05;13

Изменение морфологии, структуры и микротвердости образцов циркониевого сплава в результате воздействия лазерными импульсами

© В.И. Проскуряков, И.В. Родионов, В.А. Кошуро, Л.Е. Куц, И.В. Перинская

Саратовский государственный технический университет им. Гагарина Ю.А., Саратов, Россия E-mail: prosku.94@mail.ru

Поступило в Редакцию 10 сентября 2019 г. В окончательной редакции 1 октября 2019 г. Принято к публикации 1 октября 2019 г.

Представлены результаты экспериментальных исследований по модифицированию поверхностного слоя циркониевого сплава марки Э-110 при воздействии импульсного лазерного излучения. Установлено, что в результате лазерной обработки происходит изменение морфологии поверхностного слоя с образованием наночастиц размером до 50 nm. Рельеф обрабатываемой поверхности становится структурно-гетерогенным, содержащим фазы циркония и моноклинного диоксида ZrO_2 . Выявлено, что в результате воздействия лазерных импульсов происходит существенное повышение микротвердости поверхности циркониевых образцов до 27.1 ± 0.1 GPa.

Ключевые слова: цирконий, лазерное упрочнение, наноструктурирование поверхности, микротвердость.

DOI: 10.21883/PJTF.2020.01.48856.18029

Благодаря своим повышенным прочностным параметрам, коррозионной стойкости к воздействию различных агрессивных сред и низкому сечению захвата тепловых нейтронов цирконий и сплавы на его основе нашли широкое применение в машиностроительной отрасли, атомной промышленности, приборостроении, медицинской технике и т. д. Из циркония изготавливают медицинские имплантаты, хирургический инструмент, оболочки твэлов, охладительные трубки ядерных реакторов, теплообменники, детали горячей запорной арматуры [1,2]. Однако известно, что в процессе эксплуатации при повышенных температурах (около 400°С) под воздействием перегретой воды или перегретого водяного пара, а также при взаимодействии с углекислым газом происходит окисление поверхности металла, что приводит к постепенному разрушению циркониевых изделий [3,4].

В настоящее время известен широкий спектр технологий модификации поверхностного слоя, способных повысить эксплуатационные характеристики металлических изделий и защитить их от преждевременного износа. К таким технологиям можно отнести электрохимические, газотермические и электрофизические методы формирования защитных барьерных покрытий, поверхностно-деформационное упрочнение, термическую и лазерную обработку [4–8].

К наиболее перспективным и экономически целесообразным технологиям повышения эксплуатационных характеристик и защиты от преждевременного износа металлов и сплавов в условиях воздействия агрессивных сред можно отнести способы лазерной обработки поверхности. Такие способы модификации поверхностного слоя являются достаточно эффективными. Лазерное микро- и наноструктурирование поверхности отличается относительной простотой реализации и дешевизной, контролируемостью и воспроизводимостью процесса. Также наиболее значимой отличительной особенностью метода лазерной модификации является возможность локальной обработки поверхности, что позволяет значительно минимизировать время, количество расходуемого материала, а также затрачиваемые энергоресурсы [9,10].

При воздействии лазерного импульса на обрабатываемую поверхность происходит изменение структурного состояния, а также физико-механических свойств за счет высокоскоростного нагрева и последующего быстрого охлаждения обрабатываемого участка и происходящих при этом процессов рекристаллизации. В результате импульсной лазерной обработки ряда металлов и сплавов на модифицируемой поверхности происходит формирование структур нанометрового масштаба, что приводит к улучшению как физических, так и механических свойств обрабатываемого материала, улучшаются коррозионная стойкость и сверхпластичность. Известно, что микротвердость наноструктурированной поверхности ряда материалов в 2-7 раз выше, чем твердость крупнозернистых аналогов. В зависимости от рабочей атмосферы происходит изменение элементно-фазового состава. Однако особенности процесса лазерного упрочнения циркония недостаточно полно изучены [11,12].

Поэтому цель настоящей работы заключается в исследовании изменений характеристик поверхности циркония в результате лазерной обработки и установлении влияния режимов импульсного воздействия на микротвердость модифицируемого слоя.

В качестве экспериментальных образцов использовались пластины размером $10 \times 10 \times 3$ mm из циркониевого сплава марки Э-110. Модифицируемая поверхность

Рис. 1. Морфология поверхности циркония после лазерной обработки. *1*-3 — обозначения спектров областей, по которым проводился ЭДРФА.

