Отрицательная дифференциальная проводимость структур на основе оксида лантана

© А. Игитян^{1,2}, Н. Агамалян^{1,2}, Р. Овсепян^{1,2}, С. Петросян^{1,2}, Г. Бадалян¹, И. Гамбарян¹, А. Папикян², Е. Кафадарян^{1,2,¶}

¹ Институт физических исследований Национальной академии наук Армении, 0203 Аштарак, Армения ² Российско-Армянский университет, 0051 Ереван, Армения ¶ E-mail: ekafadaryan@gmail.com

Поступила в Редакцию 7 октября 2019 г. В окончательной редакции 15 октября 2019 г. Принята к публикации 15 октября 2019 г.

С помощью метода электронно-лучевого напыления получены прозрачные поверхностно-гидрированные пленки оксида лантана (OH-La₂O₃) толщиной 40, 140 и 545 нм. Исследованы электрические и оптические характеристики структур Al/OH-La₂O₃/*p*-Si, где в качестве верхнего и нижнего электродов использовали соответственно алюминий и кремниевую подложку с *p*-типом проводимости. Обнаружена область отрицательной дифференциальной проводимости на зависимостях проводимости от напряжения при прямом смещении; возможный механизм отрицательной дифференциальной проводимости поверхности поверхности пленки OH-La₂O₃.

Ключевые слова: отрицательная дифференциальная проводимость, OH-La₂O₃, протонная проводимость.

DOI: 10.21883/FTP.2020.02.48915.9280

1. Введение

Среди материалов с высокой диэлектрической проницаемостью, рассматриваемых в качестве подзатворного слоя толщиной ~ 1 нм в тонкопленочных нанотранзисторах, для замены диоксида кремния ($\varepsilon = 4.5$) наиболее подходящим является гексагональный оксид лантана (h-La₂O₃) из-за высокой диэлектрической проницаемости ($\varepsilon = 27$) [1,2], высокой напряженности электрического пробоя [3], термостойкости на кремниевой подложке [4], относительно большого смещения зон по отношению к зонам кремния [2,5] и прозрачности в диапазоне длин волн от ультрафиолета (УФ) до инфракрасного (ИК) [6]. В этой связи подробно исследованы структурные, оптические и электрические характеристики *h*-La₂O₃ [1–6]. Кроме того, в структурах на основе La₂O₃ (TiN/La₂O₃/PtTi/SiO₂/Si, Pt/La₂O₃/Pt) выявлена резистивная память с биполярным переключением, разрабатываемая для создания энергонезависимой резистивной памяти (RRAM) [7,8].

Хорошо известно, что пленки La_2O_3 гигроскопичны, притягивают и удерживают молекулы воды из окружающей среды на поверхности, что влияет на транспортные свойства оксида лантана [9]. Как было показано нами в работе [10], структуры на основе поверхностно-гидрированных пленок оксида лантана (OH- La_2O_3), напыленных на кремниевые подложки с *п*-типом проводимости (Al/OH- La_2O_3/n -Si), имеют отрицательную дифференциальную проводимость (ОДП), когда увеличение напряжения приводит к уменьшению тока. В данной работе этот эффект становится более заметным в пленках OH- La_2O_3 на кремниевых подложках с дырочной проводимостью (p-Si). Исследованы зависимости проводимости и емкости от напряжения структур Al/OH-La2O3/p-Si, где наличие участка с отрицательной дифференциальной проводимостью объясняется переносом протона по цепочке связанных водородными связями молекул воды. ОДП, обусловленная переносом протонов, представляет интерес, поскольку положительно заряженные ионы (H⁺) имеют более высокую подвижность, чем подвижность ионов кислорода (O²⁻). В этой связи использование протонной памяти может улучшить скорость резистивного переключения оперативной памяти RRAM по сравнению с типичными RRAM (мемристорами), основанными на миграции ионов кислорода. ОДП является активным компонентом для построения логических схем, диодов, памяти RRAM, переключателей и датчиков, и представленные здесь данные могут потенциально использоваться для разработки RRAM, используемых в цифровых и аналоговых интегральных микросхемах.

