04,02

Сверхтонкие взаимодействия в узлах меди антиферромагнитных соединений, аналогов сверхпроводящих металлооксидов меди

© Е.И. Теруков^{1,2}, А.В. Марченко³, Ф.С. Насрединов⁴, А.А. Левин¹, А.А. Лужков³, П.П. Серегин^{3,¶}

¹ Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина),

Санкт-Петербург, Россия

³ Российский государственный педагогический университет им. А.И. Герцена,

Санкт-Петербург, Россия

⁴ Санкт-Петербургский политехнический университет Петра Великого,

Санкт-Петербург, Россия

[¶] E-mail: ppseregin@mail.ru

Поступила в Редакцию 14 октября 2019 г. В окончательной редакции 14 октября 2019 г. Принята к публикации 29 октября 2019 г.

Эмиссионные мёссбауэровские спектры 61 Cu(61 Ni) диэлектрических металлоксидов двухвалентной меди Ca_{1-x}Sr_xCuO₂, Ca₂CuO₂Cl₂, SrCuO₂, Sr₂CuO₂Cl₂, YBa₂Cu₃O_{7-x}, La_{2-x}Sr_xCuO₄, Nd_{2-x}Ce_xCuO₄ отвечают квадрупольному и зеемановском взаимодействию ядер 61 Ni с локальными полями в узлах меди, тогда как для сверхпроводящих металлоксидов спектры соответствуют взаимодействию квадрупольного момента ядер 61 Ni с тензором градиента электрического поля (ГЭП). Для обеих групп металлоксидов наблюдаются линейные зависимости постоянных квадрупольного взаимодействия как на ядрах 61 Ni (данные эмиссионной мессбауэровской спектроскопии на изотопах 61 Cu(61 Ni)), так и на ядрах 63 Cu (данные ядерного магнитного резонанса на изотопе 63 Cu) от расчетных значений главной компоненты тензора решеточного ГЭП в узлах меди. Этот факт объясняется неизменными значениями валентной составляющей ГЭП, как для зонда 61 Ni²⁺, так и для зонда 63 Cu²⁺ во всех металлоксидах двухвалентной меди.

Ключевые слова: антиферромагнетики, высокотемпературные сверхпроводники, эмиссионная мессбауэровская спектроскопия, ЯМР, тензор градиента электрического поля.

DOI: 10.21883/FTT.2020.03.49000.606

1. Введение

Многие сверхпроводящие металлоксиды двухвалентной меди (высокотемпературные сверхпроводники, ВТСП) были получена из своих аналогов — антиферромагнитных диэлектрических соединений, таких как YBa₂Cu₃O₆ [1], La₂CuO₄ [2], Nd₂CuO₄ [3], CaCuO₂ [4], SrCuO₂ [5], Ca₂CuO₂Cl₂ [6] и Sr₂CuO₂Cl₂ [7], либо методом гетеровалентного замещения редкоземельных металлов, либо методом изменения степени окисления атомов меди. Все эти соединения представляют интерес как в плане модельных систем с анизотропным взаимодействием, так и в плане изучения возможной связи между магнетизмом и сверхпроводимостью.

Мёссбауэровская спектроскопия на различных изотопах (⁵⁷Fe, ¹¹⁹Sn, ¹⁵⁵Gd, ¹⁶¹Dy, ¹⁷⁰Yb) широко используется для изучения ВТСП на основе металлоксидов меди [8]. Наибольший интерес такие исследования представляют, если мёссбауэровский зонд находится в узлах меди. В частности, как было показано в [9], для исследования комбинированного магнитного и электрического квадрупольного взаимодействия в узлах меди решеток ВТСП целесообразно использовать эмиссионный вариант мёссбауэровской спектроскопии на изотопах