Таблица	1.	Элементный	И	фазовый	состав	поверхности
циркония і	посл	е лазерной об	ipat	ботки		

Элементный состав модифицированной поверхности циркония, at.%					
Спектр	0	Fe	N	Zr	W
1 2 3	13.71 11.12 12.02	0.97 0.47 0.30	2.55	85.32 85.03 86.92	0.83 0.76

Фазовый	состав	модифицированно	Й
---------	--------	-----------------	---

поре	nyuoctu	IIIInvo	шиа
HOBC	раности	цирко	пия

Zr		ZrO_2 (моноклинный)		
$d, \mathrm{\AA}$	J, rel. un.	d, Å	J, rel. un.	
2.79	244	5.05	59.2	
2.57	254	3.63	119	
2.45	650	3.15	650	
1.89	143	2.83	678	
1.61	161	2.60	135	
1.46	165	2.33	51.7	
1.36	170	2.20	136	
1.35	121	1.84	180	
		1.81	221	
		1.68	111	
		1.64	91	
		1.47	103	

подвергалась предварительной шлифовке влагостойкой наждачной бумагой зернистостью Р600 (ISO-6344) и последующей очистке от технологических загрязнений методом ультразвуковой (УЗ) обработки с использо-

Письма в ЖТФ, 2020, том 46, вып. 1

ванием УЗ-ванны "Кристалл-2.5" в водных растворах поверхностно-активных веществ и этилового спирта в течение 20 min.

Лазерное воздействие осуществлялось с использованием автоматизированной установки для термофизической когерентной модификации поверхности LRS-50A при напряжении импульса U = 350, 375, 400, 425, 450 и 475 V. Длительность τ импульсного воздействия составляла 0.7, 0.85 и 1 ms. Луч фокусировался в пятно диаметром 1 mm. Сканирование поверхности осуществлялось при частоте следования импульсов 15 Hz и коэффициенте перекрытия 0.1.

Элементный состав и морфология модифицируемого слоя исследовались методами энергодисперсионного рентгенофлуоресцентного анализа (ЭДРФА) (погрешность концентраций ± 0.5 at.%) и растровой электронной микроскопии (РЭМ) на электронном микроскопе "MIRA II LMU" с детектором "INCA PentaFETx3".

Фазовый состав устанавливался методом рентгенофазового анализа с помощью дифрактометра ДРОН-4, снабженного рентгеновской трубкой с медным анодом, в Си K_{α} -излучении при сканировании брэгговского угла со скоростью 2 deg/min. Идентификация фаз на получаемых дифрактограммах производилась с помощью компьютерной программы, содержащей данные картотек ASTM и JCPOS.

Микротвердость измерялась с использованием твердомера ПМТ-3М с индентором Виккерса при нагрузке на индентор 1.961 N (ISO 6507-1:2005). Статистическая обработка результатов исследования проводилась с использованием программы DataFit 9.

Исследования микроструктуры поверхности с помощью РЭМ показали, что в результате лазерной обра-

au, ms	U, V	H, GPa
0.7	350	24.4 ± 0.1
	375	19.9 ± 0.1
	400	27.1 ± 0.1
	425	26.8 ± 0.1
	450	22.7 ± 0.1
	475	21.7 ± 0.1
0.85	350	13.6 ± 0.1
	375	17.6 ± 0.1
	400	16.9 ± 0.1
	425	18.6 ± 0.1
	450	26.5 ± 0.1
	475	26.1 ± 0.1
1	350	17.6 ± 0.1
	375	18.4 ± 0.1
	400	19.7 ± 0.1
	425	25.5 ± 0.1
	450	33.8 ± 0.1
	475	23.2 ± 0.1

Таблица 2. Среднестатистические значения микротвердости поверхности циркониевых образцов, модифицированных лазерным излучением

ботки циркония происходит формирование равномерно распределенного гетерогенного поверхностного слоя. Поверхность характеризуется повторяющимся рельефом с четко различимыми границами кратеров, образовавшихся при обработке поверхности лазерным излучением. В ходе обработки было обнаружено образование микротрещин, которые более четко визуализируются при напряжении лампы накачки лазерной установки свыше 400 V (рис. 1).

Установлены изменения химического состава модифицированной поверхности в результате импульсного воздействия. Согласно проведенным спектральным исследованиям, основными элементами сформированного слоя являются кислород (13.71–12.02 at.%) и цирконий (85.32–86.92 at.%) (табл. 1). Кроме того, обнаружено присутствие следового количества азота (2.55 at.%), железа в диапазоне (0.97–0.30 at.%) и вольфрама (0.83–0.76 at.%).

Наличие высокого содержания кислорода в зоне импульсного воздействия показывает, что в процессе обработки происходит поглощение кислорода локально активированными участками поверхности с их последующим окислением.

Согласно результатам проведенного рентгенофазового анализа, было установлено, что лазерная обработка в воздушной среде приводит к образованию на поверхности циркония оксидной структуры. Результаты обработки рентгеновской дифрактограммы показали, что значения межплоскостного расстояния *d* при различной величине интенсивности дифракционных пиков *J* соответствовали присутствию на поверхности наибольшего количества фаз циркония и его диоксида ZrO₂ с моноклинной кристаллической решеткой (табл. 1).

Результаты измерения микротвердости (H) показали, что в процессе лазерного импульсного воздействия микротвердость поверхности циркониевых образцов значительно увеличивается (табл. 2). Максимальное значение $H = 27.1 \pm 0.1$ GPa было получено при напряжении 400 V и длительности импульсного воздействия 0.7 ms. Следует отметить, что значение микротвердости поверхности исходного образца циркония составляло 2.6 ± 0.1 GPa.

