01

Колебательно-вращательный анализ "горячей" полосы $2v_2 - v_2$ молекул ¹⁵NH₂D и ¹⁵NHD₂

© А.Л. Фомченко, А.С. Белова, А.В. Кузнецов

Исследовательская школа физики высокоэнергетических процессов, Национальный исследовательский Томский политехнический университет, 634050 Томск, Россия

e-mail: fomchenko@tpu.ru

Поступила в редакцию 04.09.2019 г. В окончательной редакции 04.09.2019 г. Принята к публикации 07.10.2019 г.

> Впервые проведено исследование спектров высокого разрешения "горячей" полосы $2v_2 - v_2$ молекул ¹⁵NH₂D и ¹⁵NHD₂. Анализ выполнен на основе метода комбинационных разностей основного состояния. В результате для каждой из исследуемых молекул была получена энергетическая структура инверсионноколебательного состояния ($v_2 = 2$, s), найдено более 480 колебательно-вращательных переходов, принадлежащих исследуемым "горячим" полосам. Определенные на основе положений линий значения верхних уровней энергии были использованы как исходные данные для определения спектроскопических параметров состояния ($v_2=2$, s).

Ключевые слова: молекула аммиака, изотопологи, колебательно-вращательный анализ.

DOI: 10.21883/OS.2020.01.48835.265-19

Введение

Инфракрасные и микроволновые спектры высокого разрешения являются источником важной информации о внутренней структуре и физических свойствах молекул. Одним из наиболее распространенных методов анализа экспериментальных колебательно-вращательных спектров является подход, основанный на использовании модели эффективного гамильтониана. Использование такой модели позволяет определить спектроскопические параметры, в первую очередь вращательные, которые содержат информацию о структуре молекулы. Кроме того, решение обратной спектроскопической задачи с эффективным гамильтонианом позволяет получить параметры центробежных искажений. Полный анализ вращательного спектра основного и возбужденных колебательных состояний дает точную информацию об энергиях колебательных состояний, а также более подробную информацию о соответствующих внутримолекулярных взаимодействиях, возникающих из-за резонансов. Такого рода информация важна для определения полуэмпирической потенциальной функции или калибровки ab initio расчетов.

Настоящее исследование посвящено изучению спектров высокого разрешения несимметрично замещенных модификаций молекулы 15 NH₃. Известно, что газообразный аммиак играет ключевую роль в атмосферных химических процессах, а также в био- и геохимических процессах, которые происходят в таких экосистемах, как леса, почвы, ручьи и прибрежные воды. Астрофизический мониторинг аммиака позволяет обнаружить как материнскую молекулу, так и ее изотопически замещенные

модификации, что служит в качестве важного индикатора для характеристики различных стадий эволюции звезд [1–4]. Таким образом, исследование аммиака и его изотопологов дает возможность дополнить базы данных спектральных линий, необходимых для астрофизических приложений. С теоретической точки зрения, инверсионное движение у пирамидальных молекул типа NH₃ является одной из наиболее интересных теоретических задач внутримолекулярной динамики [5].

В настоящее время уже имеются данные об исследованиях молекулы аммиака и его различных изотопологов [6–8], некоторые из которых представлены в базе данных HITRAN. Однако для полного и правильного описания внутримолекулярной структуры аммиака необходимо иметь данные обо всех его изотопологах. В данной работе мы продолжаем анализ спектров различных модификаций молекулы NH₃ (¹⁵NH₂D и ¹⁵NHD₂), а именно "горячей" полосы $2v_2 - v_2$. Поскольку соответствующая "холодная" полоса $2v_2$ слабая, исследование "горячей" полосы является важным источником дополнительной информации о вращательной энергетической структуре состояния ($v_2=2$, s).

Детали эксперимента

Спектры поглощения высокого разрешения двух несимметрично замещенных модификаций аммиака $^{15}NH_2D$ и $^{15}NHD_2$ были зарегистрированы на фурьеспектрометре Bruker IFS125HR, соединенном с выходным каналом AILES синхротрона SOLEIL [9]. Прибор был оснащен светоделителем KBr/Ge, в качестве приемника использовался полупроводниковый ртуть-кадмий-

Рис. 1. Равновесная конфигурация молекулы NH₃ и ее несимметрично замещенных модификаций.

