04

Подвижность ионных носителей заряда в пьезоэлектрических кристаллах Li₂B₄O₇

© Н.И. Сорокин, Ю.В. Писаревский, В.В. Гребенев, В.А. Ломонов

Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

E-mail: nsorokin1@yandex.ru

Поступила в Редакцию 19 октября 2019 г. В окончательной редакции 19 октября 2019 г. Принята к публикации 19 октября 2019 г.

Выполнены импедансные измерения монокристалла Li₂B₄O₇ с Ag-электродами в интервале частот $1-3 \cdot 10^7$ Hz при комнатной температуре. Кристалл Li₂B₄O₇ (пр. гр *I*4₁*cd*, *Z* = 8) ориентировался вдоль кристаллографической оси *c*. Из годографа импеданса системы Ag|Li₂B₄O₇|Ag выделены вклады от объема кристалла и границы кристалл/электрод. Обсуждается структурный механизм литийионного транспорта в кристаллах Li₂B₄O₇. На основании электрофизических и структурных данных рассчитаны сквозная проводимость $\sigma_{dc} = 2.3 \cdot 10^{-9}$ S/cm, подвижность носителей заряда (вакансий V_{Li}^-) $\mu_{mob} = 6 \cdot 10^{-10}$ cm²/sV и их концентрация $n_{mob} = 2.4 \cdot 10^{19}$ cm⁻³ (0.14% от количества лития в кристаллической решетке).

Ключевые слова:ионная проводимость, тетраборат лития, монокристаллы, импедансная спектроскопия.

DOI: 10.21883/FTT.2020.03.49001.631

1. Введение

Кристаллы тетрабората лития $Li_2B_4O_7$ (пр. гр $I4_1cd$, Z = 8) являются перспективными материалами пьезотехники и акустоэлектроники, инфракрасной и нелинейной оптики; их дефектная структура и физические свойства интенсивно исследуются [1-8]. Монокристаллы Li₂B₄O₇ выращивают из расплава методом Чохральского [4,6] или гидротермальным синтезом [9]. Обнаружено [9-15], что они обладают одномерной ионной (Li⁺) проводимостью вдоль полярной кристаллографической оси с. В работах [9-15] ионная проводимость тетрабората лития измерялась как интегральная характеристика носителей заряда. Для микроскопического описания механизма ионной проводимости кристаллов Li₂B₄O₇ необходимо определить среднюю частоту перескоков v_h , выполнить расчет подвижности μ_{mob} и концентрации *n_{mob}* ионных носителей.

Целью работы является рассмотрение кристаллофизической модели ионного переноса в Li₂B₄O₇ и расчет микроскопических характеристик носителей заряда. Предварительные результаты исследования были доложены на международном совещании "Фундаментальные проблемы ионики твердого тела" (2018) [16].

2. Эксперимент

Кристаллы Li₂B₄O₇ выращены из расплава по методу Чохральского в Институте кристаллографии ФНИЦ "Кристаллография и фотоника" РАН. Параметры тетрагональной элементарной ячейки равны a = 9.479 и c = 10.286 Å. Плоскопараллельный образец толщиной 0.5 mm и площадью 110 mm² ориентировался вдоль полярной кристаллографической оси *с* (*Z*-срез).

Электрофизические измерения проведены методом импедансной спектроскопии в диапазонt частоты $(1-3) \cdot 10^7$ Hz (установка Novoterm-1200 с анализатором импеданса Alpha-AN) при комнатной температуре (293 K). Электроды выполнены в виде контактов Ag толщиной 70 nm с адгезионным подслоем Cr толщиной 30 nm.

Годограф удельного импеданса (комплексного сопротивления) $Z^*(v)$ для электрохимической системы Ag|Li2B4O7|Ag показан на рис. 1. На низких частотах наблюдается полуокружность с центром на оси абсцисс, при высоких частотах — наклонная прямая. Соответствующая годографу $Z^*(v)$ эквивалентная электрическая схема монокристалла Li₂B₄O₇ с блокирующими (Ag) электродами представлена на вставке к рис. 1. Она содержит объемное сопротивление R_b , геометрическую емкость C_g и частотно-зависимый элемент с постоянным фазовым углом $P_{el}(\omega)$, отвечающий приэлектродным процессам накопления и переноса заряда на границах кристалл/электрод.

