ в правую часть формулы (30) для энергии. Получим в первом порядке по q

$$E \approx E^{(0)} - q \mathscr{A}^2 k_y^2 \frac{\gamma^2 |\delta_0|}{(\delta_0^2 + \gamma^2)^2}.$$
 (33)

Из формулы (33) следует, что при наличии электрондырочной асимметрии спектр краевых состояний перестает быть строго линейным, и в нем появляются квадратичные по волновому вектору поправки. Этот результат согласуется с полученным в пределе $\gamma/|\delta_0| \ll 1$, см. формулу (28).

5. Матричные элементы оптических переходов

Возбуждение края топологического изолятора электромагнитной волной вызывает оптические переходы между спиновыми ветвями краевых состояний. Благодаря отсутствию центра пространственной инверсии в квантовых ямах HgTe/HgCdTe оптические переходы возникают за счет электродипольного механизма [31]. Матричный элемент электрон-фотонного взаимодействия пропорционален матричным элементам оператора скорости $\mathbf{v} = \partial \mathcal{H}_0/\hbar \partial \mathbf{k}$ между состояниями ψ_{k_ys} и ψ_{k_y-s} [31]:

$$v_{s-s}^{(x)} = \langle \psi_{k_ys} | v_x | \psi_{k_y-s} \rangle = u_1 e^{-4is} \theta,$$

$$v_{s-s}^{(y)} = \langle \psi_{k_ys} | v_y | \psi_{k_y-s} \rangle = 2isu_2 e^{-4is} \theta.$$
(34)

В этом разделе мы рассчитаем величины u_1 и u_2 в пределе $\gamma/|\delta_0| \ll 1$. Функции ψ_{k_ys} для этого случая найдены в разделе 4, см. формулы (23), (25), (26). Расчет дает

$$u_{1} = \frac{v_{0}k_{0}k_{y}l_{2}^{2}\left[l_{2}(k_{y}) - l_{2}(-k_{y})\right]}{2\sqrt{l_{2}(k_{y})l_{2}(-k_{y})}},$$

$$u_{2} = \frac{v_{0}k_{0}l_{2}^{2}}{\sqrt{l_{2}(k_{y})l_{2}(-k_{y})}}\left[1 - \frac{l_{2}(k_{y}) + l_{2}(-k_{y})}{2l_{2}}\right], \quad (35)$$

где $v_0 = \varkappa \mathcal{A}/\hbar$ — скорость краевых электронов при $\gamma/|\delta_0| \ll 1$. После упрощений получим

$$u_1 = v_0 \frac{qk_0 k_y^2 l_2^3}{\sqrt{1 - q^2 k_y^2 l_2^2}}, \quad u_2 = -qu_1.$$
(36)

Формулы (35), (36) справедливы при произвольной величине q и для волновых векторов k_y , при которых выполняется соотношение $1 - qk_yl_2 \gg k_0l_2$. Также везде в расчетах, как в волновых функциях, так и в операторе скорости, положено $l_1 = 0$.

Как следует из (35), матричные элементы u_1 и u_2 отличны от нуля в меру зависимости длины затухания краевых состояний от k_y , а следовательно, обращаются в ноль если система обладает электрон-дырочной симметрией ($q = \mathscr{D}/\mathscr{B} = 0$). Можно показать, однако, что с учетом малых вкладов $\propto l_1/l_2$ матричный элемент $u_2 \neq 0$ даже при q = 0.

На рис. З приведены результаты расчетов матричных элементов u_1 и u_2 двумя методами — с помощью численной диагонализации гамильтониана (1) и по формулам (36). Из графиков видно, что в случае $\gamma/|\delta_0| = 0.1$ аналитические расчеты хорошо согласуются с численными, однако при $\gamma/|\delta_0| = 0.2$ уже наблюдается значительное расхождение, причем формулы (36) переоценивают величины u_1 и u_2 . Одна из причин — это то, что с ростом γ уменьшается скорость краевых электронов v_0 , которая входит в выражения для u_1 и u_2 .