теллуровый детектор (МСТ). Спектрометр вакуумировали до давления 0.5 Ра, чтобы минимизировать остаточное поглощение H_2O и CO_2 в спектре. Диаметр апертуры (1.7 mm) спектрометра был установлен таким образом, чтобы максимизировать интенсивность ИК излучения, падающего на детектор, без насыщения или без потери спектрального разрешения. Спектры регистрировались при частоте сканера 80 kHz и максимальной разности оптических путей (d_{MOPD}) 360 сm, что соответствует разрешению 0.0025 сm⁻¹. Спектры регистрировали при низкой температуре (180 K) с использованием криогенной ячейки. Экспериментальные условия более подробно представлены в табл. 1.

Экспериментальные образцы газов ¹⁵NH₃ и ¹⁵ND₃ (химическая чистота 99%) были приобретены в Sigma Aldrich, США. Образец получили путем заполнения ячейки смесью 10% ¹⁵NH₃ и 90% ¹⁵ND₃. Благодаря быстрому обмену H/D мы получили спектры, соответствующие относительным концентрациям ¹⁵NH₂D (40%), ¹⁵NHD₂ (20%), ¹⁵NH₃ (37%) и ¹⁵ND₃ (3%). Спектры калибровались по остаточным линиям CO₂ и H₂O, их волновые числа были взяты из базы данных HITRAN. Результирующая погрешность составляет ± 0.0003 сm⁻¹ для хорошо изолированных линий.

Свойства симметрии молекулы аммиака

Молекулы ¹⁵NH₂D и ¹⁵NHD₂ являются молекулами типа асимметричного волчка с параметром асимметрии $\kappa = (2B - A - C)/(A - C) \approx -0.313$ и -0.126 соответственно. Группа симметрии молекул содержит четы-

ре элемента $(E, (23), (23)^*, E^*)$ и изоморфна точечной группе симметрии C_{2v} [10], неприводимые представления которой представлены в табл. 2. На рис. 1 представлена равновесная конфигурация материнской молекулы NH₃ и ее несимметрично замещенных изотопологов.

Несимметрично замещенные модификации молекулы аммиака недостаточно хорошо изучены в колебательновращательной спектроскопии. Большинство эффектов и особенностей, свойственных молекуле NH₃, также присущи и молекулам ¹⁵NH₂D и ¹⁵NHD₂. Это прежде всего инверсионное колебание в молекуле аммиака, которое в сочетании с изотопическим замещением приводит к сложной картине колебательно-вращательных спектров. Учитывая нумерацию ядер и ориентацию осей (рис. 1), результаты колебательно-вращательной теории [11] и теории изотопозамещения [12,13], можно оценить равновесные моменты инерции молекул ¹⁵NH₂D и ¹⁵NHD₂ и показать, что выполняется следующее соотношение: $I_{zz}^{e} > I_{yy}^{e} > I_{xx}^{e}$. Нормальные координаты $q_{1}, q_{3}, q_{4}, q_{5}$ и *q*₆, которые соответствуют малым отклонениям ядер от положений равновесия, невырожденные, при этом q_1, q_3, q_5 преобразуются по представлению A_1, q_4, q_6 по представлению В2. Что касается инверсионной координаты ρ , то волновая функция $\psi(\rho)$ может быть представлена в виде разложения в ряд Фурье, который всегда можно разделить на две части, $\psi^{s}(\rho)$ и $\psi^{a}(\rho)$ [10], преобразующиеся по неприводимым представлениям А1 и В₁ группы симметрии С_{2v} соответственно. Компоненты углового момента преобразуются по-разному для молекул $^{15}\rm NH_2D$ и $^{15}\rm NHD_2.$ Для молекулы $^{15}\rm NH_2D$ $J_x \in A_2, J_y \in B_1, J_z \in B_2$, для молекулы ¹⁵NHD₂ $J_x \in B_2$, $J_y \in B_1, J_z \in A_2.$

Спектр №	Диапазон, cm ⁻¹	Разрешение, cm ⁻¹	Оптическая длина пути, m	Давление, mbar	Температура, К	Число сканов
Ι	400-650	0.0025	3.14	0.68	180	430
II	650-1000	0.0025	0.05	3.3	180	110

Таблица 1. Экспериментальные условия для ИК спектров молекул ¹⁵NH₂D и ¹⁵NHD₂

Таблица 2. Симметрия операторов и волновых функций молекул ¹⁵NH₂D и ¹⁵NHD₂

ΠM^a C_{2v}	E E	(23) C ₂	$E^* \sigma_v(xz)$	$(23)^* \\ \sigma_v(yz)$	Нормальные координаты	Инверсионная координата	Инверсионные волновые функции	Компоненты дипольного момента ¹⁵ NH ₂ D	Компоненты дипольного момента ¹⁵ NHD ₂
A_1	1	1	1	1	q_1, q_3, q_5		$\psi^{s}(ho)$		
A_2	1	1	-1	-1				J_z, k_{Zz}	J_x, k_{Zx}
<i>B</i> ₁	1	-1	1	-1		$q_2 \equiv ho$	$\psi^{a}(ho)$	J_x, k_{Zx}	J_z, k_{Zz}
<i>B</i> ₂	1	-1	-1	-1	q_4, q_6			J_y, k_{Zy}	J_y, k_{Zy}

Примечание. а Перестановочно-инверсионная группа.

