06.5

Морфология и структурное состояние частиц нанопорошков, полученных измельчением природного алмаза и методом детонационного синтеза

© П.П. Шарин¹, А.В. Сивцева¹, В.И. Попов²

¹ Институт физико-технических проблем Севера им. В.П. Ларионова при ФИЦ "Якутский научный центр СО РАН", Якутск, Россия

 2 Северо-Восточный федеральный университет им. М.К. Аммосова, Якутск, Россия E-mail: psharin1960@mail.ru

Поступило в Редакцию 20 сентября 2019 г. В окончательной редакции 31 октября 2019 г. Принято к публикации 7 ноября 2019 г.

> С помощью комплекса высокоразрешающих методов показано, что в отличие от нанопорошка детонационного синтеза, состоящего в основном из близких по размеру и изометрических частиц, частицы нанопорошка, полученные измельчением природного алмаза, имеют более широкий разброс по размерам и преимущественно пластинчатую форму. Первичные частицы нанопорошка, полученного измельчением, так же как и наноалмазы детонационного синтеза, состоят из алмазных ядер, имеющих кубические кристаллические решетки, окруженные оболочками со сложными структурами, образованными из атомов углерода в sp^2 -состоянии и примесей. Установлено заметное увеличение межатомных расстояний в нанодисперсных кристаллах алмаза по сравнению с таковыми для крупных кристаллов алмаза.

Ключевые слова: измельчение, наноалмазы, структура нанокристалла, оболочка, межатомное расстояние.

DOI: 10.21883/PJTF.2020.03.48993.18045

Изучение структуры первичных частиц нанодисперсных алмазных порошков, сочетающих уникальные механические, оптические и электронные свойства с биосовместимостью и необычными физико-химическими свойствами их поверхности, привлекает интерес с точки зрения как фундаментальной, так и прикладной науки [1]. Из двух альтернативных подходов получения наноструктурных материалов на данный момент наиболее используемым при синтезе наночастиц алмаза является так называемый подход "снизу вверх", основанный на процессе соединения атомов углерода в нанокристаллы алмаза при детонации углеродсодержащих взрывчатых веществ в замкнутом объеме с отрицательным кислородным балансом [1-3]. Однако метод детонационного синтеза имеет ряд недостатков, связанных с применением дорогостоящих взрывных камер и не менее затратными и сложными технологическими процессами извлечения и очистки наночастиц алмаза из сопутствующих продуктов синтеза. Альтернативный подход "сверху вниз", основанный на измельчении крупных алмазов природного происхождения или статического синтеза, в сочетании с методами центрифугирования является сравнительно простым и управляемым способом производства нанокластеров алмаза и может обеспечить получение наночастиц алмаза с контролируемыми и воспроизводимыми характеристиками [1,4]. При измельчении в качестве исходного материала предпочтительно использование природных алмазов, поскольку по сравнению с синтетическими алмазами они содержат малое количество металлических или иных примесей и дефектов.

Цель настоящей работы — изучение и сравнительный анализ морфологии и структурных характеристик первичных частиц нанопорошков, полученных двумя способами: механическим измельчением природного алмаза и методом детонационного синтеза.

Нанопорошок из природного алмаза (ПНА) получен измельчением при помощи вибрационной мельницы (в режиме мокрого помола), в которой мелющими элементами служили стальные шарики диаметром 6-11 mm [5]. В качестве исходного сырья использовалась фракция (-40 µm) микропорошка природного алмаза. Химическая очистка нанопорошка от примесей, образующихся в процессе измельчения, проводилась путем их последовательной обработки в кипящих смесях кислот HNO₃ и H₂SO₄, HNO₃ и HCl, а затем раствором NaOH с последующей многократной промывкой дистиллированной водой. Для снижения потерь нанодисперсных частиц алмаза при смене реактивов и промывке их водой использовались лабораторная центрифуга марки Jouan C3i и ультразвуковой диспергатор марки Fritsch Laborette 17. Выход наночастиц алмазного порошка в сухом виде после измельчения, химочистки и сушки составил 78-85% от веса исходного природного алмазного сырья. Полученный сухой нанопорошок ПНА имеет светло-серый цвет, тогда как нанопорошок детонационного синтеза (ДНА) марки УДА-С-ГО производства ФНПЦ "Алтай", использованный в качестве образца при проведении сравнительных исследований, окрашен в коричневый цвет.

