04,13

Диэлектрические потери тонкопленочных образцов SiO₂ на AI в THz-IR-диапазоне

© Г.А. Командин, В.С. Ноздрин, А.А. Пронин, О.Е. Породинков ¶, В.Б. Анзин, И.Е. Спектор

Институт общей физики им. А.М. Прохорова РАН, Москва, Россия

[¶] E-mail: oleg.porodinkov@yandex.ru

Поступила в Редакцию 16 сентября 2019 г. В окончательной редакции 16 сентября 2019 г. Принята к публикации 16 сентября 2019 г.

> Создание новых диэлектрических материалов для изолирующих слоев межсоединений с низкими потерями на высоких частотах (low-k) является одним из магистральных направлений современной микроэлектроники. В настоящее время проводятся исследования различных модификаций стандартных для современных интегральных схем диэлектрических структур на основе SiO₂, различающихся по составу и морфологическим характеристикам. В данной работе методами терагерцовой (THz) и IR-спектроскопии изучаются диэлектрические потери тонкопленочных образцов SiO₂ на Al-подложке. Обнаружены существенные отличия спектров таких структур по сравнению с объемными образцами плавленого кварца, в том числе резонансные моды Берримана.

> Ключевые слова: диэлектрическая спектроскопия, терагерцовый диапазон, спектрометр с временным разрешением, диэлектрические потери.

DOI: 10.21883/FTT.2020.02.48871.584

1. Введение

Рост тактовой частоты и увеличение плотности компоновки больших и ультрабольших интегральных схем (БИС и УБИС) стимулировали активные работы по поиску и синтезу новых материалов для изолирующих слоев межсоединений [1,2], поскольку для стандартного оксида кремния SiO2 диэлектрические потери в изолирующих слоях ограничивают скорость передачи сигналов при увеличении тактовой частоты. Хотя существует широкий класс веществ (таких, как полиэтилен и другие полимеры), диэлектрические свойства которых значительно превосходят SiO2, особенности технологических процессов производства УБИС сужают круг материалов, пригодных для формирования изолирующих слоев. Поэтому оксид кремния остается востребованным и хорошо зарекомендовавшим себя в качестве стабильного материала, совместимого с технологическими циклами производства УБИС.

Одним из основных параметров материала изолирующих слоев, влияющим на потери в межсоединениях, является комплексная диэлектрическая проницаемость [1,2]. Для аморфных пленок SiO₂ диэлектрическая проницаемость в радиочастотном диапазоне составляет около 4, а основные перспективы ее снижения реализуются за счет формирования пористой структуры. Однако, такой подход создает определенные проблемы, связанные с высокой адсорбционной активностью пористых материалов. Адсорбция жидкостей увеличивает диэлектрическую проницаемость и потери пористой среды в СВЧ-диапазоне [3,4]. Одним из решений данной

проблемы является синтез органосиликатных стекол с гидрофобными радикалами [5,6].

Помимо адсорбции, существенное влияние на формирование диэлектрических параметров SiO₂ оказывают структурные и морфологические факторы, а также отклонение от стехиометрии пленок при их синтезе. В недавно опубликованной серии работ показано, что гетероэпитаксиальные напряжения на границе раздела слоев приводят к изменениям электродинамических и термодинамических характеристик пленок в сравнении с объемными образцами эквивалентного состава [7-10]. Полиморфизм оксида кремния оказывает существенное влияние на параметры функции диэлектрического отклика в THz-IR-области спектра. Для разупорядоченных и аморфных (стеклообразных) форм этого соединения характерно наличие дополнительной дисперсии диэлектрической проницаемости на низких частотах, представляющей суперпозицию релаксационных вкладов [11,12].

Анализ широкополосных спектров диэлектрического отклика, полученных методами инфракрасной спектроскопии и спектроскопии с временным разрешением (TDS), является стандартным способом определения фононного и релаксационного вкладов в диэлектрическую проницаемость материала. Ценность результатов этого анализа заключается в определении минимально достижимых значений проницаемости и потерь для данного материала в высокочастотном пределе, обусловленных откликом электронной и ионной подсистем материала, в то время как в радио и СВЧ-диапазонах могут проявляться дополнительные релаксационные вклады, связанные, например, с морфологией образцов или адсорбцией примесей. Поэтому использованные в настоящей работе объемные образцы плавленого кварца и плотные тонкопленочные образцы на алюминиевой подложке играют роль своеобразного эталона для определения базовых электродинамических характеристик SiO₂ в заданной морфологии, что необходимо для сопоставления с модифицированными пленочными и объемными low-*k*-диэлектриками на основе SiO₂, а также учета влияния материала металлической подложки.