⁶¹Cu(⁶¹Ni). В этом случае мёссбауэровский зонд ⁶¹Ni²⁺, образующийся после радиоактивного распада ⁶¹Cu, оказывается в медных узлах, а ядерные и атомные параметры зонда наиболее удобны для определения параметров комбинированного сверхтонкого взаимодействия в узлах меди. В настоящей работе метод эмиссионной мёссбауэровской спектроскопии на изотопах ⁶¹Cu(⁶¹Ni) используется для исследования сверхпроводящих и диэлектричских соединений Ca_{1-x}Sr_xCuO₂, Ca₂CuO₂Cl₂, SrCuO₂, Sr₂CuO₂Cl₂, YBa₂Cu₃O_{7-x}, La_{2-x}Sr_xCuO₄ и Nd_{2-x}Ce_xCuO₄.

2. Методика эксперимента

Поликристаллические образцы $Ca_{1-x}Sr_xCuO_2$, $Ca_2CuO_2Cl_2$, $SrCuO_2$, $Sr_2CuO_2Cl_2$, $YBa_2Cu_3O_{7-x}$, $La_{2-x}Sr_xCuO_4$ и $Nd_{2-x}Ce_xCuO_4$ готовились по методикам, описанным в [1–9]. Однофазность образцов контролировалась рентгеноструктурным анализом. Критические температуры для сверхпроводящих образцов $YBa_2Cu_3O_{6.9}$, $La_{1.85}Sr_{0.15}CuO_4$ и $Nd_{1.85}Ce_{0.15}CuO_4$ были 78, 37 и 22 К соответственно.

Изотоп 61 Си получали по реакции 61 Ni(p, n) 61 Си с последующим хроматографическим выделением безно-

сительного препарата 61 CuCl₂. Мёссбауэровские источники на основе металлоксидов меди готовились методом диффузии изотопа 61 Cu в готовые керамики при температурах 500–650°C в течение 2 h в атмосфере кислорода [9]. Активность препарата 61 Cu и малое время жизни (~ 4.5 h) не позволяли получить мёссбауэровский спектр требуемого качества от одного образца, и для регистрации одного спектра использовалось от 4 до 6 образцов.

Эмиссионные мёссбауэровские спектры 61 Cu(61 Ni) снимались на спектрометре SM 4201 TerLab. Стандартным поглотителем служил сплав Ni_{0.86}V_{0.14} (поверхностная плотность 1500 mg/cm²). Все спектры снимались при 80 K.

3. Экспериментальные результаты и их обсуждение

Экспериментальные мёссбауэровские спектры ⁶¹Cu(⁶¹Ni) исследованных соединений представляют собой плохо разрешенные мультиплеты (см. рис. 1).

В спектрах сверхпроводящих соединений YBa₂Cu₃O_{6.9}, La_{1.85}Sr_{0.15}CuO₄ и Nd_{1.85}Ce_{0.15}CuO₄ следует ожидать результатов взаимодействия квадрупольного момента ядер ⁶¹Ni с тензором градиента электрического поля (ГЭП) в узлах меди. При этом основной уровень ядра ⁶¹Ni расщепляется на два (спин I = 3/2, квадрупольный момент $Q_{gr}^{61} = 0.162 b$ [8]), а возбужденный —

Рис. 1. Эмиссионные мёссбауэровские спектры 61 Cu(61 Ni) сверхпроводящей керамики La_{1.85}Sr_{0.15}CuO₄ и диэлектрических керамик La₂CuO₄, SrCuO₂ и Sr₂CuO₂Cl₂.

на три подуровня ($I_{ex} = 5/2$, $Q_{ex}^{61} = -0.2 b$ [8]). В итоге экспериментальные спектры описывались как наложение пяти линий с отношением интенсивностей 10:4:1:6:9.