Оптические переходы между краевыми состояниями можно также охарактеризовать матричными элементами оператора дипольного момента, которые при малых k_y имеют вид [31]:

$$d_{s-s}^{(x)} = -2sie^{-4is\theta}D_1k_y, \quad d_{s-s}^{(y)} = e^{-4is\theta}D_2k_y, \quad (37)$$

где $D_{1,2} = eu_{1,2}/|k_y\omega_{s-s}|$ и $\hbar\omega_{s-s} = \varepsilon_{k_ys} - \varepsilon_{k_y-s}$. С учетом (36)

$$D_{1} = \frac{e}{2}qk_{0}l_{2}^{3} = \frac{e\mathcal{D}\mathcal{B}^{2}}{2(\mathcal{B}^{2} - \mathcal{D}^{2})^{3/2}}\frac{\gamma\mathcal{A}^{2}}{\delta_{0}^{3}},$$

$$D_{2} = -qD_{1} = -\frac{e\mathcal{D}^{2}\mathcal{B}}{2(\mathcal{B}^{2} - \mathcal{D}^{2})^{3/2}}\frac{\gamma\mathcal{A}^{2}}{\delta_{0}^{3}}.$$
 (38)

Оценка по формуле (38) при $\gamma/|\delta_0| = 0.1$ дает $D_1/e \approx 1.7 \cdot 10^{-12} \,\mathrm{cm}^2$ и $D_2/e \approx -1.2 \cdot 10^{-12} \,\mathrm{cm}^2$. Эта оценка согласуется по порядку величины с полученными в работе [31] численными оценками в случае $\gamma/|\delta_0| = 0.5$.

Рис. 3. Матричные элементы оператора скорости u_1 и u_2 для $\gamma/|\delta_0| = 0.1$ (a) и $\gamma/|\delta_0| = 0.2$ (b). Сплошные кривые — численный расчет, пунктирные — расчет по формулам (36). На вставке приведена схема оптических переходов.

При поглощении спиральными каналами циркулярно поляризованного света оптические переходы идут асимметрично в *k*-пространстве, что приводит к генерации спиновой поляризации и краевого фототока [31]. Относительная разность темпов оптических переходов из состояний $\psi_{k_y-1/2}$ и $\psi_{-k_y+1/2}$, $g_{k_y-1/2}$ и $g_{-k_y+1/2}$, соответственно, пропорциональна степени циркулярной поляризации падающего света P_{circ} и равна

$$\frac{g_{k_y-1/2} - g_{-k_y+1/2}}{g_{k_y-1/2} + g_{-k_y+1/2}} = KP_{\text{circ}},$$
(39)

где

$$K = -rac{2D_1D_2}{D_1^2 + D_2^2} = rac{2\mathscr{D}\mathscr{B}}{\mathscr{B}^2 + \mathscr{D}^2}$$

Отметим, что коэффициент асимметрии K для переходов между краевыми состояниями оказывается равным аналогичному коэффициенту для переходов из краевых состояний в объемные [24]. В обоих случаях K = 0, если система обладает электрон-дырочной симметрией ($\mathcal{D} = 0$). Этот результат — следствие более общего утверждения об отсутствии спиновой поляризации и фотогальванического эффекта при поглощении циркулярно поляризованного излучения системой, обладающей электрон-дырочной симметрией [31].

6. Роль граничных условий

Результаты работы получены для простейшего "открытого" граничного условия $\psi(x = 0) = 0$. Решения, полученные с более сложным граничным условием $\psi'(x = 0) + h\psi(x = 0) = 0$, будут отличаться от рассмотренных в работе только коэффициентами перед экспонентами e^{-x/l_1} и e^{-x/l_2} в функциях a(x) и b(x), см. например (6). В итоге, изменение параметра *h* приводит к изменению волновых функций непосредственно вблизи края на масштабе l_1 , и следовательно все полученные результаты не зависят от величины *h*, поскольку они определяются поведением волновых функциях на значительно большем масштабе l_2 .

Наиболее общий вид граничных условий на границе топологического изолятора с вакуумом получен из общих физических соображений в работе [23]. Граничные условия общего вида учитывают подмешивание краем структуры далеких подзон к рассматриваемым в *kp*-модели.

В частности, возможен случай, когда граничное условие само по себе нарушает электрон-дырочную симметрию в системе. В этом случае даже при $\mathscr{D} = \mathscr{B} = 0$ в гамильтониане квантовой ямы спектр краевых состояний становится асимметричным относительно центра запрещенной зоны и отклоняется от линейного [23,35].