2. Экспериментальная часть

Пленки OH-La₂O₃ толщиной 40, 140 и 545 нм получены на кварцевой (SiO₂) и кремниевой подложке с *р*-типом проводимости (*p*-Si) методом электроннолучевого напыления. Мишени для напыления изготавливались методом твердофазного синтеза. Порошок окисида лантана 99% чистоты прессовался при давлении 115 кг/см² и отжигался на воздухе при температуре 1430°C в течение 120 мин. Пленки OH-La₂O₃ напылялись при температуре 250°C. Вакуумная система

Рис. 1. Рентгенограммы пленки OH $-La_2O_3$ толщиной 545 нм на кварцевой подложке (SiO₂) после напыления (*I*), хранения в вакууме (*2*) и отжига (*3*); рентгенограмма пленки OH $-La_2O_3$ толщиной 140 нм после напыления (*4*).

откачки обеспечивала вакуум $\sim 10^{-5}$ Торр. Время напыления составляло 5–20 мин в зависимости от желаемой толщины. Скорость нанесения пленки составляла 60 Å/с.

Структурные, оптические и электрические измерения пленок проводились сразу после изъятия из напылительной установки. Далее пленки хранились в низковакуумной камере с давлением $5 \cdot 10^{-2}$ Торр. После хранения в вакууме пленки отжигались при 650°С в течение 60 мин в вакууме (10^{-2} Торр). Пленку OH–La₂O₃ толщиной 40 нм подвергали вакуумному отжигу при 500°С в течение 15 мин без предварительного выдерживания в вакуумной камере. Фазовый состав пленок изучали с помощью рентгеновской дифракции (XRD) в геометрии Брэгга–Брентано с Си K_{α} ($\lambda = 1.5418$ Å) излучением (Дрон-4). Морфологию поверхности и элементный состав образцов исследовали на сканирующем

электронном микроскопе (SEM VEGA TS-5130MM) с системой рентгеновского энергодисперсионного микроанализа (EDS) INCA Energy 300 с энергией электронного зонда 14, 18 и 20кэВ. Инфракрасный спектрофотометр Specord M-80 (Carl Ziess Jena) использовался для регистрации гидроксильных групп. Ширину запрещенной зоны пленок определяли с помощью UV-VIS-IR спектрофотометров Specord M-40 и СФ-8 (ЛОМО). Толщину пленки определяли методом оптической интерференции, SEM и профилометром Ambios XP-1. Измерения проводимость-напряжение $(\sigma - V)$ и емкость-напряжение (C - V) образцов проводились на частоте 1 кГц при напряжениях смещения от -10.0 до +10.0 В с помощью цифрового RLC-метра Е7-8 (Россия). Верхние алюминиевые (Al) электроды площадью 5 · 10⁻³ см² напылялись методом термического испарения.

3. Результаты и обсуждение

Рентгенограммы пленок OH-La2O3 демонстрируют кристаллическую структуру. Как видно из рис. 1, пленка толщиной 545 нм (спектр 1) содержит кубический (c-La₂O₃) (JCPDS № 04-0856) и гексагональный гидроксид лантана *h*-La(OH)₃ (JCPDS № 83-2034). Хранение пленки в низковакуумной камере в течение 10 и 120 дней не влияет на рентгеновские дифракционные спектры (спектр 2). После вакуумного отжига при 650°C в течение 1 ч пик (101), соответствующий La(OH)₃, исчезает (спектр 3), кубический (222) пик уменьшается по интенсивности и появляется низкоинтенсивный (011) рефлекс, который соответствует гексагональной фазе *h*-La₂O₃ (JCPDS № 83-1355). Согласно нашим результатам, пленка толщиной 545 нм состоит из смеси кубической и гексагональной фаз, тогда как пленка толщиной 140 нм демонстрирует гексагональную симметрию (рис. 1, спектр 4).