Полученный на предварительном этапе исследования спектр примесных атомов ⁶¹Cu(⁶¹Ni) в MgO представлял собой одиночную линию (на рис. 1 не показана) с шириной на полувысоте G = 1.00(2) mm/s, которая несколько превышает удвоенную естественную ширину ядерного уровня ⁶¹Ni ($2G_{nat} = 0.78$ mm/s). Уширение объясняется конечной поверхностной плотностью поглотителя, в дальнейшем при обработке экспериментальных мёссбауэровских спектров величина 1 mm/s была принята за фиксированную аппаратурную ширину спектральной линии.

Поскольку диэлектрические соединения Ca₂CuO₂Cl₂, SrCuO₂, $Ca_{1-x}Sr_xCuO_2$, Sr₂CuO₂Cl₂, YBa₂Cu₃O₆, La₂CuO₄ и Nd₂CuO₄ являются антиферромагнетиками с высокими значениями температуры Нееля [1–9], то структуру их мёссбауэровских спектров в области температур < 200 K следует рассматривать как результат комбинированного квадрупольного и зеемановского взаимодействия ядер ⁶¹Ni с локальными полями. На полученных спектрах это обнаруживается как существенное расширение диапазона скоростей, в котором регистрируются спектральные линии. Для чисто зеемановского взаимодействия мёссбауэровский спектр должен симметрично расщепляться на 12 линий с отношением интенсивностей 10:4:1:6:6:3:3:6:6:1:4:10. В случае комбинированного магнитного и электрического взаимодействия собственные значения гамильтониана для каждого, основного и возбужденного, уровня могут быть найдены из соотношения

$$E_{m}^{I} = mgH + [eQU_{zz}/4I(2I-1)][3m^{2} - I(I+1)] \times [(3\cos^{2}\theta - l)/2].$$
(1)

Здесь *I* — спин ядра; *H* — магнитное поле на ядре; U_{zz} — главная компонента тензора ГЭП на ядре; θ угол между главной осью тензора ГЭП и направлением магнитного поля; *m* — магнитное квантовое число; *g* — гидромагнитное отношение (для ядра ⁶¹Ni в основном состоянии *g* = -0.070083 mm/s · T и в возбужденном состоянии *g_{ex}* = 0.0268 mm/s · T [9]). Симметричное расположение линий спектра при этом нарушается.

Расчетный спектр подгонялся к экспериментальному спектру методом наименыших квадратов. Подгоночными параметрами были не положения отдельных линий, а параметры гамильтониана H и $U_{zz}[(3\cos^2\theta - 1)/2]$, общие для обоих ядерных уровней, а также интенсивности линий. При этом величина множителя $(3\cos^2\theta - 1)/2$ определялась с использованием данных [9–16]. Ширины линий были приняты равными 1 mm/s, как описано выше. Поскольку в спектрах ⁶¹Ni диапазон наблюдавшихся изомерных сдвигов $\ll G$, мы следили за тем, чтобы центр тяжести расчетного мультиплета не отклонялся от нулевой скорости больше, чем на 0.05 mm/s. Согласие

Рис. 2. Соотношение констант квадрупольного взаимодействия C_{Ni} для центров ⁶¹Ni в узлах меди и C_{Cu} для центров ⁶³Cu в тех же узлах. Обозначения узлов меди в решетках: $I - \text{La}_{1.85}\text{Sr}_{0.15}\text{CuO}_4$, 2 - Cu(2) в YBa₂Cu₃O₇, $3 - \text{La}_2\text{CuO}_4$, 4 - Cu(2) в YBa₂Cu₃O₆, $5 - \text{Nd}_2\text{CuO}_4$, $6 - \text{SrCuO}_2$.

расчетного и экспериментального спектров оценивалось по критерию χ^2 .

Результаты обработки мёссбауэровских спектров представлены в виде константы квадрупольного взаимодействия $C_{\rm Ni} = e Q_{gr}^{61} U_{zz}$ основного состояния ⁶¹Ni (для возбужденного состояния можно пересчитать через отношение квадрупольных моментов) и индукции эффективного магнитного поля на ядре *H*. Значимые корреляции между полученными значениями *H* и *C* обнаружены не были. Во всех изученных антиферромагнитных соединений величины *H* были в пределах от 8.5 T до 10.0 T.