Значения вращательных постоянных исследуемых молекул разные. Если рассматривать конфигурацию, представленную на рис. 1, то для молекулы ¹⁵NH₂D $B_x^e \simeq 9.65 \text{ cm}^{-1}$, $B_y^e \simeq 6.40 \text{ cm}^{-1}$, $B_z^e \simeq 4.70 \text{ cm}^{-1}$, для молекулы ¹⁵NHD₂ $B_x^e \simeq 5.33 \text{ cm}^{-1}$, $B_y^e \simeq 7.40 \text{ cm}^{-1}$, $B_z^e \simeq 3.74 \text{ cm}^{-1}$. Однако более удобная и широко используемая модель гамильтониана для молекулы типа асимметричного волчка (*A*-редукция, *I^r*-представление) предполагает выполнение следующего соотношения: $B_z^e > B_x^e > B_y^e$. Чтобы данное условие выполнялось для нашего случая, необходимо для молекулы ¹⁵NH₂D ось *x* заменить на *z*, ось *z* — на *y*, ось *y* — на *x*; для молекулы ¹⁵NHD₂ ось *y* заменить на *z*, ось *z* — на *y*. В таком случае симметрия операторов J_α и $k_{Z\alpha}(\alpha = x, y, z)$ тоже изменится (подробнее см. табл. 2).

Правила отбора

Для анализа экспериментальных спектров высокого разрешения несимметрично замещенных изотопических модификаций молекулы аммиака необходимо знать правила отбора для исследуемой полосы $2v_2 - v_2$. Известно [14], что возможность перехода с одного квантового состояния на другое определяется ненулевым значением матричного элемента оператора дипольного момента. Оператор дипольного момента молекул ¹⁵NH₂D и ¹⁵NHD₂, группа симметрии которых изоморфна точечной группе C_{2v} , преобразуется по неприводимому представлению A_2 этой группы симметрии. Принимая во внимание, что ρ — инверсионная координата, а координаты q_1, q_3, q_4, q_5 и q_6 — малые отклонения ядер от положений равновесия, можно записать выражение

для оператора дипольного момента:

$$P_{Z} = \sum_{\alpha} k_{Z\alpha} \mu_{\alpha}(\rho, q_{\lambda}) = \sum_{\alpha} k_{Z\alpha} \bigg([\mu_{\alpha}^{e}(\rho)^{s} + \mu_{\alpha}^{e}(\rho)^{a}] + \sum_{\lambda} [\mu_{\alpha}^{\lambda}(\rho)^{s} + \mu_{\alpha}^{\lambda}(\rho)^{a}] q_{\lambda} + \dots \bigg),$$
(1)

где $\mu_{\alpha}(\rho, q_{\lambda})$ — компоненты оператора дипольного момента в молекулярно-фиксированной системе координат, которые зависят как от инверсионной координаты ρ , так и от нормальных координат $q: \mu_{\alpha}^{e}(\rho)^{s} \in A_{1}$ и $\mu_{\alpha}^{e}(\rho)^{a} \in B_{1}$. В данном случае два первых слагаемых в выражении (1) описывают чисто вращательные переходы в основном состоянии. Учитывая симметрию оператора P_{Z} , симметрию $k_{Z\alpha}$ и функций $\mu_{\alpha}^{e}(\rho)^{s}$ и $\mu_{\alpha}^{e}(\rho)^{a}$ (табл. 2), можно получить для молекулы ¹⁵NH₂D:

$$P_Z^{\text{vib-rot}} = k_{Zz} \mu_z^e(\rho)^{A_1} + k_{Zy} \mu_y^e(\rho)^{B_1}$$

где $\mu_z^e(\rho)^{A_1} \equiv \mu_z^e(\rho)^s \in A_1$ и $\mu_z^e(\rho)^{B_1} \equiv \mu_z^e(\rho)^a \in B_1$. Таким образом, можно сделать вывод, что инверсионновращательный спектр в основном колебательном состоянии образован двумя типами переходов: переходы *a*-типа внутри подсостояний (GS, A_1) и/или (GS, B_1) и переходы *c*-типа между подсостояниями разной симметрии. Схема данных переходов изображена на рис. 2, *a*.

