19

Структура и термодинамические свойства SmGaGe₂O₇

© Л.Т. Денисова 1 , М.С. Молокеев 1,2 , Л.А. Иртюго 1 , В.В. Белецкий 1 , Н.В. Белоусова 1 , В.М. Денисов 1

1 Сибирский федеральный университет,

Красноярск, Россия

² Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН,

Красноярск, Россия

E-mail: antluba@mail.ru

Поступила в Редакцию 16 сентября 2019 г. В окончательной редакции 16 сентября 2019 г. Принята к публикации 16 сентября 2019 г.

Обжигом на воздухе в интервале температур $1273-1473\,\mathrm{K}$ из исходных оксидов $\mathrm{Sm_2O_3}$, $\mathrm{Ga_2O_3}$ и $\mathrm{GeO_2}$ твердофазным синтезом получен $\mathrm{SmGaGe_2O_7}$. Методом рентгеновской дифракции определена структура исследованного германата (пр. гр. $P2_1/c$; $a=7.18610(9)\,\mathrm{Å}$, $b=6.57935(8)\,\mathrm{Å}$, $c=12.7932(2)\,\mathrm{Å}$). С использованием дифференциальной сканирующей калориметрии измерена его высокотемпературная теплоемкость. Полученные экспериментальные данные $C_p=f(T)$ позволили рассчитать термодинамические свойства соединения.

Ключевые слова: галлий германат самария, структура, теплоемкость.

DOI: 10.21883/FTT.2020.02.48887.579

1. Введение

В последнее время наблюдается устойчивый интерес исследователей к оксидным материалам на основе германия с общей формулой $RMGe_2O_7$ (R = P39, Y; M = Al, Ga, In, Fe) [1–4]. Связано это с возможностями их практического применения. Из германатов этого класса наименее изученными являются соединения RGaGe₂O₇, для которых имеются отрывочные данные о структуре и абсорбционно-люминесцентным свойствам [5,6]. К подобным материалам относится и SmGaGe₂O₇. Сведения об это теплоемкости и термодинамическим свойствам в литературе отсутствуют. В то же время фазовые соотношения в системе $Sm_2O_3-Ga_2O_3-GeO_2$ не исследованы. Для термодинамического моделирования фазовых равновесий и определения оптимальных условий синтеза требуются данные, которых к настоящему времени нет.

Принимая это все во внимание, представлялось необходимым исследование структуры и высокотемпературной теплоемкости и определение по этим данным термодинамических свойств $Sm_2GaGe_2O_7$.

2. Синтез образцов и техника эксперимента

Используя метод твердофазного синтеза соединение $SmGaGe_2O_7$ получали из исходных оксидов Sm_2O_3 , Ga_2O_3 (ос.ч) и GeO_2 (99.996%). После перетирания предварительно прокаленных оксидов взятых в стехиометрическом соотношении прессовали без связующего в таблетки. Их последовательно обжигали на воздухе при $1273~\rm K$ ($40~\rm h$), $1373~\rm K$ ($100~\rm h$) и $1473~\rm K$ ($70~\rm h$). Для увеличения полноты протекания твердофазной реакции

спеченные таблетки через каждые $20\,h$ перетирали и снова прессовали. Относительно высокие температуры твердофазного синтеза приводят к испарению GeO_2 [7]. Поэтому обжиг проводили в тиглях с крышкой. Время синтеза и введение сверх стехиометрии количества GeO_2 подбирали экспериментально. Фазовый состав полученных образцов контролировали методом рентгеноструктурного анализа.

Порошковая рентгенограмма SmGaGe $_2$ O $_7$ получена при комнатной температуре на дифрактометре Bruker D8 ADVANCE с использованием линейного детектора VANTEC и излучения CuK_α . Шаг сканирования по углу 2θ составлял 0.016° , а время экспозиции 2 s на шаг.

Измерение теплоемкости $SmGaGe_2O_7$ проводили на приборе STA 449 C Jupiter (NETZSCH, Γ ермания). Методика экспериментов подобна описанной в работе [8]. Ошибка экспериментов не превышала 2%.

3. Экспериментальные результаты

Было установлено, что кристаллическая структура $SmGaGe_2O_7$ изоструктурна соединению $GdGaGe_2O_7$, структура которого была установлена ранее [5]. Поэтому координаты атомов последнего были взяты в качестве стартовой модели для уточнения Ритвельда в программе TOPAS~4.2~[9]. Для преобразования позицию Gd заменили на ион Sm~(puc.~1). Уточнение дало низкие факторы недостоверности (табл. 1, puc. 2).

Координаты атомов SmGaGe₂O₇ и основные длины связей приведены в табл. 2 и 3 соответственно. Сравнение полученных нами значений параметров элементарной ячейки SmGaGe₂O₇ (табл. 1) с результатами работы [5] (a=7.18(1) Å, b=6.56(1) Å, c=12.79(1) Å,

 $\beta = 117.4(2)^{\circ}$, d = 5.93 g/cm³) показывает, что они хорошо согласуются между собой.