Параметры эквивалентной схемы определяли нелинейным методом наименыших квадратов, используя программу ZView (Scribner Associates). Удельное объемное сопротивление и геометрическая емкость равны $R_b = (4.34 \pm 0.05) \cdot 10^8 \,\mathrm{Ohm^{-1} \cdot cm^{-1}}$ и $C_g = (1.16 \pm 0.03) \cdot 10^{-12} \,\mathrm{F} \cdot \mathrm{cm^{-1}}$ соответственно. Адмиттанс частотно-зависимого элемента $P_{el}(\omega)$ имеет вид

$$Y_{el}^* = Y_0(i\omega)^n,$$

где $0 \le n \le 1$. В общем виде при n = 1 элемент $P_{el}(\omega)$ трансформируется в емкость $C, Y^* = C(i\omega);$

Рис. 1. Годограф импеданса $Z^*(\nu)$ и эквивалентная электрическая схема для системы Ag|Li₂B₄O₇|Ag.

при n = 0.5 — в диффузионный импеданс Варбурга $W, Y^* = W(i\omega)^{0.5}$; при n = 0 — в активное сопротивление электродной реакции $R, Y^* = R^{-1}$. Рассчитанные параметры электродного импеданса Y^*_{el} составляют $Y_{el,0} = (2.35 \pm 0.04) \cdot 10^{-10} \,\mathrm{S} \cdot \mathrm{cm}^{-1} \cdot \mathrm{Hz}^{0.64}$, $n_{el} \approx 0.64 \pm 0.01$.

3. Структурный механизм литийионного транспорта

Особенности кристаллохимического строения кристаллов Li₂B₄O₇ указывают на анизотропный (одномерный) характер σ_{dc} , обусловленный преимущественной миграцией катионов Li⁺ вдоль оси с в каналах бор-кислородного каркаса. В основе кристаллической структуры Li₂B₄O₇ (пр. гр. $I4_1cd$, Z = 8) [1–3] лежит бор-кислородный каркас из комплексов [В2О9], образованный двумя [ВО4]-тетраэдрами и двумя планарными тригональными [ВО3]-группами. Группа [В2О9] изогнута и не имеет плоскости симметрии. Катионы бора расположены в характерных для этого элемента координационных полиэдрах двух типов: треугольниках [BO₃] и тетраэдрах [BO₄]. Спектры B¹¹ ЯМР [6] указывают на "жескость" бор-кислородного каркаса, характер связей В-О является существенно ковалентным.

В элементарной ячейке тетрабората лития содержится 16 катионов Li^+ , расположенных в структурных каналах, которые простираются в направлении параллельно полярной оси c. Ионы Li^+ слабо связаны с бор-кислородным каркасом и их амплитуда тепловых

колебаний в 2–5 раза больше, чем для "каркасных" ионов B^{3+} и O^{2-} [2,3,14]. Принято считать [9], что в кристаллах $Li_2B_4O_7$ в области собственной проводимости точечными дефектами, рождающимися в кристаллической решетке за счет тепловой энергии, являются дефекты по Френкелю, которые образуются в литиевой подрешетке.

Кристаллохимическое строение кристаллов Li₂B₄O₇ и величина энтальпии активации ионного транспорта (0.4–0.5 эВ [11,12,17]) указывают, что в условиях тепловой активации подвижные ионы Li⁺ в ионном переносе участвуют по вакансионному механизму электропроводности. Структурные исследования кристаллов Li₂B₄O₇ [1–3] не зафиксировали недозаселенность позиций лития пр.гр. $I4_1cd$, поэтому дефицит лития в кристаллографических позициях (число вакансий V_{Li}^-) незначителен. Вакансии V_{Li}^- возникают при росте кристаллов Li₂B₄O₇ и определяют их величину проводимости σ_{dc} .

Подвижность и концентрация носителей заряда

Носителями заряда прыжкового типа являются вакансии V_{Li}^- , расположенные в кристаллографических позициях литиевой подрешетки. Это позволяет с учетом электрофизических и кристаллохимических данных для кристаллов Li₂B₄O₇ рассчитать подвижность μ_{mob} и концентрацию n_{mob} носителей заряда.