Аналогичный результат можно получить для молекулы ¹⁵NHD₂:

$$P_Z^{\text{vib-rot}} = k_{Zx} \mu_x^e(\rho)^{A_1} + k_{Zy} \mu_y^e(\rho)^{B_1}$$

где $\mu_x^e(\rho)^{A_1} \equiv \mu_z^e(\rho)^s \in A_1$ и $\mu_z^e(\rho)^{B_1} \equiv \mu_z^e(\rho)^a \in B_1$. Таким образом, имеем переходы *b*-типа внутри подсостояний (GS, A_1) и/или (GS, B_1) и переходы *c*-типа между

Рис. 2. Схема инверсионно-вращательных переходов для молекулы ¹⁵NH₂D (*a*) и ¹⁵NHD₂ (*b*) в основном состоянии.

Рис. 3. Схема инверсионно-колебательно-вращательных переходов для "горячей" полосы $2\nu_2 - \nu_2$ молекулы ¹⁵NH₂D (*a*) и ¹⁵NHD₂ (*b*).

подсостояниями разной симметрии. Схема изображена на рис. 2, *b*.

Вторая часть оператора дипольного момента в выражении (1) имеет вид

$$P_{Z} = \sum_{\alpha} k_{Z\alpha} \sum_{\lambda} [\mu_{\alpha}^{\lambda}(\rho)^{s} + \mu_{\alpha}^{\lambda}(\rho)^{a}] q_{\lambda}.$$
(2)

Она ответственна за появление в спектре переходов, принадлежащих фундаментальным полосам v_{λ} . Аналогичный анализ можно проделать для горячей полосы $2v_2 - v_2$, в которой переходы происходят не с основного состояния, а с состояния ($v_2=1$) на дважды возбужденное состояние ($v_2=2$). Известно, что состояние ($v_2=1$) состоит из двух подсостояний ($v_2=1$, s) $\in A_1$ и ($v_2=1$, a) $\in B_1$. Состояние ($v_2=2$) также состоит из двух подсостояний ($v_2=2$, s) $\in A_1$ и ($v_2=2$, a) $\in B_1$. Таким образом, учитывая симметрию всех величин в выражении (2) и используя сведения, представленные в табл. 2, для молекулы ¹⁵NH₂D можно получить следующие правила отбора: переходы *a*-типа между подсостояниями одинаковой симметрии и переходы *c*-типа между подсостояниями разной симметрии. Для молекулы ¹⁵NHD₂: переходы *b*-типа между подсостояниями одинаковой симметрии. Для молекулы ¹⁵NHD₂: переходы *c*-типа между подсостояниями разной симметрии. Схема возможных переходов в горячей полосе $2v_2 - v_2$ изображена на рис. 3, *a* — молекула ¹⁵NH₂D, *b* — молекула ¹⁵NHD₂.

Эффективный гамильтониан

Для теоретического описания энергетической структуры состояний молекул $^{15}\rm NH_2D$ и $^{15}\rm NHD_2$ удобно

Рис. 4. Небольшая часть спектра I высокого разрешения в диапазоне $610.5-615.0 \text{ cm}^{-1}$. Черными кружками обозначены линии, принадлежащие *Q*-ветви серии *J* 0 (*J*-1) "горячей" полосы $2\nu_2 - \nu_2$ молекулы ¹⁵NH₂D.

Рис. 5. Небольшая часть спектра I высокого разрешения в диапазоне 621.0–624.0 ст⁻¹. Черными треугольниками обозначены линии, принадлежащие *Q*-ветви серии *J* 0 *J* "горячей" полосы $2\nu_2 - \nu_2$ молекулы ¹⁵NHD₂.