На рис. 3 показана зависимость теплоемкости $SmGaGe_2O_7$ от температуры. Можно видеть, что с

Рис. 1. Кристаллическая структура SmGaGe₂O₇.

Рис. 2. Разностная рентгенограмма уточнения Ритвельда $SmGaGe_2O_7$.

Рис. 3. Температурные зависимости молярной теплоемкости $Sm_2Ge_2O_7$ (1) и $SmGaGe_2O_7$ (2).

Таблица 1. Основные параметры съемки и уточнения структуры кристалла $SmGaGe_2O_7$ (пр. гр. $P2_1/c$)

Параметр	Значение	
a, Å	7.18610(9)	
b, Å	6.57935(8)	
c, Å	12.7932(2)	
$eta,~^{\circ}$	117.4216(6)	
V , $Å^3$	536.90(1)	
Z	4	
d, g/cm ³	5.90	
Интервал уголов 2θ , °	10-120	
R_{wp} , %	2.34	
$R_{\rm p}, \%$	1.81	
$R_{\rm exp}$, %	187	
χ^2	1.25	
R_B , %	0.46	

Примечание. a,b,c,β — параметры ячейки; V — объем ячейки; d — рассчитанная плотность; факторы недостоверности: $R_{\rm wp}$ — весовой профильный, $R_{\rm p}$ — профильный. $R_{\rm exp}$ — ожидаемый, $R_{\rm B}$ — интегральный; χ^2 — качество подгонки; Z — число структурных единии.

Таблица 2. Координаты атомов и изотропные тепловые параметры $(B_{\rm iso})$ структуры SmGaGe₂O₇

Атом	x	у	z	$B_{\rm iso}$
Sm	0.7607(2)	0.14692(19)	0.02485(12)	0.39(13)
Ga1	0.7893(4)	0.3998(5)	0.2689(2)	0.41(13)
Ge1	0.7837(4)	0.6566(4)	0.0435(2)	0.20(14)
Ge2	0.2993(4)	0.4100(4)	0.2215(2)	0.35(14)
O1	0.5896(18)	0.8308(19)	0.0191(9)	0.29(17)
O2	0.7782(15)	0.115(2)	0.2181(10)	0.29(17)
O3	0.5674(16)	0.383(2)	0.3064(10)	0.29(17)
O4	0.0047(18)	0.3285(19)	0.4208(10)	0.29(17)
O5	0.746(2)	0.0005(16)	0.4226(11)	0.29(17)
O6	0.7947(18)	0.4488(15)	0.1307(11)	0.29(17)
Ο7	0.154(2)	0.1867(17)	0.1870(12)	0.29(17)

ростом температуры от 350 до 1000 К значения C_p закономерно увеличиваются, а на зависимости $C_p = f(T)$ нет каких-либо экстремумов. Последнее, по-видимому, может свидетельствовать об отсутствии полиморфных превращений у SmGaGe₂O₇ в исследованном интервале температур. Полученные данные могут быть описаны классическим уравнением Майера—Келли

$$C_p = a + bT - cT^{-2},$$
 (1)

которое для $SmGaG_2O_7$ имеет следующий вид:

$$C_p = (250.39 \pm 0.69) + (37.78 \pm 0.70) \cdot 10^{-3}T$$

- $(50.73 \pm 0.77) \cdot 10^5 T^{-2}$. (2)

Коэффициент корреляции для уравнения (2) равен 0.9992, а максимальное отклонение экспериментальных точек от сглаживающей кривой 0.66%.

Таблица 3. Основные длины связей (Å) в структуре $SmGaGe_2O_7$

Длина связи	Значение	Длина связи	Значение
Sm-O1 ^(I)	2.400(12)	Ga1-O4 ^(VI)	1.903(11)
$Sm-O1^{(II)}$	2.318(8)	Ga1-O6	1.815(12)
Sm-O2	2.426(10)	$Ga1-O7^{(VII)}$	1.959(12)
$Sm-O3^{(III)}$	2.490(11)	Ge1-O1	1.719(10)
$Sm-O4^{(IV)}$	2.576(11)	$Ge1-O4^{(VII)}$	1.777(10)
$Sm-O4^{(V)}$	2.650(8)	$Ge1-O5^{(III)}$	1.773(12)
$Sm-O5^{(III)}$	2.641(11)	Ge1-O6	1.743(11)
Sm-O6	2.352(11)	$Ge2-O2^{(VII)}$	1.767(11)
$Sm-O7^{(VI)}$	2.640(11)	Ge2-O3	1.731(8)
Ga1-O2	1.973(13)	$Ge2-O5^{(VII)}$	1.819(12)
Ga1-O3	1.869(7)	Ge2-O7	1.737(11)

Примечание. Элементы симметрии: (I) x,y-1,z; (II) -x+1,-y+1,-z; (III) x,-y+1/2,z-1/2; (IV) -x+1/2,y-1/2,-z+1/2; (V) x+1,-y+1/2,z-1/2; (VI) x+1,y,z; (VII) -x+1,y+1/2,-z+1/2.