При интерпретации величин $C_{\rm Ni}$ мы использовали известные значения константы квадрупольного взаимодействия $C_{\rm Cu} = eQ^{63}U_{zz}$ для центров ⁶³Cu, полученные для тех же материалов методом ядерного магнитного резонанса (ЯМР) [14–16] (здесь Q^{63} — квадрупольный момент ядра ⁶³Cu). На рис. 2 показана корреляция между $C_{\rm Ni}$ и $|C_{\rm Cu}|$ в узлах меди металлоксидов меди (малое значение спина ⁶³Cu не позволяет определить знак $C_{\rm Cu}$, и поэтому она указана по абсолютной величине).

Точки на рис. 2 удовлетворительно укладываются на прямую

$$C_{\rm Ni} = -0.31 |C_{\rm Cu}| - 32 \tag{2}$$

(здесь и далее значения констант квадрупольного взаимодействия приводятся в MHz).

Наличие корреляции между данными для $C_{\rm Ni}$ и $C_{\rm Cu}$ указывает на возможность их интерпретации с единой точки зрения. Для этой цели нами были проведены расчеты параметров тензора решеточного ГЭП на узлах меди во всех рассмотренных материалах.

Для обоих зондов ⁶¹Ni и ⁶³Cu ГЭП на ядре создается ионами кристаллической решетки (решеточный ГЭП) и несферической валентной оболочкой атома-зонда (валентный ГЭП)

$$eQU_{zz} = eQ(1-\gamma)V_{zz} + eQ(1-R)W_{zz},$$

где Q — квадрупольный момент атомного ядра, U_{zz} — главная компонента тензора суммарного ГЭП, V_{zz} и

 $W_{zz} - z$ -компоненты тензоров решеточного и валентного ГЭП в рассматриваемом узле, а γ и R — коэффициенты Штернхеймера для этого зонда.

Расчет тензора решеточного ГЭП проводился в рамках модели точечных зарядов и для этих расчетов необходимо лишь знание параметров элементарной ячейки соответствующего кристалла (эти данные для исследованных соединений известны [10–13]) и зарядов во всех узлах решетки. Компоненты тензора ГЭП определялись по формулам

$$V_{pp} = \sum_{k} e_{k}^{*} \sum_{i} \frac{1}{r_{ki}^{3}} \left(\frac{3p_{ki}^{2}}{r_{ki}^{2}} - 1 \right) = \sum_{k} e_{k}^{*} G_{ppk},$$
$$V_{pq} = \sum_{k} e_{k}^{*} \sum_{i} \frac{3p_{ki}q_{ki}}{r_{ki}^{5}} = \sum_{k} e_{k}^{*} G_{pqk},$$
(4)

где k — индекс суммирования по подрешеткам, i — индекс суммирования по узлам подрешетки, q, p — декартовы координаты, e_k^* — заряды атомов k-подрешетки, r_{ki} — расстояние от ki-иона до рассматриваемого узла. Решеточные суммы G_{ppk} и G_{pqk} подсчитывались на ЭВМ, суммирование проводилось внутри сферы радиуса 30 Å (больший радиус суммирования не давал изменения в результатах).

При расчетах V_{zz} принципиальное значение имеет выбор модели зарядового распределения по узлам решетки. Для диэлектрических оксидов заряды соответствующих атомов считались равными их традиционной валентности:

$$Ca_{1-x}^2Sr^{2+}Cu^{2+}O_2^{2-}, Ca_2^{2+}Cu^{2+}O_2^{2-}Cl_2^{-}, Sr^{2+}Cu^{2+}O_2^{2-},$$