2. Экспериментальные методы

В работе изучены объемные образцы плавленого кварца и тонкой (650 nm) плотной пленки SiO₂. Тонкие пленки SiO₂ получены стандартным методом электроннолучевого испарения с осаждением на тонкий (~ 150 nm) алюминиевый слой, предварительно нанесенный на подложку из стекла марки KB.

Исследования диэлектрических свойств образцов выполнены с использованием инфракрасного фурье-спектрометра Bruker IFS-113v, импульсного терагерцового TDS [13] и когерентного квазимонохроматического THz-спектрометра [14] с источником излучения на основе ламп обратной волны (ЛОВ) (backward-wave oscillator BWO) [15]. Для образцов плавленого кварца измерены спектры отражения в IR-диапазоне, а также THz-спектры пропускания, с использованием указанных выше спектрометров.

При измерении тонкопленочных образцов в IR-диапазоне Bruker IFS-113v был сконфигурирован для измерения спектров отражения, в виду очевидной непрозрачности слоя алюминия. Спектры отражения измерены для двух углов падения излучения по оптическим схемам, близким к использованным в [16]. В первом случае угол был близок к нормали и не превышал $5-6^{\circ}$, а падающее излучение было неполяризованным. Во втором случае измерения выполнены для угла падения $30\pm1^\circ$ градусов для s- и p-поляризованной волны. Во всех измерениях спектры отражения определены по отношению к отражению от плоской полированной серебряной пластинки. Выбор серебра в качестве референтного зеркала определен большей химической инертностью по сравнению с алюминием, так как слой оксида алюминия, неизбежно образующийся в атмосферном воздухе на поверхности этого металла, мог бы привести к искажениям полученных результатов.

3. Моделирование спектров

Для определения параметров полос поглощения в IR-области спектра использована аддитивная модель гармонического осциллятора

$$\varepsilon^*(\nu) = \varepsilon_{\infty} + \sum_{j=1}^N \frac{\Delta \varepsilon_j \nu_{jTO}^2}{\nu_{jTO}^2 - \nu^2 + i\nu\gamma_{jTO}}.$$
 (1)

Зависимость комплексной диэлектрической проницаемости ε^* от волнового числа (wavenumber) ν в формуле (1) представлена в виде суммы оптического предела ε_{∞} и вкладов отдельных колебаний, параметризованных с помощью набора из трех подгоночных коэффициентов: частоты поперечных колебаний ν_{jTO} , константы затухания γ_{jTO} и вклада колебания в диэлектрическую проницаемость $\Delta \varepsilon_j$. Подбор дисперсионных параметров для каждого модельного осциллятора выполнен путем минимизации среднеквадратичного отклонения расчетного спектра от экспериментальных данных.

Для объемного образца плавленого кварца моделирование спектров отражения проведено в приближении полубесконечного слоя. Субмиллиметровый (SBMM) и THz диапазоны являются областью прозрачности плавленого кварца. Для образца, изготовленного в виде плоскопараллельной пластинки, выполняются условия многолучевой интерференции. В этой области для предварительного определения величины комплексного показателя преломления использованы следующие приближенные формулы:

$$n = mc/(2d\Delta v_{\rm max}), \tag{2}$$

$$k = -\ln(T_{\rm max})c/4\pi d\nu_{\rm max}.$$
 (3)

В формулах (2), (3) Δv_{max} — расстояние по частоте между соседними максимумами интерференции, d толщина образца, Т_{тах} — коэффициент пропускания в максимуме интерференции, с — электродинамическая константа, равная скорости света в вакууме. Полученные данные использованы как начальное приближение и как низкочастотная привязка при моделировании полос поглощения в IR-области. Дальнейшее моделирование выполнено для всего набора экспериментальных данных по отражению и пропусканию с использованием формул Френеля [17]. Отметим, что относительно небольшой по величине релаксационный вклад в низкочастотной THz части диапазона, будучи представленным в виде стандартного дебаевского пика поглощения, заметно искажает высокочастотный IR-участок расчетного спектра в силу несоответствия модели Дебая правилу сумм, поэтому при анализе широкополосных данных оправдана замена релаксационного типа отклика резонансным с использованием осциллятора с большой константой затухания.

