13.2;13.3;13.4

Влияние микропримесей *d*-элементов на электронную структуру кристаллитов оксида бария в катодах СВЧ-приборов

© В.И. Капустин¹, И.П. Ли², А.В. Шуманов^{1,2}, С.О. Москаленко^{1,2}, Р.Р. Залялиев¹, Н.Е. Кожевникова²

¹ МИРЭА — Российский технологический университет, Москва, Россия ² АО "Плутон", Москва, Россия E-mail: kapustin@mirea.ru

Поступило в Редакцию 15 августа 2019г. В окончательной редакции 15 августа 2019г. Принято к публикации 28 октября 2019г.

> С использованием метода электронной спектроскопии для химического анализа впервые экспериментально установлено, что микропримеси *d*-элементов (W, Re, Ni, Pd, Os) в кристаллитах BaO из состава катодов СВЧ-приборов приводят к формированию на поверхности кристаллитов поверхностных состояний донорного типа, которые могут частично компенсировать поверхностные состояния акцепторного типа, обусловленные поверхностными кислородными вакансиями, что приводит к снижению потенциального барьера на поверхности кристаллитов и соответственно к снижению величины работы выхода катода.

> Ключевые слова: катоды СВЧ-приборов, кристаллиты оксида бария, микропримеси *d*-элементов, поверхностные состояния донорного и акцепторного типа.

DOI: 10.21883/PJTF.2020.03.48983.18014

Основным эмиссионно-активным компонентом большинства материалов катодов СВЧ-приборов являются кристаллиты BaO, которые формируются в материале на этапе изготовления и термического активирования катода. Эмиссионные свойства чистых кристаллитов ВаО определяются кислородными вакансиями, формирующими на поверхности оксида поверхностные состояния акцепторного типа, которые приводят к искривлению энергетических зон у поверхности оксида вверх [1]. При этом в различных типах катодов концентрация вакансий в кристаллитах BaO после изготовления катода лежит в интервале $(2-6) \cdot 10^{25} \, m^{-3}$ и достигает величины $(3-5) \cdot 10^{26} \,\mathrm{m}^{-3}$ после активирования катода [2,3]. В то же время распространенной является концепция, согласно которой на поверхности кристаллитов BaO имеет место адсорбция электроположительных атомов (бария, кальция, стронция), формирующих поверхностные состояния донорного типа, что приводит к искривлению энергетических зон оксида вниз [4].

Другим компонентом материалов катодов является металлическая фаза, в качестве которой используются Ni (оксидно-никелевые катоды), W (металлопористые и скандатные катоды), Pd (палладий-бариевые катоды), а также Re или Os, которые применяются в некоторых типах катодов в качестве пленочных покрытий, снижающих работу выхода и повышающих долговечность катодов. Традиционно считается [1,5], что тремя основными функциями металлической фазы катода являются инициирование разложения карбонатов или алюминатов бария, используемых в качестве компонентов при изготовлении катодов, с выделением кристаллитов BaO; формирование в кристаллитах оптимальной концентрации кислородных вакансий; обеспечение необходимой электропроводности и теплопроводности материала катода.

При формировании электронной структуры многокомпонентных материалов основными факторами, определяющими характер этой структуры, являются валентный, размерный и электронный. Поэтому задача настоящей работы состоит в исследовании влияния указанных факторов на характер искривления энергетических зон у поверхности кристаллитов оксида бария.

Двойные диаграммы состояния BaO, а также оксидов Ca, Al, Sc, W, Re, Os, Pd, Ni имеют эвтектический характер, в них отсутствуют области взаимной растворимости оксидов, хотя нулевой взаимной растворимости компонентов не бывает в принципе. Действительно, в работах [2,6] методами оптической спектроскопии и электронной спектроскопии для химического анализа (ЭСХА) было показано влияние микропримесей Ca, Al, Sc, а также синергетический эффект влияния микропримесей Са и Sr (микропримесей s- и p-элементов) на электронную структуру кристаллитов BaO, а также на возможное появление пространственного упорядочения кислородных вакансий в кристаллитах ВаО. Показано влияние микропримесей Ni (валентность +2.1-2.2) и Sc (валентность +3), ионный радиус которых составляет 0.54 и 0.60 от ионного радиуса Ва, на сдвиг валентной зоны кристаллитов BaO и упорядочение кислородных вакансий в объеме кристаллитов. Данные исследования фактически позволили выявить влияние валентного и размерного факторов микропримесей на электронную структуру ВаО.

Такие компоненты катодных материалов, как Ni, W, Re, Pd, Os, являются типичными *d*-элементами с узкой *d*-зоной, расположенной на расстоянии $E_B = 0.0-6.0 \text{ eV}$

Рис. 1. Электронные спектры валентной зоны образца BaO + 10 wt.% Ni(nano). Пояснение в тексте.