Отношение сигнал/шум на рентгенограмме пленки толщиной 40 нм низкое, поэтому состав пленки опреде-

Рис. 3. ИК-спектры пленки OH–La₂O₃ толщиной 140 нм на кварцевой подложке после напыления (1), хранения в вакууме (2) и отжига (3).

Рис. 4. Связанные (*a*) и изолированные (*b*) La–OH-группы.

ляли с помощью EDS с энергией зонда 14 кэВ. На рис. 2 спектр EDS демонстрирует пики О и La с отношением атомных концентраций O/La = 2. Отношение O/La пле-

нок толщиной 140 и 545 нм находится в области 1.7-2.2. Легкие элементы, такие как водород, не могут быть зарегистрированы с помощью EDS, поэтому наличие гидроксильных групп в пленках OH-La₂O₃ определяли методом ИК-спектроскопии. На рис. 3 представлены ИК-спектры поглощения пленки OH-La₂O₃ толщиной 140 нм на кварцевой подложке после напыления (спектр *1*), хранения в вакууме (спектр *2*) и отжига (спектр *3*).

В результате поглощения воды из окружающей среды наблюдается полоса 3458 см⁻¹, соответствующая растягивающей моде -ОН-колебания [11]. После хранения пленок в низковакуумной среде при комнатной температуре возникает новая полоса при 3586 см⁻¹ (спектр 2), которая исчезает при отжиге (спектр 3). Эти полосы интерпретируются как свободные (3586 см⁻¹) и связанные (3458 см⁻¹) колебания –ОН-группы, атом кислорода которых координирован с поверхностными ненасыщенными ионами лантана (рис. 4). Аналогичные результаты получены для пленок толщиной 40 и 545 нм. Спектры оптического диапазона пленок OH-La₂O₃ на подложках SiO2 имеют высокий коэффициент пропускания (90-80%) с оптическим краем, чувствительным к толщине пленки и условиям обработки [10]. Результаты показали, что ширина запрещенной зоны $E_g = 6.12 \, \text{эB}$ уменьшается до 6.06 эВ с увеличением толщины пленки от 140 до 545 нм, тогда как толщина пленок после хранения в вакууме увеличивается по сравнению с толщиной только напыленной пленки, и уменьшается после термического отжига (см. таблицу).

Зависимости проводимости от напряжения ($\sigma - V$) структур Al/OH–La₂O₃/*p*-Si измерены в диапазоне напряжений 0 \rightarrow 10 B \rightarrow 0 B \rightarrow -10 B \rightarrow 0 B на частоте 1 кГц. σ -V-характеристики трех пленок OH–La₂O₃, измеренные после напыления, имеют гистерезис и участок

Рис. 5. a — зависимости проводимости от напряжения (σ -V)-структур Al/OH–La₂O₃/p-Si с толщиной пленок OH–La₂O₃ 40 (I), 140 (2) и 545 (3) нм после напыления (на вставке представлена зависимость V_{Pr} от толщины), b — σ -V-зависимость Al/OH–La₂O₃/Si-p после напыления, хранения в вакууме и отжига (вставка) пленки толщиной 140 нм.

Ширина запрещенной зоны (E_g) , толщина (d) и частота колебаний – ОН-групп пленок ОН–La₂O₃ толщиной 140 и 545 нм после напыления, хранения в вакууме и отжига [10]

	<i>d</i> , нм	<i>Eg</i> , эВ	<i>d</i> , нм	<i>Eg</i> , эВ	$f_{\rm OH}$, cm ⁻¹
После напыления	140	6.12	545	6.06	3450
После хранения в вакууме	160	5.92	635	5.903	3450, 3586
После отжига	150	6.04	560	5.958	3450