Частотная зависимость динамической (переменнотоковой) проводимости $\sigma(\nu)$ для монокристалла Li₂B₄O₇ показана на рис. 2. Обработку частотной зависимости электропроводности проводили в рамках модели Алмонда–Веста [18]. Среднюю частоту прыжков ν_h носителей заряда определяли из зависимости динамической

Рис. 2. Частотная зависимость проводимости $\sigma(\nu)$ для монокристалла Li₂B₄O₇.

проводимости:

$$\sigma(\nu) = \sigma_{dc} [1 + (\nu/\nu_h)^n], \qquad (1)$$

где σ_{dc} — статическая электропроводность. При $\nu < \nu_h$ ионные носители участвуют в процессе электропроводности, а при $\nu > \nu_h$ — в процессе диэлектрической релаксации. Из частотной зависимости проводимости $\sigma(\nu)$ найдены статическая проводимость $\sigma_{dc} = 2.3 \cdot 10^{-9}$ S/cm и частота прыжков носителей заряда $\nu_h \approx 1 \cdot 10^5$ Hz.

Проведенная нами оценка из данных [15] электронной проводимости образцов Li₂B₄O₇, выращенных в тех же условиях в Институте кристаллографии, дала $\sigma_e \approx 2 \cdot 10^{-11}$ S/cm. Кондуктометрические измерения в [15] проводились на образцах с блокирующими (серебряными) электродами при наложении постоянного электрического поля 20–360 V/mm. В этом случае в стационарном режиме ионный ток через кристалл не течет, и остаточный ток определяется электронной составляющей σ_e . Полученные результаты указывают, что величина σ_e не превышает 1% от общей электропроводности σ_{dc} и определенная из импедансных измерений статическая проводимость σ_{dc} имеет ионную природу.

Величина подвижности μ_{mob} носителей заряда задается соотношением Нернста–Эйнштейна и определяется их частотой прыжков ν_h и длиной прыжка d:

$$\mu_{mob} = q \nu_h d^2 / 6kT, \qquad (2)$$

где q — заряд, T — температура. Среднее расстояние Li–Li в кристаллической решетке Li₂B₄O₇ равно $d \approx 3$ Å [2,3,17]). Подставив в (2) частоту v_h и длину прыжков d носителей заряда, находим подвижность μ_{mob} носителей заряда $\mu_{mob} = 6 \cdot 10^{-10} \text{ cm}^2/\text{Vs}$. Полученное значение подвижности носителей заряда в кристалле Li₂B₄O₇ существенно ниже подвижности ионов Li⁺ $\mu_{mob} = 8 \cdot 10^{-7} \text{ cm}^2/\text{Vs}$ [19] в суперионном кристалле Li_{3x}La_{1/3-x}TaO₃ (x = 0.06) со структурой перовскита.

Величина ионной проводимости кристаллов определяется произведением концентрации и подвижности носителей заряда

$$\sigma_{dc} = q n_{mob} \mu_{mob}, \tag{3}$$

где q — заряд, n_{mob} и μ_{mob} — концентрация и подвижность соответственно. Взяв проводимость σ_{dc} и подвижность μ_{mob} носителей заряда, из (3) можно оценить концентрацию n_{mob} носителей заряда (вакансий V_{Li}^-). Концентрация n_{mob} в изученном кристалле Li₂B₄O₇ равна

$$n_{mob} = \sigma_{dc}/q\mu_{mob} = 2.4 \cdot 10^{19} \,\mathrm{cm}^{-3}.$$
 (4)

Расчет количества ионов Li^+ в кристаллической структуре $Li_2B_4O_7$ дает

$$n_{\rm Li} = 2Z/a^2c = 1.7 \cdot 10^{22} \,{\rm cm}^3,$$
 (5)

где число структурных единиц в элементарной ячейке Z = 8. Величина носителей заряда nmob составляет 0.14% от количества ионов Li⁺ в структуре Li₂B₄O₇.