Еще одним примером системы со спиральными состояниями является граница двух квантовых ям HgTe/HgCdTe разной ширины, находящихся в фазе тривиального и топологического изолятора. В простейшем случае такой контакт можно смоделировать знакопеременной зависимостью $\delta_0(x)$ в гамильтониане (1), считая, что остальные зонные параметры слабо зависят от ширины ямы. В случае $\mathscr{B} = \mathscr{D} = 0$ такая модель предсказывает наличие краевых состояний с симметричным линейным спектром [34,35]. Однако, если $\mathscr{B} \neq 0$ и $\mathscr{D} \neq 0$, ситуация становится более сложной. Положение дираковской точки и скорость краевых электронов зависит от соотношения величин δ_0 справа и слева от контакта. Пусть $\delta_0(x > 0) = -\delta_r$, $\delta_0(x < 0) = \delta_l$, и $\delta_{l,r} > 0$. Тогда, если выполняется соотношение $\mathcal{A}/\delta_r, \ \mathcal{A}/\delta_l \gg l_1$, то электрон-дырочная асимметрия не приводит к заметному изменению спектра краевых состояний. В этом случае диагональными слагаемыми $\propto k^2$ в гамильтониане можно пренебречь без изменения физических результатов. Такая же ситуация реализуется в случае плавного контакта. Если же реализуется случай $\mathcal{A}/\delta_r \gg l_1$, $\mathcal{A}/\delta_l \lesssim l_1$, то электрон-дырочная асимметрия начинает играть заметную роль в спектре краевых состояний. Предел $\mathcal{A}/\delta_l \ll l_1$ соответствует ситуации, когда волновая функция не проникает в область x < 0, то есть открытому граничному условию.

7. Заключение

В работе изучено влияние электрон-дырочной асимметрии на электронную структуру спиральных краевых состояний в квантовой яме HgTe/HgCdTe. Получены аналитические выражения для волновых функций и энергетического спектра спиральных состояний, тензора *g*-фактора, матричных элементов оптических переходов между краевыми состояниями с противоположным спином в рамках электро-дипольного механизма. Показано, что при наличии электрон-дырочной асимметрии спектр краевых состояний отклоняется от линейного, и найдены поправки более высоких степеней по волновому вектору. Показано, что электрон-дырочная асимметрия оказывает наибольшее влияние на структуру спиральных состояний для резкой границы с вакуумом, в случае же плавной границы, например, контакта между двумя изоляторами, ее роль существенно снижается. Полученные результаты могут быть использованы при анализе магнито-транспортных явлений и краевого фотогальванического эффекта в квантовых ямах HgTe/HgCdTe.

Приложение А: Расчет волновых функций краевых состояний при $\mathcal{D} = 0$

В этом разделе мы получим аналитические выражения для волновых функций ψ_{k_ys} в случае $\mathcal{D} = 0$ и в пределе $\mathcal{D}/\mathcal{B} \ll 1$. Функции ψ_{k_ys} будем искать в виде (23), где система уравнений на функции $a_{1,2}$ и $b_{1,2}$ приведена в (29). Будем искать решение системы в виде $a_{1,2}$, $b_{1,2} \propto e^{-\lambda x}$ с положительными λ . Подставив решение в систему, найдем корни характеристического уравнения λ_j и соответствующие им вектора как функции энергии *E*. Можно показать, что граничное условие $\psi_{kys}(x=0) = 0$ может быть удовлетворено только при

 $E = \mathcal{A}k_y / \sqrt{1 + k_0^2 l_2^2}$, см. формулу (30).

В пределе $l_1 \ll l_2$ найденной энергии отвечают следующие λ :

$$\lambda_1 = \lambda_2 = \frac{1}{l_1}, \quad \lambda_3 = \lambda_4^* = \frac{1}{l_2} - ik_0 \sqrt{1 - \frac{E^2}{\delta_0^2}}.$$
 (A1)

Из этой формулы видно, что при $|E| < |\delta_0|$ (энергия краевого состояния лежит в объемной щели) меняется только период осцилляций волновой функции, а длина затухания не меняется. При $|E| > |\delta_0|$ начинает увеличиваться длина затухания, и наконец, при $E = \pm \delta_0 \sqrt{1 + \delta_0^2/\gamma^2}$ длина затухания обращается в бесконечность. Как и в случае $\gamma = 0$, это происходит в точке касания краевой и объемной дисперсионных ветвей.