ОДП при изменении положительной ветви напряжения от 0 до 10 В и выпрямлямление тока при сканировании от 0 до -10 В (рис. 5, *a*). Отношение максимального значения проводимости к минимальному $(\sigma_{\max}/\sigma_{\min})$ петли гистерезиса равно 14, 80 и 2.6 соответственно для пленок толщиной 40, 140 и 545 нм. После хранения пленок в низковакуумной камере σ -V-характеристики представляют собой обычную экспоненциальную зависимость без ОДП (рис. 5, b). ОДП вновь появляется после отжига при 650° С в вакууме (см. вставку на рис. 5, *b*). Можно заметить корреляцию между электрическими и оптическими характеристиками Al/OH-La₂O₃/p-Siструктур. Появление ОДП на кривых $\sigma - V$ ассоциируется с пиком поглощения при 3458 см⁻¹, тогда как исчезновение ОДП сопровождается появлением дополнительного пика при 3586 см⁻¹. Для количественной дифференциации изолированных и связанных -ОН-групп вычислены площади под пиками, используя форму спектральной линии Лоренца. Площадь пика при 3458 см⁻¹ между 3000-3800 см⁻¹ составляет $6.38 \cdot 10^5$ см⁻² после напыления (спектр 1). Появление пика при 3586 см⁻¹ площадью $2.0 \cdot 10^5 \, \text{см}^{-2}$ сопровождается уменьшением пика 3458 см^{-1} до площади $2.6 \cdot 10^5 \text{ см}^{-2}$ и исчезновением ОДП, что можно объяснить разрывом водородных связей из-за тепловых флуктуаций. После отжига при 650°С появляется участок ОДП, и площадь пика при 3458 см^{-1} увеличивается до $4.03 \cdot 10^5 \text{ см}^{-2}$, т.е. низковауумный отжиг увеличивает количество связанных -ОН-групп. Согласно литературным данным [12], ОДП обычно основана на квантовом туннелировании и междолинном переносе носителей заряда. В данном случае туннелирование не является причиной возникновения ОДП, поскольку ОДП в Al/OH-La2O3/p-Si сильно зависит от направления развертки напряжения. Согласно литературным данным [13–17], ОДП может возникнуть в результате бистабильного межфазного переключения, окислительно-восстановительной реакции и протонопосредованных механизмов. Во всех этих механизмах бистабильные состояния обусловлены химическими реакциями. Например, при бистабильном межфазном переключении ОДП происходит в результате перехода от сильного к слабому химическому связыванию [13-16]. В случае окислительно-восстановительного механизма ОДП происходит за счет окисления и восстановления активных молекул при определенном напряжении [17]. Происхождение ОДП в структурах Al/OH-La₂O₃/p-Si можно объяснить протонной проводимостью, возникающей в результате диссоциации воды $(H_2O \leftrightarrow H^+ + OH^-)$ на поверхности пленки. Молекулы воды вблизи анода в результате электролиза диссоциируют на протон H⁺ и гидроксильную группу ОН-, а быстрый дрейф протонов [18] к катоду и медленное движение ОН- к месту диссоциации, где число протонов убывает, инициирует ОДП. Кроме того, согласно прыжковому механизму Гротта [19], протон в форме иона гидрония (H_3O^+) может мигрировать вдоль границ зерен, двигаясь к катоду по цепочкам молекул воды, связанных водородными связями. Этот механизм включает также транспорт ОН-, рассматриваемый в качестве "протонной дыры" и имеет важное значение для объяснения протонного переноса как на поверхности, так и на границах зерен пленки ОН-La₂O₃.

Для лучшего понимания механизма проводимости проведено фитирование кривых $\sigma - V$ в соответствии с ТОПЗ (ток, ограниченный пространственным зарядом), эмиссией Шоттки $\ln I \propto V^{1/2}$, эмиссией Пула–Френкеля $\ln(I/V) \propto V^{1/2}$ и туннелированием Фаулера-Нордгейма $\ln(I/V^2) \propto (1/V)$ [1–5,20,21]. Фитирование вольт-амперных кривых показало, что доминирующим механизмом проводимости Al/OH-La₂O₃/p-Si является ТОПЗ ($I \sim V^n$, n — наклон кривой). На рис. 5, bпоказаны области, где значение наклона n = 1 (закон Ома) в области V < 3.6 В увеличивается до 6.6 в области 3.6 < V < 5.6 В и 3.6 при V > 7 В, что соответствует ТОПЗ, когда все ловушки оказываются заполненными [22]. Вольт-амперные характеристики образцов, хранящихся в вакууме, следовали закону Чайлда (n = 2). Протонный вклад в общую проводимость устройств обнаруживается при определенном напряжении (V_{Pr}), соответствующем максимуму тока, после которого ток уменьшается при увеличении напряжения. Как видно на вставке рис. 5,а, напряженность V'_{Pr} уменьшается с увеличением толщины пленки и составляет 1.2 · 10⁶, 0.23 · 10⁶ и 0.08 · 10⁶ В/см для пленок соответственно толщиной 40, 140 и 545 нм. Таким образом, для разрыва водородных связей в толстых пленках требуются меньшие напряжения, чем в тонких пленках