Спектры отражения структуры SiO₂ на алюминиевом подслое рассчитывались по модели двухслойной среды. Для металлического подслоя использована модель проводимости Друде:

$$\sigma^*(\nu) \frac{\sigma_{DC}}{1 - i\nu\tau}.$$
 (4)

Для расчета использованы стандартные для алюминия параметры: статическая проводимость $\sigma_{DC} \sim 10^6 \, \mathrm{Ohm^{-1} cm^{-1}}$ и затухание $\gamma = (2\pi c \tau)^{-1} \sim 10^3 \, \mathrm{cm^{-1}}$, где τ — среднее время между соударениями, c — скорость света в вакууме. Подбор дисперсионных параметров, описывающих полосы поглощения в слое SiO₂,

j	v_{jTO} , cm ⁻¹	$\Delta \varepsilon_j$	γ_{jTO} , cm ⁻¹	assignment	α -quartz [21]	glass [21]
1	130	0.012	121	THz rel		
2	284	0.065	185	THz rel		
					394	
					424	424
						445
3	453	0.47	51		450	460
4	468	0.36	14.3	bending		
						635
5	799	0.04	37.5		797	805
						1057
6	1062	0.49	41		1065	1088
7	1093	0.17	18.6			
8	1168	0.013	39		1158	1178
9	1214	0.04	90			

Таблица 1. Параметры дисперсионного моделирования спектров отражения и пропускания плавленого кварца. Параметр $\varepsilon_{\infty}=2.25$

также проведен с помощью аддитивной модели гармонического осциллятора (1).

4. Результаты и обсуждение

Диоксид кремния формирует большое число полиморфных фаз, различающихся величиной показателя преломления и плотностью [18]. Стеклообразная форма диоксида кремния — плавленый кварц, характеризуется значительным структурным разупорядочением, определенным разбросом углов связей Si-O-Si между тетраэдрами SiO₄ [19,20]. Структурное разнообразие семейства SiO₂ приводит к различию параметров колебательных спектров.

Спектр отражения оптически изотропного плавленого кварца в IR-области приведен на рис. 1. Для него характерно наличие трех полос поглощения, связанных

Рис. 1. Спектры отражения и пропускания (на вставках) плавленого кварца SiO₂. Экспериментальные данные показаны точками *I*, моделирование — сплошной линией *2*.

(assignment) с симметричными и антисимметричными (stretch) колебаниями и изгибными (bending) колебаниями сетки O-Si-O [21], а также наблюдается характерная асимметрия контуров линий, что является следствием сильного ангармонизма колебательных мод. Заметное перекрытие контуров поглощения в IR-области указывает на взаимодействие элементарных колебаний. Моделирование подобного рода спектров в рамках простых моделей дисперсии приводит к заметным расхождениям расчетных спектров и экспериментальных данных, что и демонстрируют данные рис. 1, где сплошной линией 2 показан расчетный спектр, полученный по модели аддитивных гармонических осцилляторов (1). Уточненное описание динамики таких систем может быть проведено с использованием более сложных дисперсионных моделей, таких как модель пары взаимодействующих осцилляторов Баркера-Хопфильда [22], либо обобщенной четырехпараметрической модели дисперсии [23], однако на их эффективность накладывает ограничения характер спектра; например, в модели [22] учитывается взаимодействие только двух мод.

Для образца плавленого кварца были также измерены спектры пропускания с использованием TDS, BWO (в ТНz-диапазоне) и IR-спектрометров. Полученные результаты показаны на вставках на рис. 1. Параметры релаксационного вклада (assignment = THz rel в табл. 1) в частотной области бозонного пика определены одновременным моделированием экспериментальных данных по пропусканию и отражению. За основу взяты дисперсионные параметры IR-полос поглощения, и по ним рассчитан спектр пропускания, экстраполированный в низкочастотную область. Расхождения между расчетным и экспериментальным спектрами пропускания смоделированы двумя переторможенными осцилляторами, суммарный вклад которых $\Delta \varepsilon$ менее 0.08. Параметры дисперсионного моделирования, с учетом данных по пропусканию в SBMM-THz-диапазоне, приведены в табл. 1.