Приведем также окончательные выражения для функций $a_{1,2}$ и $b_{1,2}$

$$a_{1}(x) = v_{1} \left\{ e^{-x/l_{1}} \cos \varphi_{1} - e^{-x/l_{2}} \cos[k_{0}(E)x - \varphi_{1}] \right\},$$

$$a_{2}(x) = v_{1}e^{-x/l_{1}} \cos \varphi_{1} - v_{2}e^{-x/l_{2}} \cos[k_{0}(E)x - \varphi_{1} - \varphi_{2}],$$

$$b_{1}(x) = e^{-x/l_{1}} \sin \varphi_{1} + v_{1}v_{2}e^{-x/l_{2}} \sin[k_{0}(E)x - \varphi_{1} - \varphi_{2}],$$

$$b_{2}(x) = e^{-x/l_{1}} \sin \varphi_{1} + e^{-x/l_{2}} \sin[k_{0}(E)x - \varphi_{1}].$$
(A2)

Здесь

$$k_{0}(E) = k_{0}\sqrt{1 - \frac{E^{2}}{\delta_{0}^{2}}}, \quad \tan 2\varphi_{1} = \frac{k_{0}(E)l_{2}}{1 + k_{y}l_{2}}, \quad (A3)$$
$$v_{1} = \sqrt{\frac{|\delta_{0}| - E}{|\delta_{0}| + E}}, \quad v_{2} = \sqrt{\frac{|\delta_{0}|\sqrt{1 + k_{0}^{2}l_{2}^{2}} - E}{|\delta_{0}|\sqrt{1 + k_{0}^{2}l_{2}^{2}} + E}},$$
$$\tan \varphi_{0} = \frac{Ek_{0}l_{2}}{\frac{|\delta_{0}|}{1 + k_{0}^{2}}}$$

$$\tan \varphi_2 = \frac{1}{\sqrt{\delta_0^2 - E^2}\sqrt{1 + k_0^2 l_2^2}}.$$

Как было показано в разделе IV В2, в случае $\mathscr{D}/\mathscr{B} \ll 1$ система (29) имеет такой же вид, что и при $\mathscr{D} = 0$, только теперь длина l_2 зависит от энергии по формуле (31). Таким образом, чтобы найти волновые функции краевых состояний в пределе $\mathscr{D}/\mathscr{B} \ll 1$, нужно подставить в формулы (А2) и (А3) длину l_2 , определяемую выражением (31).

Благодарности

Автор выражает благодарность С.А. Тарасенко за полезные обсуждения.

Финансирование работы

Работа выполнена при финансовой поддержке гранта Президента Российской Федерации (проект № МК-2943.2019.2) и гранта Фонда развития теоретической физики и математики "Базис".