 $Sr_2^{2+}Cu^{2+}O_2^{2-}Cl_2^{-}Cu^{2+}O^{2-}, Y^{3+}Ba_2^{2+}Cu(1)^+Cu(2)_2^{2+}O_6^{2-},$
 $La_2^{3+}Cu^{2+}O_4^{2-}$ и $Nd_2^{3+}Cu^{2+}O_4^{2-}.$

Для сверхпроводящих оксидов выбор моделей основывался на данных [8]:

$$La_{1.85}^{3+}Sr_{0.15}^{2+}Cu^{2+}O(1)_2^{2-}O(2)_2^{1.925-},$$

Nd_{1.85}^{3+}Ce_{0.15}^{4+}Cu^{1.85+}O(1)_2^{2-}O(2)_2^{2-}

И

$$Y^{3+}Ba_2^{1.98+}Cu(1)^{2.04}Cu(2)_2^{2.1+}O(1)_2^{2.06-}O(2)_2^{1.99-}O(3)_2^{1.88-}O(4)^{1.32}$$

Для всех узлов меди получено 0.55 < V_{zz} < 1.0 (здесь и далее V_{zz} приводится в единицах е/Å³), а параметр асимметрии тензора решеточного ГЭП

$$\eta = (V_{yy} - V_{xx})/V_{zz} = 0.$$

На рис. З показано соотношение между экспериментальными значениями $C_{\rm Ni}$ для центров ${}^{61}{\rm Ni}{}^{2+}$ в узлах меди исследованных соединений и рассчитанными значениями главной компоненты тензора решеточного ГЭП V_{zz} в тех же узлах.

Рис. 3. Зависимость константы квадрупольного взаимодействия для центров ⁶¹Ni в узлах меди C_{Ni} от главной компоненты тензора решеточного ГЭП в этих узлах V_{zz} . Обозначения узлов меди в решетках дано на рис. 2, а кроме того: 7 — Sr₂CuO₂Cl₂, 8 — Ca₂CuO₂Cl₂, 9 — Nd_{1.85}Ce_{0.15}CuO₄, 10 — Ca_{0.85}Sr_{0.15}CuO₂.

Рис. 4. Зависимость константы квадрупольного взаимодействия для центров ⁶³Cu в узлах меди от главной компоненты тензора решеточного ГЭП в этих узлах. Обозначения узлов меди в решетках дано в подписи к рис. 2.

Зависимость на рис. З линейна и определяется соотношением

$$C_{\rm Ni} = 49 \, V_{zz} - 81. \tag{5}$$

Из соотношения (3) следует, что линейная зависимость (5) является следствием одинаковой величины валентной составляющей в ГЭП для зонда Ni²⁺ в изученных металлоксидах двухвалентной меди. При этом уменьшение $|C_{\text{Ni}}|$ при увеличении V_{zz} свидетельствует о противоположных знаках валентного и решеточного вкладов в формуле (2) для центров Ni²⁺ и о выполнении соотношения $|(1 - R)W_{zz}| > |(1 - \gamma)V_{zz}|$ для центров Ni²⁺ в узлах меди. Поскольку измеренные значения C_{Ni} отрицательны, то с учетом $Q_{gr}^{61} > 0$ для основного состояния ⁶¹Ni, величина $eQ_{gr}^{61}(1 - R)W_{zz}$ для центров Ni²⁺ оказывается отрицательной и равной -81(2) MHz.

На рис. 4 показана подобная рис. 3 зависимость константы квадрупольного взаимодействия $C_{\rm Cu}$ для центров $^{63}{\rm Cu}^{2+}$ в узлах меди от рассчитанной выше главной компоненты тензора решеточного ГЭП в этих узлах. Как и на рис. 2, на рис. 4 приведены абсолютные величины $C_{\rm Cu}$. Видно, что зависимость на рис. 4 линейна

и определяется соотношением

$$|C_{\rm Cu}| = -150 \, V_{zz} + 153,\tag{6}$$

которое выполняется и для сверхпроводниковых, и для диэлектрических материалов.