5. Заключение

Методом импедансной спектроскопии измерена частотной зависимость проводимости $\sigma(v)$ кристаллов Li₂B₄O₇ (|| оси *c*), из которой в рамках подхода Алмонда–Веста найдены статическая проводимость $\sigma_{dc} = 2.3 \cdot 10^{-9}$ S/ст и частота прыжков носителей заряда $v_h = 1 \cdot 10^5$ Hz. Ионная проводимость σ_{dc} кристаллов Li₂B₄O₇ обусловлена появлением подвижных катионов Li⁺ вследствие структурного (позиционного) разупорядочения литиевой подрешетки. Ионный транспорт происходит прыжковыми перемещениями вакансий лития V_{Li}^- по кристаллической решетке. Рассчитаны подвижность и концентрация носителей заряда, которые составляют $\mu_{mob} = 6 \cdot 10^{-10} \text{ сm}^2/\text{sV}$ и $n_{mob} = 2.4 \cdot 10^{19} \text{ сm}^{-3}$.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] J. Krog-Moe. Acta Cryst. 15, 190 (1962).
- [2] J. Krog-Moe. Acta Cryst. B. 24, 179 (1968).
- [3] С.Ф. Радаев, Л.А. Мурадян, Л.Ф. Малахова, Я.В. Бурак, В.И. Симонов. Кристаллография 34, 1400 (1989).
- [4] И.М. Сильвестрова, П.А. Сенющенков, В.А. Ломонов, Ю.В. Писаревский. ФТТ 31, 311 (1989).
- [5] А.Э. Алиев, Я.В. Бурак, В.В. Воробьев, И.Т. Лысейко, Е.А. Чарная. ФТТ 32, 2826 (1990).
- [6] Ю.Н. Иванов, Я.В. Бурак, К.С. Александров. ФТТ 32, 3379 (1990).
- [7] А.В. Вдовин, В.Н. Моисеенко, В.С. Горелик, Я.В. Бурак. ФТТ 43, 1584 (2001)
- [8] А.Э. Алиев, В.Ф. Криворотов, П.К. Хабибуллаев. ФТТ 39, 1548 (1997).
- [9] D.R. Button, L.S. Masson, H.L. Tuller, D.R. Uhlmann. Solid State Ionics 9-10, 585 (1983).
- [10] K. Byrappa, V. Rajeev, V.J. Hanumesh, A.R. Kulkarni, A.B. Kulkarni. J. Mater. Res. 11, 2616 (1996).
- [11] А.Э. Алиев, Я.В. Бурак, И.Т. Лысейко. Изв. АН СССР. Неорган. материалы 26, 1991 (1990)
- [12] A.F. Aliev, I.N. Kholmanov, P.K. Khabibullaev. Solid State Ionics. 118, 111 (1999).
- [13] V.M. Rizak, I.M. Rizak, N.D. Bause, V.S. Bilanych, S.Yu. Stefanovych, M.B. Bohuslavskii, V.M. Holovey. Ferroelectrics 286, 49 (2003).
- [14] S.J. Kim, W.K. Kim, Y.C. Cho, S. Park, I.K. Jeong, Y.S. Yang, Y. Kuroiwa, C. Moriyoshi, H. Tanaka, M. Takata, S.Y. Jeong. Current Appl. Phys. **11**, 649 (2011).

- [15] А.Г. Куликов, Ю.В. Писаревский, А.Е. Благов, Н.В. Марченков, В.А. Ломонов, А.А. Петренко, М.В. Ковальчук. ФТТ 61, 671 (2019)
- [16] Н.И. Сорокин, Ю.В. Писаревский, В.В. Гребенев, В.А. Ломонов. Тр. XIV междунар. совещания "Фундаментальные проблемы ионики твердого тела". Черноголовка (9–13 сентября 2018). Издательская группа "Граница", М. (2018). С. 115.
- [17] M.M. Islam, T. Bredow, C. Minot. J. Phys. Chem. B 110, 17518 (2006).
- [18] D.P. Almond, C.C. Hunter, A.R. West. J. Mater. Sci. 19, 3236 (1984).
- [19] K. Mizumoto, S. Hayashi. J. Ceram. Soc. Jpn. 106, 713 (1998).

Редактор Т.Н. Василевская