	V	V	τ/	<i>V</i> [/]	<i>V</i> [/]	Положение линии,	Пропускание,	Спектр,	Энергия,	$\delta = (E^{ m exp} - E^{ m calc}) \cdot 10^{-4}$
J	κ _a	\mathbf{K}_{C}	J	Λ _a	$\mathbf{\Lambda}_{c}$	cm	[%] 0	cm	cm	
1	1	1	1	1	0	631.5854	94.4	Ι	1519.5522	-3
			2	1	2	613.1406	94.1	Ι		
			1	0	1	617.5126	38.2	Ι		
			2	2	1	578.8171	50.5	Ι		
2	1	2	2	1	1	627.8457	94.2	Ι	1539.5605	4
			2	0	2	616.0448	21.2	Ι		
			2	2	0	598.3271	77.7	Ι		
			3	2	2	566.2090	56.7	Ι		
3	1	3	4	1	4	593.1956	92.5	Ι	1569.2226	2
			4	3	2	547.2704	90.6	Ι		
			2	2	1	628.4881	92.5	Ι		
			3	0	3	614.4790	18.9	Ι		
			3	2	1	593.9251	90.6	Ι		
			4	2	3	552.6027	65.7	Ι		
4	1	4	3	3	1	631.2581	92.8	Ι	1608.2647	-6
			4	1	3	615.8144	66.1	Ι		
			5	3	3	530.3111	90.5	Ι		
			4	0	4	612.6439	19.1	Ι		
			3	2	2	634.9127	92.2	Ι		
			5	2	4	538.0399	72.6	Ι		
5	1	5	4	3	2	634.5281	91.7	Ι	1656.4791	7
			5	1	4	606.7650	74.5	Ι		
			5	0	5	612.6195	20.2	Ι		
			6	2	5	522.6791	82.3	Ι		
6	1	6	5	3	3	635.7881	91.7	Ι	1713.7414	-3
			6	1	5	598.9531	92.9	Ι		
			7	1	7	563.0869	94.3	Ι		
			7	3	5	491.5523	94.1	Ι		
			5	2	4	643.5156	91.7	I		
			6	0	6	611.1449	27.7	Ι		
			6	2	4	559.9971	94.7	Ι		
			7	2	6	506.7174	87.0	I		
7	1	7	6	3	4	635.1774	92.2	I	1779.9867	-4
			7	0	7	609.6007	35.5	Ι		
			7	2	5	544.0870	94.2	Ι		
8	1	8	7	1	7	704.5183	93.2	II	1855.1731	3
			7	3	5	632.9821	92.5	Ι		
			9	1	9	542.2069	90.6	Ι		
			7	2	6	648.1495	89.6	Ι		
			8	0	8	607.8276	43.9	1		

Таблица 3. Часть экспериментальных переходов "горячей" полосы $2\nu_2 - \nu_2$ и соответствующие им уровни энергии для молекулы ¹⁵NH₂D

использовать модель колебательно-вращательного эффективного гамильтониана в *А*-редукции и *I*^{*r*}-представлении [15]:

$$H^{\text{vib-rot}} = \sum_{v,\tilde{v}} |v\rangle \langle \tilde{v} | H_{v\tilde{v}}.$$
 (3)

Суммирование в выражении (3) выполняется по всем резонирующим колебательным состояниям. Однако в данной работе состояние ($v_2=2$) рассматривалось как изолированное (без учета резонансных взаимодействий), поэтому можно записать только диагональный блок,

имеющий вид оператора Уотсона:

$$\begin{split} H_{vv} &= E^{v} + \left[A^{v} - \frac{1}{2} (B^{v} + C^{v}) \right] J_{z}^{2} + \frac{1}{2} (B^{v} + C^{v}) J^{2} \\ &+ \frac{1}{2} (B^{v} - C^{v}) J_{xy}^{2} - \Delta_{K}^{v} J_{z}^{4} - \Delta_{JK}^{v} J_{z}^{2} J^{2} - \Delta_{J}^{v} J^{4} \\ &- \delta_{K}^{v} [J_{z}^{2}, J_{xy}^{2}]_{+} - 2\delta_{J}^{v} J^{2} J_{xy}^{2} + H_{K}^{v} - J_{z}^{6} + H_{KJ}^{v} J_{z}^{4} J^{2} \\ &+ H_{JK}^{v} J_{z}^{2} J^{4} + H_{J}^{v} J^{6} + [J_{xy}^{2}, h_{K}^{v} J_{z}^{4} + h_{JK}^{v} J^{2} J_{z}^{2} + h_{J}^{v} J^{4}]_{+} \\ &+ L_{K}^{v} J_{z}^{8} + L_{KKJ}^{v} J_{z}^{6} J^{2} + L_{JK}^{v} J_{z}^{4} J^{4} + L_{KJJ}^{v} - J_{z}^{2} J^{6} + L_{J}^{v} J^{8} \\ &+ [J_{xy}^{2}, l_{K}^{v} J_{z}^{6} + l_{KJ}^{v} J^{2} - J_{z}^{4} + l_{JK}^{v} J^{4} J_{z}^{2} + l_{J}^{v} J^{6}]_{+} + \dots, \end{split}$$