Соотношение (3) означает, что линейная зависимость (6) является следствием неизменной величины валентной составляющей в ГЭП для зонда Cu^{2+} в металлоксидах двухвалентной меди. Уменьшение $|C_{Cu}|$ с ростом V_{zz} свидетельствует о противоположных знаках валентного и решеточного вкладов в формуле (3) и о выполнении соотношения $|(1-R)W_{zz}| > |(1-\gamma)V_{zz}|$ для центров Cu^{2+} . Поскольку значения $V_{zz} > 0$, то $W_{zz} < 0$, а при $Q^{63} = -0.211 b$ [8] $eQ^{63}(1-R)W_{zz} = 153(2)$ МНz > 0. Таким образом, расчеты ГЭП для узлов меди позволили установить знак констант квадрупольного взаимодействия для центров Cu^{2+} , недоступный для прямого измерения [14–16]. Соотношение (6) можно записать без знака модуля: $C_{Cu} = -150 V_{zz} + 153$.

Главные значения валентного ГЭП W_{zz} для обоих зондов Cu²⁺ и Ni²⁺ можно оценить, исходя из найденных валентных вкладов в константы квадрупольного взаимодействия $eQ(1-R)W_{zz}$ и известных квадрупольных моментов зондов. Если принять для (1-R) типичное значение 0.7, то $W_{zz} \approx -30 \text{ e/Å}^3$ и $W_{zz} \approx -20 \text{ e/Å}^3$ для Cu²⁺ и Ni²⁺, соответственно. Их абсолютные значения и их примерное равенство для разных матриц, конечно, требуют квантово-механических расчетов, но отрицательные знаки можно объяснить в рамках модели кристаллического поля.

Во всех рассмотренных соединениях ближайшим окружением узлов меди является квадрат ионов О²⁻ [10-13]. В этом случае расщепление в сильном кристаллическом поле приводит к тому, что наименьшую энергию имеет d_{z^2} -орбиталь, а наибольшую *d*_{7²-v²}-орбиталь. Электроны на этих орбиталях создают на ядре валентные ГЭП со значениями $W_{zz} = -\frac{4}{7} e \langle r^{-3} \rangle$ и $W_{zz} = \frac{4}{7} e \langle r^{-3} \rangle$, соответственно, где $\langle r^{-3} \rangle$ — среднее значение обратного куба радиуса d-орбитали. Ион Ni²⁺ имеет электронную конфигурацию $4s^2 3d^6$, в которой пять *d*-электронов образуют полузаполненную сферическую оболочку, а шестой попадает на нижний свободный d_{z^2} -уровень и создает $W_{zz} < 0$. Ион Cu²⁺ имеет конфигурацию 3d⁹, что соответствует дырке в замкнутой 3*d*-оболочке на ее верхнем $d_{z^2-y^2}$ -уровне. Электрон на этом уровне создавал бы $W_{zz} > 0$, а дырка создает $W_{zz} < 0.$

4. Выводы

Эмиссионные мёссбауэровские спектры 61 Cu(61 Ni) для диэлектрических металлоксидов двухвалентной меди Ca_{1-x}Sr_xCuO₂, Ca₂CuO₂Cl₂, SrCuO₂, Sr₂CuO₂Cl₂, YBa₂Cu₃O₆, La₂CuO₄ и Nd₂CeCuO₄ отвечают квадрупольному и зеемановском взаимодействию ядер ⁶¹Ni с локальными полями в узлах меди, тогда как для сверхпроводящих металлоксидов YBa₂Cu₃O₇, La_{1.85}Sr_{0.15}CuO₄ и Nd_{1.85}Ce_{0.15}CuO₄ спектры соответствуют взаимодействию квадрупольного момента ядер ⁶¹Ni с тензором градиента электрического поля. Для сверхпроводящих и диэлектрических металлоксидов наблюдаются линейные зависимости постоянных квадрупольного взаимодействия как на ядрах ⁶¹Ni (данные эмиссионной мёссбауэровской спектроскопии на изотопах 61 Cu(61 Ni)), так и на ядрах 63 Cu (данные ядерного магнитного резонанса на изотопе ⁶³Cu) от расчетных значений главной компоненты тензора решеточного градиента электрического поля в узлах меди. Этот факт объясняется тем, что как для зондов ⁶¹Ni²⁺, так и для зондов ⁶¹Cu²⁺ валентная составляющая в суммарный тензор ГЭП в узлах меди не зависит от состава металлоксида.