На рис. 6 приведены вольт-фарадные (ВФХ) характеристики (C-V) структур Al/OH–La₂O₃/*p*-Si с разными толщинами пленок OH–La₂O₃. Зависимости C-V характерны для устройств с нелинейной емкостью и имеют гистерезис, который указывает на наличие подвижных ионов. C-V-характеристики структур Al/OH–La₂O₃/*p*-Si показывают положительный сдвиг напряжения плоских зон, свидетельствующий о наличии отрицательного встроенного заряда. Для оценки количества подвижных ионов N_{SS} (поверхностная плотность) используется сле-

Рис. 6. С-V-характеристики Al/OH-La₂O₃/*p*-Si структур с толщинами пленок OH-La₂O₃ 40 (1), 140 (2) и 545 (3) нм.

дующее выражение [23]:

$$N_{SS} = \frac{\delta V C_{\max}}{eS},\tag{1}$$

где S — площадь верхнего электрода, δV — величина гистерезиса, $C_{\rm max}$ — максимальная емкость, e — заряд электрона. N_{ss} пленок толщиной 40, 140 и 540 нм составляет соответственно $1.2 \cdot 10^{12}$, $5.5 \cdot 10^{12}$ и $0.9 \cdot 10^{12}$ см⁻².

Диэлектрическая проницаемость рассчитывается на основе формулы емкости конденсатора с параллельными пластинами как

$$C_{ox} = \frac{\varepsilon \varepsilon_0 A}{d_{ox}},\tag{2}$$

где ε — диэлектрическая проницаемость оксида, ε_0 — диэлектрическая постоянная (8.85 · 10⁻³ пФ/мкм), d_{ox} — толщина оксидного слоя, A — площадь электрода. Диэлектрическая проницаемость равна 19, что намного ниже, чем в случае безводного h-La₂O₃ ($\varepsilon = 27$), но больше, чем $\varepsilon = 4$ для SiO₂.

4. Заключение

В данной работе исследованы проводящие $(\sigma - V)$ и емкостные (C-V)-характеристики поверхностногидрированных пленок OH–La₂O₃, напыленных на кремниевые подложки с *p*-типом проводимости. Выявлена ОДП в структурах Al/OH–La₂O₃/*p*-Si, которая исчезает при хранении пленок в вакуумной камере. ОДП восстанавливается путем низковакуумного отжига при 650°С. Наблюдается хорошая корреляция между ИК поглощением –OH-групп и электрическими характеристиками. Происхождение ОДП объясняется переносом протонов по цепочкам молекул воды, связанных водородными связями на поверхности пленки OH–La₂O₃.