J	Ka	K _c	J'	K'_a	K_c'	Положение линии, cm ⁻¹	Пропускание, %	Спектр, cm ⁻¹	Энергия, cm ⁻¹	$\delta = (E^{\exp} - E^{\text{calc}}) \cdot 10^{-4}$
1	1	1	2	0	2	618.4337	94.3	Ι	1449.7379	6
			2	2	0	605.2518	92.7	Ι		
			1	2	1	627.0568	17.0	Ι		
			2	0	1	597.2801	21.2	Ι		
2	1	2	2	2	1	621.8717	91.0	Ι	1465.7909	4
			3	0	3	609.5275	89.4	Ι		
			2	0	2	625.7542	20.3	Ι		
			2	2	0	612.7443	78.6	Ι		
			3	2	2	586.2980	44.3	Ι		
3	1	3	3	2	2	618.5300	65.1	Ι	1489.5221	7
			4	0	4	601.0594	80.8	Ι		
			4	2	2	577.0962	94.1	Ι		
			3	0	3	624.5543	7.2	Ι		
			3	2	1	607.5004	78.5	Ι		
			4	2	3	574.2597	33.3	Ι		
4	1	4	4	2	3	614.1519	81.5	Ι	1520.6855	4
			5	0	5	592.7590	85.1	Ι		
			5	2	3	558.5681	89.0	Ι		
			4	0	4	623.5079	13.8	Ι		
			4	2	2	599.5152	94.9	Ι		
			5	2	4	562.6581	69.0	Ι		
5	1	5	5	2	4	608.9393	70.6	Ι	1559.1209	5
			6	0	6	584.4097	80.5	Ι		
			6	2	4	539.6067	90.6	Ι		
			5	0	5	622.4313	3.7	Ι		
			6	2	5	549.5184	57.6	Ι		
2	2	0	2	1	1	641.8865	81.0	Ι	1479.1628	5
			3	3	1	593.0142	84.2	I		
			2	1	2	637.8629	51.0	I		
			3	3	0	584.5537	18.0	Ι		
3	2	1	4	3	2	584.7930	92.0	I	1507.9086	7
			3	3	1	613.4473	75.4	Ι		
			3	1	3	642.8153	73.3	I		
			4	3	1	575.6256	35.3	I		
			4	1	3	595.7111	32.9	I		
4	2	2	4	3	1	622.9237	86.7	I	1546.9242	2
			5	3	3	577.7296	90.2	I		
			4	3	2	615.5748	42.3	Ι		
			5	3	2	566.4972	22.9	I		
			5	1	4	589.7826	80.6	Ι		

Таблица 4. Часть экспериментальных переходов "горячей" полосы $2\nu_2 - \nu_2$ и соответствующие им уровни энергии для молекулы ¹⁵NHD₂

где $J_{xy}^2 = J_x^2 - J_y^2$, $[A, B]_+ = AB + BA$ обозначает антикоммутатор, A^v, B^v, C^v — эффективные вращательные постоянные колебательного состояния $(v), E^v$ — центр полосы, $\Delta_K^v, \Delta_{JK}^v, \Delta_J^v, \dots$ — параметры центробежного искажения.

Результаты анализа спектров и параметры гамильтониана

Интерпретация спектра проводилась с помощью метода комбинационных разностей [16]. Энергетическая

структура нижних состояний ($v_2=1$, s) и ($v_2=1$, a), с которых осуществлялись переходы на уровни верхнего состояния ($v_2=2$, s), была рассчитана, используя параметры из работ [17,18]. Поскольку экспериментальный образец состоит из смеси изотопологов ¹⁵NH₂D, ¹⁵NHD₂, ¹⁵NH₃ и ¹⁵ND₃, это обстоятельство наряду с инверсионным движением приводит к сложной картине колебательно-вращательных спектров. Интерпретация также усложнялась тем фактом, что исследуемая "горячая" полоса $2v_2 - v_2$ является слабой и принадлежащие ей линии перекрываются значительно более сильными линиями фундаментальной полосы v_2 .