Рис. 1. Дифракционные спектры образцов нанопорошков ПНА (a) и ДНА (b).

Плотности нанопорошков ПНА и ДНА, измеренные методом жидкостной пикнометрии, составили соответственно ~ 3.05 и $\sim 2.95 \,\text{g/cm}^3$, что значительно ниже теоретической плотности алмаза (3.5154 g/cm³) и плотности крупных природных кристаллов алмаза, которая в зависимости от содержания в них примесей колеблется в пределах 3.30-3.60 g/cm³ [1,3]. Значения удельной поверхности нанопорошков ПНА и ДНА, определенные методом Брунауэра-Эммета-Теллера (BET) по данным измерений низкотемпературной адсорбции молекул азота (77 К), составили соответственно ~ 33.4 $u \sim 338.6 \, {\rm m}^2/{\rm g}$. Размеры первичных частиц нанопорошков, измеренные методами рентгеноструктурного фазового анализа (РФА) и малоуглового рентгеновского рассеяния (МРР), были равны соответственно для частиц ПНА ~ 25.9 и ~ 24.0 nm, для частиц ДНА ~ 5.0 и ~ 5.6 nm. В зависимости от метода определения средний размер первичных частиц ПНА в ~ 4.29 раза (MPP) или ~ 5.18 раза $(P\Phi A)$ превышает размеры частиц ДНА, тогда как значения их удельной поверхности различаются более чем в 10 раз, что указывает на существенное различие формы их первичных частиц. Аналитическая обработка полученных с помощью высокоразрешающих просвечивающего (ПЭМ) (Titan 80-300 FEI, CIIIA) и растрового (РЭМ) (JSM-6480LV, JEOL, Япония) электронных микроскопов прямых ПЭМ- и РЭМ-изображений образцов нанопорошков позволила установить, что в отличие от нанопорошка ДНА, состоящего из близких по размеру частиц в основном (~ 84% от всего количества подвергнутых обработке) изометрических форм (сфера или куб), нанопорошок ПНА содержит частицы, имеющие не только более широкий разброс по размерам, чем частицы ДНА, но и преимущественно пластинчатую форму (~ 74% от всех частиц подвергнутых обработке). Оценка по эвристической формуле

$$D = k/(\rho S_{\text{BET}})$$

связывающей размер частиц D, удельную поверхность S_{BET} , плотность ρ при коэффициенте k, равном 2 (для

частиц, имеющих пластинчатую форму) или 6 (для частиц, имеющих сферическую форму), дает для *D* результаты, удовлетворительно совпадающие со средними размерами частиц ПНА и ДНА, определенными методами РФА и МРР.

На рис. 1 приведены дифракционные спектры, полученные с помощью дифрактометра ARL X'Tra фирмы Thermo Fisher Scientific (Швейцария) с использованием Си K_{α} -излучения ($\lambda = 1.541$ Å). Наблюдаемые четкие пики в спектре нанопорошка ПНА при углах $2\theta \sim 43.89$ и ~ 75.25° и в спектре нанопорошка ДНА при углах $2\theta \sim 43.62$ и $\sim 75.21^{\circ}$ соответствуют дифракции рентгеновского излучения на атомных плоскостях (111) и (220) кристаллической решетки алмаза. Едва заметные линии в спектрах ПНА и ДНА при углах 2θ , равных ~ 26.44 и ~ 26.56°, соответствуют дифракции рентгеновского излучения на плоскости (0002) решетки графита [6]. В табл. 1 представлены параметры структуры первичных частиц нанопорошков ПНА и ДНА, полученные в результате аналитической обработки их дифракционных спектров. Межплоскостные расстояния решеток *d*_{hkl} нанокристаллов рассчитывались по формуле Вульфа-Брэгга

$$2d_{hkl}\sin\theta_{hkl} = n\lambda$$

Для сравнения в табл. 1 также приведены структурные параметры массивного кристалла алмаза из базы данных [7].