Сравнить полученные нами данные по теплоемкости $SmGaGe_2O_7$ с результатами других авторов не представлялось возможным вследствие их отсутствия. Поэтому на рис. 3 приведены данные для $Sm_2Ge_2O_7$ [10]. Видно, что замещение части самария на галлий приводит в целом к уменьшению теплоемкости. Только при $T \geq 900~{\rm K}$ величины C_p становятся близкими между собой.

На основании уравнения (2) по известным термодинамическим соотношениям рассчитаны термодинамические функции SmGaGe₂O₇ (изменения энтальпии $H^0(T)-H^0(350\,\mathrm{K})$, энтропии $S^0(T)-S^0(350\,\mathrm{K})$ и приведенная энергия Гиббса $\Phi^0(T)$). Эти результаты приведены в табл. 4.

Из нее следует, что значения C_p при T > 800 К превышают предел Дюлонга—Пти 3Rs, где R — универсальная газовая постоянная, s — число атомов в формульной единице оксидного соединения (s=11).

4. Заключение

Методом твердофазной реакции синтезировано соединение ${\rm SmGaGe_2O_7}.$ Уточнена его кристаллическая структура и исследована высокотемпературная теплоемкость. Установлено, что экспериментальные значения $C_p=f(T)$ хорошо описываются уравнением Майера—Келли. Рассчитаны термодинамические функции оксидного соединения.

Финансирование работы

Работа выполнена при финансовой поддержке работ, выполняемых в рамках Государственного задания Министерства науки и высшего образования Российской Федерации Сибирскому федеральному университету на 2017-2019 годы (проект 4.8083.2017/8.9 "Формирование банка данных термодинамических характеристик сложнооксидных полифункциональных материалов, содержащих редкие и рассеянные элементы").

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- E.A. Juárez-Arellano, L. Bucio, J.L. Ruvalcaba, R. Moreno-Tovar, J.E. Garcia-Robledo, E. Oroxco. Z. Kristallogr. 217, 201 (2002)
- [2] A.A. Kaminskii, H. Rhee, O. Lux, A. Kaltenbach, H.J. Eichler, J. Hanuza, S.N. Bagayev, H. Uonea, A. Shirakawa, K. Ueda. Laser Phys. Lett. 10, 075803-1 (2013).
- [3] Т.В. Дрокина, Г.А. Петраковский, Д.А. Великанов, М.С. Молокеев. ФТТ **56**, *6*, 1088 (2014).
- [4] Л.Т. Денисова, Ю.Ф. Каргин, Л.А. Иртюго, Н.В. Белоусова, В.В. Белецкий, В.М. Денисов. Неорган. материалы. 54, 12, 1315 (2018).
- [5] A.A. Kaminskii, B.V. Mill, A.V. Butashin, E.L. Belokoneva, K. Rurbanov. Phys. Status Solidi A 103, 575 (1987).

Таблица 4. Термодинамические свойства SmGaGe₂O₇

<i>T</i> , K	C_p , J/(mol · K)	$H^0(T) - H^0(350 \mathrm{K}), \mathrm{kJ/mol}$	$S^{0}(T) - S^{0}(350 \mathrm{K}), \mathrm{J/(mol \cdot K)}$	$\Phi^0(T)$, J/(mol · K)
350	222.2	_	_	_
400	233.8	11.42	30.47	1.93
450	242.3	23.33	58.52	6.68
500	249.0	35.20	84.41	13.18
550	254.4	48.21	108.4	20.76
600	259.0	61.04	130.7	29.00
650	262.9	74.09	151.6	37.64
700	266.5	87.33	171.3	46.49
750	269.7	100.7	189.7	55.43
800	272.7	114.3	207.3	64.38
850	275.5	128.0	223.9	73.27
900	278.1	141.8	239.7	82.08
1000	283.1	169.9	269.3	99.34

- [6] G. Lozano, C. Cascales, P. Porcher. J. Alloys Comp. 303, 349 (2000).
- [7] V.W. Becker, J. Felsche. J. Less-Comm. Met. 128, 269 (1987).
- [8] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, В.В. Белецкий, В.М. Денисов. Неорган. материалы **53**, *1*, 71 (2017).
- [9] Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User's Manual. Bruker AXS, Karlsruhe, Germany (2008).
- [10] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, В.В. Белецкий, Н.В. Белоусова, В.М. Денисов. Неорган. материалы **54**, *2*, 193 (2018).

Редактор Д.В. Жуманов