На рис. 4 можно видеть небольшую часть спектра высокого разрешения, на которой изображена *Q*-ветвь серии J 1 (J-1) полосы $2\nu_2 - \nu_2$ молекулы ¹⁵NH₂D. На рис. 5 также представлена часть спектра, на которой изображена Q-ветвь серии $J \ 1 \ J$ полосы $2v_2 - v_2$ молекулы ¹⁵NHD₂. Из анализа рис. 4 и 5 можно видеть, что для серий J 0 (J-1) молекулы ¹⁵NH₂D и J 1 J молекулы ¹⁵NHD₂ при увеличении квантового числа J частота перехода до определенного значения квантового числа Ј увеличивается, а затем начинает уменьшаться. Таким образом, можно сказать, что *Q*-ветвь разворачивается. Подобное нетипичное поведение *Q*-ветви может возникать при сильных резонансных взаимодействиях. В данном случае можно предположить, что взаимодействие происходит между состояниями ($v_2=2$), ($v_5=1$) и $(v_6=1).$

В результате анализа было проинтерпретировано более 480 переходов, принадлежащих двум "горячим" полосам $2v_2 - v_2$ молекул ¹⁵NH₂D и ¹⁵NHD₂ с максимальными значениями квантовых чисел $J^{\text{max}} = 15$, $K_a^{\text{max}} = 10$ и $J^{\text{max}} = 10$, $K_a^{\text{max}} = 5$ соответственно. Правильность проведенного анализа подтверждается наличием многочисленных комбинационных разностей для соответствующих уровней верхнего колебательного состояния.

В табл. 3 и 4 представлена часть проинтерпретированных переходов, принадлежащих полосе $2v_2 - v_2$ молекул ¹⁵NH₂D и ¹⁵NHD₂, и соответствующие им значения верхних колебательно-вращательных уровней энергий состояния ($v_2=2$, s). Здесь J, K_a , K_c — квантовые числа уровней верхнего состояния ($v_2=2$, s), J', K'_a , K'_c квантовые числа уровней нижних состояний ($v_2=1$, s) и ($v_2=1$, a).

Следует заметить, что в данном исследовании нам удалось уточнить информацию о вращательных энергиях состояния ($v_2=2$, s) молекулы ¹⁵NH₂D, полученную нами ранее из анализа "холодной" полосы, а также продвинуться вверх по значениям квантовых чисел J и K_a . В результате была решена обратная задача, в которой были использованы как данные из нашей работы [19], так и новые данные из настоящей работы. Полученный набор параметров приведен в табл. 5 (колонка 1) вместе с 66%-ми статистическими доверительными интервалами (в скобках).

Рассчитанные параметры позволяют воспроизвести исходные экспериментальные инверсионно-колебательно-вращательные энергии исследуемого состояния с погрешностью 0.69 · 10⁻³ cm⁻¹.

Энергетическая структура состояния ($v_2=2$, s) молекулы ¹⁵NHD₂ исследовалась впервые в данной работе. Таким образом, при варьировании параметров исследуемого состояния использовались данные только о переходах "горячей" полосы $2v_2 - v_2$, которые также приведены в табл. 5 (колонка 2). Погрешность в данном случае составила 2.67 · 10⁻³ сm⁻¹. При сравнении d_{rms} для молекул ¹⁵NH₂D и ¹⁵NHD₂ видно, что погрешность в случае молекулы ¹⁵NHD₂ примерно в 3.8 раза больше, чем для молекулы ¹⁵NH₂D. Это легко объясняется тем,

Таблица	5.	Спектроскопические	параметры	состояния
$(v_2=2, s)$	молен	сул ¹⁵ NH ₂ D и ¹⁵ NHD ₂	$({\rm B} {\rm cm}^{-1})$	

Параметр	$(v_2=2, s)$ ¹⁵ NH ₂ D	$(v_2=2, s)$ ¹⁵ NHD ₂
Ε	1504.86836(29)	1438.3148(72)
Α	10.177870(45)	7.84351(53)
В	6.506807(23)	5.41870(9)
С	4.50171(21)	3.6302(18)
$\Delta_K \cdot 10^3$	0.2176(22)	0.405(68)
$\Delta_{JK} \cdot 10^3$	0.4621(12)	0.782(29)
$\Delta_J \cdot 10^3$	0.14345(33)	0.0953(45)
$\delta_K \cdot 10^3$	0.3877(50)	0.186(65)
$\delta_J \cdot 10^3$	0.0281(16)	0.065(31)
$H_K \cdot 10^6$	1.747(20)	0.38(30)
$H_{JK} \cdot 10^6$	0.2175(72)	0.179(35)
$H_J \cdot 10^6$	0.0250(17)	0.008(12)
$h_K \cdot 10^6$	0.932(16)	0.18(35)
$d_{rms} \cdot 10^3$	0.69	2.67

что для молекулы $^{15}\rm NH_2D$ исследование проводилось с учетом резонансных взаимодействий, а для молекулы $^{15}\rm NHD_2$ состояние ($v_2{=}2,~s)$ рассматривалось как изолированное.