На рис. 2 показаны изображения нанокристаллов ПНА (*a*) и ДНА (*b*), полученные в режиме светлого поля с помощью высокоразрешающего ПЭМ. На средней вставке на рис. 2, *a* приведены РЭМ-изображения частиц ПНА, имеющих преимущественно пластинчатую форму. На ПЭМ-изображениях четко видны и разрешены ряды атомных плоскостей (111) и (220) нанокристаллов ПНА и ДНА, являющихся составными элементами системы плоскостей, формирующих кубическую кристаллическую решетку алмаза. Получение качественных ПЭМизображений позволяет определить по ним структурные

Индексы Миллера	Массивный кристалл алмаза			ПНА				ДНА			
	2θ , deg	$d_{hkl},$ Å	<i>a</i> , Å	2θ , deg	$d_{hkl},$ Å	β , deg	<i>a</i> , Å	2θ , deg	$d_{hkl},$ Å	β , deg	<i>a</i> , Å
111 220	43.93 75.29	2.059 1.261	3.567	43.89 75.25	2.061 1.262	0.37 0.38	3.569	43.62 75.21	2.073 1.262	1.84 2.05	3.581

Таблица 1. Значения углов сканирования (2θ), межплоскостных расстояний (*d*_{hkl}), физического уширения (β), параметров решетки (*a*) для крупного кристалла алмаза, нанокристаллов ПНА и ДНА

Рис. 2. Изображения атомной структуры первичных частиц нанопорошков ПНА (*a*) и ДНА (*b*), полученные с помощью высокоразрешающего ПЭМ в режиме светлого поля при различных увеличениях. Цифрами обозначены номера нанокристаллов, структурные параметры которых приведены в табл. 2.

параметры нанокристаллов, выявить и идентифицировать в них наличие дефектов. В табл. 2 приведены структурные параметры нанокристаллов ПНА и ДНА, определенные исходя из ПЭМ-изображений на рис. 2. Заметим, что средние значения d_{hkl} нанокристаллов ПНА и ДНА, определенные по их ПЭМ-изображениям, хорошо согласуются с данными, полученными из анализа их дифракционных спектров. Как следует из табл. 2,

Рис. 3. Двумерные (2D) изображения карты спектров комбинационного рассеяния нанопорошков ПНА (*a*) и ДНА (*b*) и вид спектров в четырех произвольных точках, помеченных на карте цифрами.

средние значения d_{hkl} между рядами атомов углерода, а следовательно, и параметры решетки нанокристаллов ДНА заметно больше, чем у нанокристаллов ПНА. В свою очередь параметры решетки ПНА также заметно превышают структурные параметры решетки крупного кристалла алмаза, что указывает на заметное увеличение d_{hkl} в решетках наноалмазов по сравнению с d_{hkl} для массивного кристалла алмаза и экспериментально подтверждает результаты, полученные в работах [8,9]. Эффект увеличения d_{hkl} наноалмазов, вероятно, вносит определенный вклад в наблюдаемое снижение плотности нанопорошков ПНА и ДНА по сравнению с плотностью крупных кристаллов алмаза. Однако снижение плотности нанопорошков по сравнению с плотностью массивного кристалла алмаза в основном обусловлено наличием оболочек, неизбежно образующихся на по-

		ПНА		ДНА			
Порядковый номер кристалла	d_{hkl} , Å	Количество атомных плоскостей	Индексы Миллера	d_{hkl} , Å	Количество атомных плоскостей	Индексы Миллера	
1	2.062	154	(111)		107	(111)	
23	1.262	191 41	(220) (220)	2.071	25 16	(111) (111)	
4		10	(111)	1.262	8	(220)	
5	2.062	14	(111)	2 071	21	(111)	
6		20	(111)	2.071	10	(111)	

Таблица 2. Средние значения межплоскостных расстояний *d_{hkl}*, количество атомных плоскостей и их пространственное расположение (индексы Миллера) в нанокристаллах ПНА и ДНА, приведенных на изображениях на рис. 2, *a*, *b*