относительно уровня Ферми соответствующего металла, что соизмеримо с шириной запрещенной зоны кристаллитов ВаО. Поэтому можно ожидать, что при легировании кристаллитов ВаО микропримесями *d*-элементов может проявиться третий — электронный — фактор влияния микропримесей на электронную структуру кристаллитов ВаО.

Образцы материалов были получены прессованием таблеток диаметром 7.6 mm и толщиной 1 mm из порошка карбоната бария (средний размер частиц 5 µm) и порошков Pd, Os, Re (размер частиц $10-20\,\mu m$), W (размер частиц 2-5µm), наноразмерного порошка Ni (средний размер частиц 80 nm), порошка Ni (размер частиц 10-20 µm) с последующим спеканием в вакууме при температуре 1200°С в течение 2 h. В результате в материалах формировались кристаллиты BaO, легированные другими компонентами в пределах их максимально возможной растворимости. Электронная структура валентной зоны образцов исследовалась с использованием спектрометра Theta Probe фирмы Thermo Scientific методом ЭСХА, шаг развертки спектров 0.05 eV. Обработка результатов проводилась с использованием методик, описанных в работе [2].

На рис. 1, a приведены электронные спектры валентной зоны образца материала на основе карбоната бария, содержащего 10 wt.% нанопорошка Ni. Пик 1 относится собственно к валентной зоне BaO, пик $2 - \kappa$ зоне проводимости частиц порошка Ni. Поскольку плотность состояний у края валентной зоны оксида приближенно равна

$$N_V(E) \propto \sqrt{|E_{VS} - E|} \tag{1}$$

(где E_{VS} — положение верха валентной зоны на поверхности оксида), на рис. 1, *b* представлен электронный спектр в координатах энергия связи—квадрат интенсивности. Прямая, проведенная у правого края пика l, позволяет определить величину E_{VS} .

На рис. 2 показаны электронные спектры валентной зоны ВаО, содержащего микропримеси Os (a), Pd (b) и Re (c), в координатах энергия связи—квадрат интенсивности, позволяющие определить параметр E_{VS} для ВаО с указанными микропримесями.

В таблице приведены значения величины ($E_F - E_{VS}$) для BaO, легированного микропримесями при совместном спекании порошка карбоната бария с порошками Os, Pd, Re (10–20 μ m), нанопорошком Ni (80 nm), а также некоторые параметры легирующих элементов: число *d*-электронов в атомах, энергия связи *d*-электронов E_B в чистых металлах, максимальная валентность элемента, ионный радиус элемента R_i относительно ионного радиуса бария R_{Ba} . Для сравнения в таблице приведены также указанные параметры для образцов, полученных спеканием с порошком W (2–5 μ m), порошком Ni (10–20 μ m), порошком карбоната кальция (5 μ m), взятые из работ [2,6].

На рис. З приведена модель электронной структуры оксида бария, содержащего кислородные вакансии и микропримеси d-элементов. На рисунке использованы следующие обозначения: E_C , E_D , E_V — положение низа зоны проводимости, уровня кислородных вакансий и верха валентной зоны в объеме; E_F — уровень Ферми; 1 — плотность состояний уровня вакансий в объеме, который расщепляется на две подзоны из-за их неупорядоченного расположения в кристаллитах [6]; 2 — плотность акцепторных состояний на поверхности, обусловленная поверхностными кислородными вакансиями; 3 и 4 — плотность собственных поверхностных состояний оксида; 5 — плотность донорных поверхностных состояний, обусловленных микропримесями d-элементов на поверхности; E_{CS} , E_{VS} , E_{DS} , E_A — положения уровней

Рис. 2. Электронные спектры валентной зоны BaO с микропримесями Os (a), Pd (b) и Re (c) в координатах энергия связи-квадрат интенсивности.

и состояний на поверхности. Отметим, что $E_B \neq E_A$, но, очевидно, $E_A \propto E_B$.

Величина работы выхода φ оксида с широкой запрещенной зоной равна

$$\varphi = \chi + \psi + V, \tag{2}$$

где $\chi = 0.80 \,\text{eV}$ — электронное сродство BaO, $V = (E_C - E_{CS})$ — величина искривления зон у поверхности оксида, ψ — внутренняя работа выхода, равная

$$\psi = \frac{\Delta E_g}{2} + kT \ln \left[\frac{2(2\pi m^* kT)^{3/2}}{N_D h^3} \right]^{1/2}.$$
 (3)

В соотношении (3) h — постоянная Планка, m^* — эффективная масса электрона, T — температура, k — постоянная Больцмана, $\Delta E_g = (E_C - E_D)$, N_D — концентрация кислородных вакансий в объеме оксида. Поскольку ширина запрещенной зоны оксида бария равна $(E_C - E_V) = 4.71$ eV [2], при концентрации вакансий