Экспериментальные данные спектров отражения в IR-диапазоне для тонкопленочного образца SiO₂ на алюминиевой подложке (для случая нормального угла падения излучения), а также результаты дисперсионного моделирования по формуле (1), приведены на рис. 2, параметры модели приведены в табл. 2. Используя значения параметров из табл. 1 и 2, по данным спектров отражения можно рассчитать частотные зависимости мнимой части диэлектрической проницаемости $\varepsilon''(v)$, характеризующие потери в IR-диапазоне. Соответствующие спектры для тонкой пленки SiO2 и плавленого кварца показаны на рис. 3. Различия в спектрах этих образцов заключаются как в амплитуде пиков, так и в форме контуров линий поглощения. Увеличение ширины контуров спектра $\varepsilon''(v)$ однозначно указывает на то, что в пленке величина затухания существенно больше. В сочетании с большей амплитудой пиков поглощения,

Рис. 2. Спектры отражения структуры SiO₂ на пленке Al для случая нормального угла падения излучения. Точки *1* — эксперимент, сплошная линия *2* — моделирование.

Рис. 3. Сопоставление расчетных спектров диэлектрических потерь $\varepsilon''(\nu)$ объемного образца плавленого кварца (линия *I*) и тонкой пленки SiO₂ (линия *2*).

j	v_{jTO} , cm ⁻¹	$\Delta \varepsilon_j$	$\gamma_{jTO},\mathrm{cm}^{-1}$
1	400	5	220
2	450	1	44
3	600	0.33	160
4	800	0.11	59
5	904	0.078	75
6	936	0.02	57
7	1067	0.23	39
8	1098	0.79	35
9	1158	0.3	78
10	1199	0.05	54
11	1455	0.002	60
12	1588	0.014	90
13	1870	0.003	90
14	1980	0.001	80

Таблица 2. Параметры дисперсионного моделирования тонкой (650 nm) пленки SiO₂ на подслое Al. Параметр $\varepsilon_{\infty} = 2.25$

большая ширина полос поглощения указывает не только на существенно большие потери в пленке, но также и на увеличение действительной части диэлектрической проницаемости в силу соотношений Крамерса–Кронига.

На эффективность распространения сигнала в УБИС влияет как величина емкости межэлементных соединений, так и удельное сопротивление проводящего слоя. Для тонких металлических пленок в ТНz-диапазоне должен реализоваться режим Хагена–Рубенса ($\nu \ll \gamma$), при котором коэффициент отражения связан с оптической проводимостью следующим соотношением:

$$R = 1 - 2\sqrt{\frac{\nu}{\sigma}} \sim \text{const.}$$
 (5)

Однако, как было показано в [24,25], качество пленки является определяющим фактором для $\sigma(\nu)$, которая может на порядок отличаться от соответствующих значений для объемного материала. Для учета влияния материала металлической подложки на суммарный коэффициент отражения, в том числе, оценки возможных поляритонных вкладов, для тонкопленочного образца SiO₂ были проведены измерения спектров отражения в IR-диапазоне при промежуточных значениях угла падения $30 \pm 1^{\circ}$ для *s*- и *p*-поляризованной волны. Спектры в *p*-поляризованном излучении для исследованного образца показаны на рис. 4. В полученных спектрах зарегистрированы две дополнительные полосы поглощения в области $\nu \sim 495$ cm⁻¹ и $\nu \sim 1240$ cm⁻¹, положение которых соответствует модам Берримана [26].

Как отмечается в [27], возникновение мод Берримана в тонкопленочных структурах связано с резонансным поглощением *p*-поляризованного IR-излучения поверхностными фонон-поляритонами, которые возбуждаются на границе раздела вакуум-диэлектрик. Согласно результатам исследования объемных образцов SiO₂ [28], частотные области дисперсии поверхностных фонон-поляритонов составляют 450–510, 780–810

Рис. 4. Спектры отражения структуры SiO₂ на пленке Al для *p*-поляризованного излучения. Кривая *1*: точки — экспериментальные данные, сплошная линия — моделирование; кривая *2* (штрихпунктирная линия) — экспериментальный спектр структуры при нормальном падении излучения (см. рис. 2). Стрелками отмечены положения линий мод Берримана.