верхности первичных частиц наноалмазов при их получении и имеющих плотность более низкую, чем кристаллическое алмазное ядро частиц нанопорошков [10]. Как видно из рис. 2, нанокристаллы ПНА и ДНА покрыты оболочками (некоторые из них выделены на рисунке черными стрелками), состоящими преимущественно из атомов углерода с *s p*²-гибридизацией, что подтверждается их спектрами комбинационного рассеяния (КР). Из рис. 3 видно, что в спектрах КР обоих нанопорошков помимо четко выраженных *D*-линий на частоте вблизи $1332 \,\mathrm{cm}^{-1}$, относящихся к углероду с *s p*³-гибридизацией и указывающих на алмазную структуру их решеток, проявляются два широкополосных пика G и G¹, соответствующих модам атомов углерода в *sp*²-состоянии. В спектре КР проявляется также линия, известная как D-пик графита (от "disorder" [11]), на частоте с центром $\sim 1350\,{
m cm^{-1}}$ рядом с *D*-линией алмаза. Как видно из рис. 3, в спектре КР нанопорошка ПНА Д-пик графита выглядит как широкополосное основание с полушириной до $90 \,\mathrm{cm}^{-1}$, из которого выступает узкая интенсивная *D*-линия алмаза с полушириной $\sim 14 \, {\rm cm}^{-1}$, тогда как в спектре ДНА узкая *D*-линия алмаза едва заметна на фоне широкополосного Д-пика графита. Оболочки из атомов углерода с *s p*²-гибридизацией, содержащие различные примесные атомы и функциональные группы, располагаясь по границам, служат химически активными матрицами, связывающими соседние нанокристаллы алмаза [11]. Изучение и анализ большого количества изображений высокого разрешения (более 40 снимков частиц ПНА и ДНА), аналогичных приведенным на рис. 2, позволили выявить, что наиболее часто встречающимися дефектами в нанокристаллах как ПНА, так и ДНА являются краевые дислокации (см. вставки на рис. 2).

Таким образом, частицы нанопорошка, полученного измельчением, так же как и наноалмазы детонационного синтеза, состоят из алмазных ядер, имеющих кубические кристаллические решетки, окруженные оболочками со сложными структурами, образованными из атомов углерода в $s p^2$ -состоянии и примесей. Установлено заметное

увеличение межатомных расстояний в нанодисперсных кристаллах алмаза по сравнению с таковыми для крупных кристаллов алмаза.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Nunn N., Torelli M., McGuire G., Shenderova O. // Curr. Opin. Solid State Mater. Sci. 2017. V. 21. N 1. P. 1–9.
- [2] Верещагин А.Л. // Южно-сибирский научный вестник. 2017. № 2(18). С. 24–30.
- [3] Долматов В.Ю. // Успехи химии. 2001. Т. 70. № 7. С. 677-708.
- [4] Новиков Н.В., Богатырева Г.П. // Сверхтвердые материалы. 2008. № 2. С. 3–12.
- [5] Шарин П.П., Лебедев М.П., Яковлева С.П., Винокуров Г.Г., Стручков Н.Ф., Кузьмин С.А. // Перспективные материалы. 2014. № 4. С. 58–63.
- [6] Михеев К.Г., Шендерова О.А., Когай В.Я., Могилева Т.Н., Михеев Г.М. // Хим. физика и мезоскопия. 2017. Т. 19. № 3. С. 396–406.
- [7] http://database.iem.ac.ru/mincryst/rus/s_carta.php?DIAMOND+1165
- [8] Яловега Г.Э., Солдатов М.А., Солдатов А.В. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2009. № 7. С. 80–83.
- [9] Байдакова М.В., Кукушкина Ю.А., Ситникова А.А., Яговкина М.А., Кириленко Д.А., Соколов В.В., Шестаков М.С., Вуль А.Я., Zousman B., Levinson O. // ФТТ. 2013. Т. 55. В. 8. С. 1633–1639.
- [10] Байтингер Е.М., Беленков Е.А., Брежинская М.М., Грешняков В.А. // ФТТ. 2012. Т. 54. В. 8. С. 1606–1613.
- [11] Букалов С.С., Михалицын Л.А., Зубавичус Я.В., Лейтес Л.А., Новиков Ю.Н. // Рос. хим. журн. 2006. Т. L. № 1. С. 83–91.