Финансирование работы

Работа выполнена при поддержке Российско-Армянского университета по постановлению Министерства образования и науки РФ.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] C.H. Hsu, M.T. Wang, J. Ya-Min Lee. J. Appl. Phys., **100**, 074108 (2006).
- [2] K. Xiong, J. Robertson. Appl. Phys. Lett., 95, 022903 (2009).
- [3] Y. Wang, R. Jia, C. Li, Y. Zhang. AIP Adv., 5, 087166 (2015).
- [4] M. Gutowski, J.E. Jaffe, C.-L. Liu, M. Stoker, R.I. Hegde, R.S. Rai, P.J. Tobin. Appl. Phys. Lett., 80, 1897 (2002).
- [5] Liu Qi-Ya, Fang Ze-Bo, Ji Ting, Liu Shi-Yan, Tan Yong-Sheng, Chen Jia-Jun, Zhu Yan-Yan. Chin. Phys. Lett., 31, 027702 (2014).
- [6] C. Yang, H. Fan, Sh. Qiu, Y. Xi, Y. Fu. Surf. Rev. Lett., 15, 271 (2008).
- [7] Lin Chen, Wen Yang, Ye Li, Qing-Qing Sun, Peng Zhou, Hong-Liang Lu, Shi-Jin Ding, D. Wei Zhang. J. Vac. Sci. Technol. A, **30**, 01A148 (2012).
- [8] H. Zhao, H. Tu, H.F. Wei, Y. Xiong, X. Zhang, J. Du. Phys. Status Solidi (RRL), 7, 1005 (2013).
- [9] Y. Zhao, M. Toyama, K. Kita, K. Kyuno, A. Toriumi. Appl. Phys. Lett., 88, 072904 (2006).
- [10] A. Igityan, N. Aghamalyan, S. Petrosyan, I. Gambaryan, G. Badalyan, R. Hovsepyan, Y. Kafadaryan. Appl. Phys. A, 123, 448 (2017).
- [11] A.Š. Vuk, R. Ješe, B. Orel, G. Dražic. IJP, 7, 163 (2005).
- [12] L. Esaki. Phys. Rev., **109**, 603 (1958).
- [13] J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour. Science, 286, 1550 (1999).
- [14] N.A. Zimbovskaya, M.R. Pederson. Phys. Rev. B, 78, 153105 (2008).
- [15] Q. Tang, H.K. Moon, Y. Lee, S.M. Yoon, H.J. Song, H. Lim, H.C. Choi. J. Am. Chem. Soc., **129**, 11018 (2007).
- [16] H.K. Lee, M.H.C. Jin. Appl. Phys. Lett., 97, 013306 (2010).
- [17] D. Joung, L. Anjia, H. Matsui, S.I. Khondaker. Appl. Phys. A: Mater. Sci. Process, 112, 305 (2013).
- [18] Song Hi Lee, Jayendran C. Rasaiah. J. Chem. Phys., 135, 124505 (2011).
- [19] Takeo Miyake, Marco Rolandi. J. Phys.: Condens. Matter, 28, 023001 (2016).
- [20] S.M. Sze. *Physics of Semiconductor Devices* (Wiley, N.Y., 1969).
- [21] Т.В. Бланк, Ю.А. Гольдберг. ФТП, 41, 1281 (2007).
- [22] M.A. Lampert. Phys. Rev., 103, 1648 (1956).
- [23] Л.П. Павлов. Методы измерения параметров полупроводниковых материалов (М., Высш. шк., 1987).

Редактор Г.А. Оганесян

Negative differential conductivity in lanthanum oxide based structures

A. Igityan^{1,2}, N. Aghamalyan^{1,2}, R. Hovsepyan^{1,2},
S. Petrosyan^{1,2}, G. Badalyan¹, I. Gambaryan¹,
A. Papikyan¹, Y. Kafadaryan^{1,2}

 ¹ Institute for Physical Research of National Academy of Sciences of Armenia, 0203 Ashtarak, Armenia
 ² Russian-Armenian University, 0051 Yerevan, Armenia

Abstract Using the method of electron beam evaporation, transparent surface-hydrogenated lanthanum oxide films $(OH-La_2O_3)$ with a thickness of 40, 140, and 545 nm were prepared. The electrical and optical characteristics of Al/OH-La₂O₃/*p*-Si structures were studied, where aluminum and a silicon substrate with *p*-type conductivity were used as the upper and lower electrodes, respectively. A region of negative differential conductivity (NDC) was found on the voltage dependence of conductivity at forward bias; the possible mechanism of NDC is explained by proton transfer along chains of water molecules bound by hydrogen bonds on the surface of an OH-La₂O₃ film.