Автор выражает благодарность С.А. Тарасенко за полезные обсуждения.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- [1] B.A. Bernevig, T.L. Hughes, S.-C. Zhang. Science **314**, 1757 (2006).
- [2] M.König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang. Science 318, 766 (2007).
- [3] I. Knez, R.-R. Du, G. Sullivan. Phys. Rev. Lett. 107, 136603 (2011).
- [4] A. Roth, C. Brüne, H. Buhmann, L.W. Molenkamp, J. Maciejko, X.-L. Qi, S.-C. Zhang. Science 325, 294 (2009).
- [5] G.M. Gusev, Z.D. Kvon, O.A. Shegai, N.N. Mikhailov, S.A. Dvoretsky, J.C. Portal. Phys. Rev. B 84, 121302 (2011).
- [6] E.Y. Ma, M.R. Calvo, J. Wang, B. Lian, M. Mühlbauer, C. Brüne, Y.-T. Cui, K. Lai, W. Kundhikanjana, Y. Yang, M. Baenninger, M. König, C. Ames, H. Buhmann, P. Leubner, L.W. Molenkamp, S.-C. Zhang, D. Goldhaber-Gordon, M. A. Kelly, Z.-X. Shen. Nature Commun. 6, 7252 (2015).
- [7] S.U. Piatrusha, E.S. Tikhonov, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretsky, V.S. Khrapai. Phys. Rev. Lett. **123**, 056801 (2019).
- [8] Y. Tanaka, A. Furusaki, K.A. Matveev. Phys. Rev. Lett. 106, 236402 (2011).
- [9] A.M. Lunde, G. Platero. Phys. Rev. B 86, 035112 (2012).
- [10] B.L. Altshuler, I.L. Aleiner, V.I. Yudson. Phys. Rev. Lett. 111, 086401 (2013).
- [11] J.I. Väyrynen, M. Goldstein, Y. Gefen, L. I. Glazman. Phys. Rev. B 90, 115309 (2014).
- [12] M.V. Entin, L.I. Magarill. JETP Lett. 100, 566 (2015).
- [13] P.D. Kurilovich, V.D. Kurilovich, I.S. Burmistrov, M. Goldstein. JETP Lett. 106, 593 (2017).
- [14] K.E. Nagaev. Phys. Status Solidi (RRL) Rap. Res. Lett. 12, 1700422 (2018).
- [15] K.-M. Dantscher, D.A. Kozlov, M.T. Scherr, S. Gebert, J. Bärenfänger, M.V. Durnev, S.A. Tarasenko, V.V. Bel'kov, N.N. Mikhailov, S.A. Dvoretsky, Z.D. Kvon, J. Ziegler, D. Weiss, S.D. Ganichev. Phys. Rev. B 95, 201103 (2017).
- [16] M.V. Durnev, S.A. Tarasenko. Ann. Phys. 1800418 (2019).
- [17] Z. Fei, T. Palomaki, S. Wu, W. Zhao, X. Cai, B. Sun, P. Nguyen, J. Finney, X. Xu, D.H. Cobden. Nature Phys. 13, 677 EP (2017).
- [18] X.-L. Qi, S.-C. Zhang. Rev. Mod. Phys. 83, 1057 (2011).
- [19] M. König, H. Buhmann, L.W. Molenkamp, T. Hughes, C.-X. Liu, X.-L. Qi, S.-C. Zhang. J. Phys. Soc. 77, 031007 (2008).
- [20] B. Zhou, H.-Z. Lu, R.-L. Chu, S.-Q. Shen, Q. Niu. Phys. Rev. Lett. 101, 246807 (2008).
- [21] E.B. Sonin. Phys. Rev. B 82, 113307 (2010).
- [22] P.C. Klipstein. Phys. Rev. B 91, 035310 (2015).

- [23] V.V. Enaldiev, I.V. Zagorodnev, V.A. Volkov. Pis'ma Zh. Eksp. Teor. Fiz. 101, 94 (2015).
- [24] V. Kaladzhyan, P.P. Aseev, S.N. Artemenko. Phys. Rev. B 92, 155424 (2015).
- [25] M.V. Entin, M.M. Mahmoodian, L.I. Magarill. EPL (Europhys. Lett.) 118, 57002 (2017).
- [26] X. Dai, T.L. Hughes, X.-L. Qi, Z. Fang, S.-C. Zhang. Phys. Rev. B 77, 125319 (2008).
- [27] S.A. Tarasenko, M.V. Durnev, M.O. Nestoklon, E.L. Ivchenko, J.-W. Luo, A. Zunger. Phys. Rev. B 91, 081302 (2015).
- [28] R. Winkler, L. Wang, Y. Lin, C. Chu. Solid State Commun. 152, 2096 (2012).
- [29] M.V. Durnev, S.A. Tarasenko. Phys. Rev. B 93, 075434 (2016).
- [30] G.M. Minkov, A.V. Germanenko, O.E. Rut, A.A. Sherstobitov, M.O. Nestoklon, S.A. Dvoretski, N.N. Mikhailov. Phys. Rev. B 93, 155304 (2016).
- [31] M.V. Durnev, S.A. Tarasenko. J. Phys.: Condens. Matter 31, 035301 (2019).
- [32] M. Entin, L. Magarill. Pis'ma Zh. Eksp. Teor. Fiz. 103, 804 (2016).
- [33] X. Marie, T. Amand, P. Le Jeune, M. Paillard, P. Renucci, L.E. Golub, V.D. Dymnikov, E.L. Ivchenko. Phys. Rev. B 60, 5811 (1999).
- [34] R. Jackiw, C. Rebbi. Phys. Rev. D 13, 3398 (1976).
- [35] B.A. Volkov, O.A. Pankratov. Pis'ma Zh. Eksp. Teor. Fiz. 42, 145 (1985).

Редактор Т.Н. Василевская