 $N_D = (2-6) \cdot 10^{25} \,\mathrm{m}^{-3}$, т.е. после изготовления катода, но до его активирования, и комнатной температуре $T = 300 \,\mathrm{K}$ величина

$$(E_{\rm F} - E_V) = (E_C - E_V) - \psi = 4.03 \,\mathrm{eV}$$
 (4)

в объеме оксида в соответствии с выражением (3). С учетом величины ($E_{\rm F} - E_{VS}$), приведенной в таблице для различных легирующих примесей, для некоторых микропримесей в ВаО при комнатной температуре имеет место изгиб зон у поверхности вверх, а для некоторых микропримесей — изгиб зон вниз, как указано в таблице. Отметим, что с ростом концентрации кислородных вакансий, т.е. при активировании катода, и с ростом температуры величина ψ в соответствии с (3) уменьшается, а величина ($E_{\rm F} - E_V$) растет.

Полученные экспериментальные результаты с учетом данных таблицы и модели, приведенной на рис. 3, позволяют сформулировать следующий механизм влияния

Параметр	Чистый BaO	Легирующие элементы						
		Ca	W	Re	Ni		Pd	Os
Размер частиц порошка	5 <i>µ</i> m	5 <i>µ</i> m	$2-5\mu\mathrm{m}$	10–20 <i>µ</i> m	$10-20\mu\mathrm{m}$	80 nm	$10-20\mu\mathrm{m}$	$10-20\mu\mathrm{m}$
Число <i>d</i> -электронов	_	_	4	5	8		10	6
<i>E</i> _{<i>B</i>} , eV (в металле)	_	_	6.0	4.0	4.0		1.0	
Максимальная валентность	+2	+2	+6	+7	+2.1-2.2		+4	+8
$R_i/R_{ m Ba}$	1.0	0.76	0.48	0.38	0.54		0.47	0.48
$(E_{\rm F}-E_{VS})$, eV	2.70	2.75	3.05	3.45	3.18	4.03	3.83	4.30
Направление искривления зон у поверхности	Вверх					Нет	Вверх	Вниз

Положение края валентной зоны относительно уровня Ферми оксида бария, легированного микропримесями *d*-элементов

Рис. 3. Модель электронной структуры оксида бария, содержащего кислородные вакансии и микропримеси *d*-элементов. Пояснение в тексте.

микропримесей *d*-элементов на электронную структуру кристаллитов BaO из состава катодов СВЧ-приборов.

1. Кислородные вакансии в чистом BaO формируют на поверхности кристаллитов BaO поверхностные состояния акцепторного типа, которые приводят к изгибу электронных зон у поверхности оксида вверх.

2. Микропримеси *d*-элементов в кристаллитах BaO, валентность которых больше +2, формируют на поверхности кристаллитов поверхностные состояния донорного типа. В зависимости от положения энергии этих донорных состояний относительно положения

акцепторных состояний кислородных вакансий, а также от величины поверхностной плотности *d*-элементов и поверхностной плотности кислородных вакансий акцепторные состояния могут заполняться электронами с указанных поверхностных донорных состояний, а не с состояний в объеме оксида. Это может привести к изменению величины и знака поверхностного заряда оксида, т. е. к изменению величины и направления искривления зон у поверхности оксида и соответственно к изменению его работы выхода. Данный эффект наглядно проявляется при легировании кристаллитов оксида бария осмием.

3. Использование нанопорошка *d*-элемента для легирования кристаллитов оксида бария позволяет эффективно повысить поверхностную плотность *d*-элементов в кристаллитах BaO.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Капустин В.И. // Перспективные материалы. 2000. № 2. С. 5–17.
- [2] Капустин В.И., Ли И.П., Шуманов А.В., Лебединский Ю.Ю., Заблоцкий А.В. // ЖТФ. 2017. Т. 87. В. 1. С. 105–115.
- [3] Капустин В.И., Ли И.П., Шуманов А.В., Москаленко С.О., Буш А.А., Лебединский Ю.Ю. // ЖТФ. 2019. Т. 89. В. 5. С. 771–780.
- [4] Свешников В.К., Базаркин А.Ф. // Электронная техника. Сер. 1. СВЧ-техника. 2014. В. 1(520). С. 70–75.
- [5] Дюбуа Б.Ч., Королев А.Н. // Электронная техника. Сер. 1. СВЧ-техника. 2011. Вып. 1(509). С. 5–25.
- [6] Капустин В.И., Ли И.П., Петров В.С., Леденцова Н.Е., Турбина А.В. // Электронная техника. Сер. 1. СВЧ-техника. 2016. В. 1(528). С. 8–18.