По данным, полученным с использованием компьютерной программы статистической обработки результатов DataFit 9, была построена эмпирическая модель зависимости микротвердости поверхности циркония *H* от режимов лазерного модифицирования (рис. 2).

Построенная эмпирическая модель описывается регрессионным уравнением

$$H = (-184.282) + 1.0037x_1 + (-26.2656)/x_2$$
$$+ (-1.0128)x_1^2 + 33.2538/x_2^2 + (-0.126)x_1/x_2,$$

где x_1 — напряжение $(U, V), x_2$ — длительность импульсного воздействия (τ, ms) .

Из данной модели следует, что значительное упрочнение поверхностного слоя циркония происходит при напряжении от 380 до 420 V и длительности импульсов 0.9-1.0 ms, а минимальное значение микротвердость поверхности принимает при напряжении 340 V и длительности 0.85-1.00 ms.

Методом РЭМ установлено образование наночастиц на обрабатываемой поверхности, размер которых в среднем составляет менее 50 nm (рис. 3). Ввиду того что при уменьшении размера зерен до критических значений кристаллические решетки становятся бездислокационными, можно предположить, что повышение микротвердости поверхностного слоя циркония связано с образованием наноструктур.

Так, данные РЭМ и рентгенофазового анализа показали, что на обрабатываемой поверхности происходит формирование наноструктур, состоящих в основном из диоксида ZrO₂ с моноклинной решеткой. При этом

Рис. 2. Зависимость микротвердости поверхности циркония от режимов лазерного модифицирования.

1 μm

Рис. 3. Микро- и наноразмерная структура поверхности циркония, получаемая в результате лазерной обработки при длительности импульсного воздействия $\tau = 1$ ms и напряжении импульса U = 425 V.

такая модифицированная поверхность характеризуется высокими показателями микротвердости, зависящими в большей степени от напряжения импульсов. Это позволяет рекомендовать лазерную импульсную модификацию циркония при длительности импульсного воздействия $\tau = 0.7$ ms и напряжении импульса U = 400 V для получения механически прочных функциональных поверхностей.

Финансирование работы

Исследования выполнены при финансовой поддержке Минобрнауки РФ в рамках государственного задания образовательным организациям высшего образования, подведомственным Минобрнауки РФ (проект № 11.1943.2017/4.6).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] *Пилипенко Н.Н.* // Вісник Харківського університету. 2009. Т. 2. № 42. С. 44–50.
- [2] Селезнева Л.В., Бушмин Б.В., Дубровский Ю.В., Хазов И.А., Денисов Е.А., Курдюмов А.А. // Вопр. атомной науки и техники. 2008. № 2. С. 108–111.
- [3] Тихов С.В., Горшков О.Н., Павлов Д.А., Антонов И.Н., Бобров А.И., Касаткин А.П., Шенина М.Е. // Письма в ЖТФ. 2014. Т. 40. В. 9. С. 9–16.
- [4] He X.M., Shu L., Li H.B., Li H.D., Lee S.T. // J. Vac. Sci. Technol. 1998. V. 16. N 4. P. 2337–2344.

- [5] Чернов И.П., Иванова С.В., Кренинг М.Х., Коваль Н.Н., Ларионов В.В., Лидер А.М., Черданцев Ю.П. // ЖТФ. 2012. Т. 82. В. 3. С. 81–89.
- [6] Борисов А.М., Востриков В.Г., Романовский Е.А., Ткаченко Н.В., Виноградов А.В., Крит Б.Л., Савушкина С.В., Полянский М.Н. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2013. № 4. С. 76–80.
- [7] Проскуряков В.И., Родионов И.В., Кошуро В.А., Егоров И.С. // News of Science and Education. 2017. Т. 7. № 3. С. 067–074.
- [8] Koshuro V, Fomina M, Voyko A, Zakharevich A, Skaptsov A, Rodionov I. // 4rd Int. School and Conf. on optoelectronics, photonics, engineering and nanostructures "Saint Petersburg OPEN 2017". St. Petersburg, Russia, 2017. P. 64–65.
- [9] Chai L. Chen K., Zhi Y., Murty K.L., Chen L.Y., Yang Z. // J. Alloys Compd. 2018. V. 748. P. 163–170.
- [10] Федоров В.А., Шлыкова А.А., Яковлев А.В. // Вестн. Тамбов. ун-та. 2017. Т. 22. № 5-2. С. 1100–1108.
- [11] Zhu Y, Fu J, Zheng C, Ji Z. // Opt. Laser Technol. 2016. V. 83. P. 21–27.
- [12] Koshuro V., Fomina M., Voyko A., Rodionov I., Zakharevich A., Skaptsov A., Fomin A. // Comp. Struct. 2018. V. 202. P. 210–215.