Рис. 5. Сопоставление расчетных спектров диэлектрических потерь $\varepsilon''(v)$ пленки *p*-поляризованного (линия *l*) и *s*-поляризованного (линия *2*) излучения с углом падения 30 градусов. Стрелками отмечены положения линий мод Берримана для случая *p*-поляризации.

и 1070–1180 ст m^{-1} (см. табл. 1 в [28]). Поверхностные плазмон-поляритоны, активные на границе раздела SiO₂/Al имеют сильно размытый по частоте вклад [28].

Сопоставить потери с учетом геометрического фактора при наклонном падении излучения можно, сравнив спектры *s*- и *p*-поляризованного излучения. Оценка вклада поверхностных фонон-поляритонов в общее поглощение выполнена с использованием аддитивной модели дисперсии (1). Для низкочастотного пика поглощения на $\nu \sim 495 \, {\rm cm}^{-1}$ вклад $\Delta \varepsilon$ составил порядка 1, на высоких

частотах в области $\nu \sim 1240 \,\mathrm{cm^{-1}}$ модельный вклад $\Delta \varepsilon$ достигает 0.28. Частотные зависимости мнимой части диэлектрической проницаемости $\varepsilon''(\nu)$ для тонкопленочного образца SiO₂ по результатам дисперсионного моделирования спектров отражения поляризованного IR-излучения приведены на рис. 5.

Как следует из данных рис. 5 (линия 2), спектр $\varepsilon''(\nu)$ для *s*-поляризации по структуре полос сопоставим со спектром потерь при угле падения близком к нормали (ср. с кривой 2 на рис. 3). Оценку вклада отдельных полос поглощения можно получить из интегралов спектров оптической проводимости. Площадь под контуром спектра проводимости q^* пропорциональна квадрату эффективного заряда моды:

$$q^* \sim \int \sigma'(\nu) d\nu = \frac{2}{\pi} \sum_k \frac{(q_k^*)^2}{M_{\alpha,\beta}},\tag{6}$$

где $M_{\alpha,\beta}$ — приведенная масса ионов, участвующих в колебании. Интегрирование выполнено в диапазоне ν от 10 до 3000 сm⁻¹. Для контуров отдельно рассчитанных поляритонных мод интегралы составили 6575 и 11380 для $\nu = 495$ сm⁻¹ и $\nu = 1240$ сm⁻¹ соответственно, притом что значения интегралов по всему рассчитанному спектру равны ~ 90000 и ~ 54400 для *p*- и *s*-поляризации.

5. Заключение

Полученные в настоящей работе инфракрасные спектры отражения тонкой пленки SiO₂, осажденной на алюминиевую подложку, существенно отличаются от спектров объемного образца плавленого кварца как по диэлектрическому вкладу, так и по спектру линий поглощения. Основное отличие заключается в уширении контуров линий симметричных и асимметричных колебаний сетки SiO₂, а также в смещении частот максимумов пиков поглощения. Существенным фактором с точки зрения формирования диэлектрических слоев является заметное уширение и увеличение амплитуды полос поглощения в области фундаментальных колебаний, так как в силу соотношений Крамерса-Кронига это указывает на увеличение вклада в низкочастотную диэлектрическую проницаемость. Дополнительной особенностью тонкопленочной структуры SiO2-металл, формирующей диэлектрические потери в IR-диапазоне, является наличие резонансного поглощения р-поляризованного излучения (моды Берримана).