Благодарности

Работа выполнена с использованием кристаллографического программного обеспечения Центра коллективного пользования "Материаловедение и диагностика в передовых технологиях" (ФТИ им. А.Ф. Иоффе РАН).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D. Farina, G. De Filippis, A.S. Mishchenko, N. Nagaosa, Jhih-An Yang, D. Reznik, Th. Wolf, V. Cataudell. Phys. Rev. B 98, 121104 (2018).
- [2] Shoji Yamamoto, Yusaku Noriki. Phys. Rev B **99**, 094412 (2019).
- [3] T. Miyamoto, Y. Matsui, T. Terashige, T. Morimoto, N. Sono, H. Yada, S. Ishihara, Y. Watanabe, S. Adachi, T. Ito, K. Oka, A. Sawa, H. Okamoto. Nature Commun. 9, 3948 (2018).
- [4] A. Perucchi, P. Di Pietro, S. Lupi, R. Sopracase, A. Tebano, G. Giovannetti, F. Petocchi, M. Capone, D. Di Castro. Phys. Rev. B 97, 045114 (2018).
- [5] Y. Zhong, S. Han, Y. Wang, Z. Luo, D. Zhang, L. Wang, W. Li, K. He, C.-L. Song, X.-C. Ma, Q.-K. Xue. Phys. Rev. B 97, 245420 (2018).
- [6] G.Q. Liu, Q.B. Hao, H.L. Zheng, S.N. Zhang, X.Y. Xu, G.F. Jiao, L.J. Cui, P.F. Wang, C.S. Li. J. Phys. Conf. Ser. 1054, 01204230 (2018).
- [7] J.C. Petersen, A. Farahani, D.G. Sahota, R. Liang, J.S. Dodge. Phys. Rev. B 96, 115133 (2017).
- [8] N. Seregin, A. Marchenko, P. Seregin. Emission Mössbauer spectroscopy. Electron defects and Bose-condensation in crystal lattices of high-temperature supercomductors. Verlag: LAP LAMBERT. Academic Publishing GmbH & Co. KG, Saarbrücken. 325 p.
- [9] G.A. Bordovsky, A.V. Marchenko, A.V. Nikolaeva, P.P. Seregin, K.U. Bobokhuzhaev. Glass Phys. Chem. 41, 237 (2015).
- [10] T. Siegrist, S.M. Zahurak, D.W. Murphy, R.S. Roth. Nature 334. 231 (1988).

- [11] K. Yvon, M. Francois. Z. Phys. D-Condens. Matter 76, 413 (1989).
- [12] X. Zhou, F. Wu, B. Yin, W. Liu, C. Dong, J. Li, W. Zhu, S. Jia, Y. Yao, Z. Zhao. Phys. C 233, 311 (1994).
- [13] H. Haas, J.G. Correia. Hyperfine Interact. 176. 9 (2007).
- [14] T. Takatsuka. K. Kumagai, H. Nakajima, A. Yamanaka. Physica C 185–189, 1071 (1991).
- [15] Y. Yoshinari, H. Yasuoka, T. Shimizu, H. Takagi, Y. Tokura, S. Uchida. J. Phys. Soc. Jpn. 59, 36 (1990).
- [16] T. Shimizu. J. Phys. Soc. Jpn. 62, 772 (1993).
- Редактор Т.Н. Василевская