Финансирование работы

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований, грант № 18-29-27010 МК.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- K. Maex, M.R. Baklanov, D. Shamiryan, F. lacopi, S.H. Brongersma, Z.S. Yanovitskaya. J. Appl. Phys. 93, 8793 (2003).
- [2] A. Grill, S.M. Gates, T.E. Ryan, S.V. Nguyen, D. Priyadarshini. Appl. Phys. Rev. 1, 011306 (2014).
- [3] J.H. Vleck. Phys. Rev. 71, 425 (1947).
- [4] T. Fukasawa, T. Sato, J. Watanabe, Y. Hama, W. Kunz, R. Buchner. Phys. Rev. Lett. 95, 197802 (2005).
- [5] M. Morgen, E.T. Ryan, J.-H. Zhao, C. Hu, T. Cho, P.S. Ho. Ann. Rev. Mater. Sci. **30**, 645 (2000).
- [6] H. Li, T.Y. Tsui, J.J. Vlassak. J. Appl. Phys. 106, 033503 (2009).
- [7] D. Nuzhnyy, J. Petzelt, S. Kamba, P. Kužel, C. Kadlec, V. Bovtun, M. Kempa, J. Schubert, C.M. Brooks, D.G. Schlom. Appl. Phys. Lett. 95, 232902 (2009).
- [8] D. Nuzhnyy, J. Petzelt, S. Kamba, X. Martí, T. Čechal, C.M. Brooks, D.G. Schlom. J. Phys: Cond. Mater. 23, 045901 (2011).
- [9] H.W. Jang, A. Kumar, S. Denev, M.D. Biegalski, P. Maksymovych, C.W. Bark, C.T. Nelson., C.M. Folkman, S.H. Baek, N. Balke, C.M. Brooks, D.A. Tenne, D.G. Schlom, L.Q. Chen, X.Q. Pan, S.V. Kalinin, V. Gopalan, C.B. Eom. Phys. Rev. Lett. 104, 197601 (2010).
- [10] D. Nuzhnyy, J. Petzelt, S. Kamba, T. Yamada, M. Tyunina, A.K. Tagantsev, J. Levoska, N.J. Setter. Electroceramics 22, 297 (2008).
- [11] V.L. Gurevich, D.A. Parshin, H.R. Schober. Phys. Rev. B 67, 094203 (2003).
- [12] A.I. Chumakov, I. Sergueev, U. Van Bürck, W. Schirmacher, T. Asthalter, Rüffer, O. Leupold, W. Petry. Phys. Rev. Lett. 92, 245508 (2004).
- [13] G.A. Komandin, A.A. Gavdush, Y.G. Goncharov, O.E. Porodinkov, V.S. Nozdrin, S.V. Chuchupal, I.E. Spektor. Optics and Spectroscopy **126**, 514 (2019).
- [14] G. Gruner. Millimeter and Submillimeter Wave Spectroscopy of Solids Topics in Appl. Phys. 74. Springer-Verlag Berlin Heidelberg (1998). P. 51.
- [15] G.A. Komandin, S.V. Chuchupal, S.P. Lebedev, Y.G. Goncharov, A.F. Korolev, O.E. Porodinkov, I.E. Spektor, A.A. Volkov. IEEE Trans. Terahertz Sci. Technology 3, 440 (2013).
- [16] P. Grosse, B. Harbecke, B. Heinz, R. Meyer, M. Offenberg. Appl. Phys. A **39**, 257 (1986).
- [17] M. Born, E. Wolf, A.B. Bhatia, P.C. Clemmow, D. Gabor, A.R. Stokes, A.M. Taylor, P.A. Wayman, W.L. Wilcock. Principles of Optics. Cambridge University Press, (1999). 952 c.
- [18] B.J. Skinner, D.E. Appleman. Am. Mineral. 48, 854 (1963).
- [19] R.L. Mozzi, B.E. Warren. J. Appl. Crystallogr. 2, 164 (1969).
- [20] Y. Guissani, B. Guillot. J. Chem. Phys. 104, 7633 (1996).
- [21] A.M. Efimov. J. Non-Cryst. Sol. 203, 1 (1996)
- [22] A.S. Barker, J.J. Hopfield. Phys. Rev. 135, A1732 (1964).
- [23] R.H. Lyddane, R.G. Sachs, E. Teller. Phys. Rev. 59, 673 (1941).
- [24] N. Laman, D. Grischkowsky. Appl. Phys. Lett. 93, 051105 (2008).
- [25] V.V. Gerasimov, B.A. Knyazev, A.K. Nikitin, G.N. Zhizhin. Appl. Phys. Lett. 98, 171912 (2011).
- [26] D.W. Berreman. Phys. Rev. 130, 2193 (1963).
- [27] S. Vassant, J.-P. Hugonin, F. Marquier, J.-J. Greffet. Opt. Express 20, 23971 (2012).
- [28] G.N. Zhizhin, E.A. Vinogradov, M.A. Moskalova, V.A. Yakovlev. Appl. Spectr. Rev. 18, 171 (1982).

Редактор К.В. Емцев