Заключение

Проведен анализ фурье-спектров высокого разрешения "горячих" полос $2v_2 - v_2$ молекул ¹⁵NH₂D и ¹⁵NHD₂. В результате анализа идентифицированы более 480 переходов, принадлежащих исследуемым полосам с максимальными значениями квантовых чисел $J^{\text{max}}/K_a^{\text{max}} = 15/10$ и 10/5 для молекулы ¹⁵NH₂D и ¹⁵NHD₂ соответственно. Полученные экспериментальные данные использованы для определения спектроскопических параметров эффективного гамильтониана состояний ($v_2=2$, s).

Финансирование работы

Работа выполнена при финансовой поддержке Российского научного фонда, грант № 18-72-00032.

Благодарности

Авторы благодарят доктора Ф. Квабиа-Чана за предоставленную экспериментальную информацию.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Taban I.M., Schutte W.A., Pontoppidan K.M., Van Dishoeck E.F. // Astronomy Astrophysics. 2003. V. 399.
 P. 169–175. doi 10.1051/0004-6361:20021798
- [2] Hargreaves R.J., Li G., Bernath P.F. // Astrophysics J. 2011.
 V. 735. P. 111–121. doi 10.1088/0004-637X/735/2/111
- [3] Busquet G., Palau A., Estalella R., Girart J.M., Sanchez-Monge A., Viti S., Ho P.T.P., Zhang Q. // Astronomy Astrophysics. 2010. V. 517. P. L1. doi 10.1051/0004-6361/201014866
- [4] Tiné S., Roue E., Falgarone E., Gerin M., Pineau des Forets G. // Astronomy Astrophysics. 2000. V. 356.
 P. 1039–1049.
- [5] Fehrensen B, Hippler H, Quack M. // Chem. Phys. 1998.
 V. 298. P. 320–328. doi 10.1016/S0009-2614(98)01216-0
- [6] Cane E., Di Lonardo G., Fusina L., Nivellini G., Tamassia F., Villa M. // J. Quant. Spectrosc. Radiat. Transf. 2013. V. 119.
 P. 1–11. doi 10.1016/j.jqsrt.2013.01.019
- [7] Irwin P.G.J., Calcutt S.B., Sihra K., Taylor F.W., Weir A.L., Ballard J., Johnston W.B. // J. Quant. Spectrosc. Radiat. Transf. 1999. V. 62. P. 193–204. doi 10.1016/S0022-4073(98)00103-4
- [8] Yurchenko S.N., Barber R.J., Tennyson J. // MNRAS 2011.
 V. 413. P. 1828–1834. doi 10.1111/j.1365-2966.2011.18261.x
- [9] Roy P., Brubach J.-B., Rouzieres M., Pirali O., Manceron L., Kwabia Tchana F. // Revue de l'Electricite et de l'Electronique. 2008. V. 2. P. 23.
- [10] Danielis V., Papousek D., Spirko V., Horak M. // J. Mol. Spectrosc. 1975. V. 54. P. 339–349. doi 10.1016/0022-2852(75)90165-4
- [11] *Papousek D., Aliev M.R.* Molecular Vibrational-Rotational Spectra. Amsterdam: Elsevier, 1982. 324 p.
- Bykov A.D., Makushkin Yu.S., Ulenikov O.N. // J. Mol. Spectrosc. 1981. V. 85. P. 462–479. doi 10.1016/0022-2852(81)90217-4
- Ulenikov O.N., Bekhtereva E.S., Onopenko G.A., Sinitsin E.A., Burger H., Jerzembeck W. // J. Mol. Spectrosc. 2001. V. 208.
 P. 236–248. doi 10.1006/jmsp.2001.8397
- [14] Ballentine L.E. Quantum Mechanics: A Modern Development. Singapore: World Scientific Publishing Co, Pte. Ltd, 2000. 740 p.
- [15] Watson J.K.G. // J. Chem. Phys. 1967. V. 46. P. 1935–1949. doi 10.1063/1.1840957
- [16] Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Fomchenko A.L., Sydow C., Maul C., Bauerecker S. // J. Quant. Spectrosc. Radiat. Transf. 2017. V. 187. P. 178–189. doi 10.1016/j.jqsrt.2016.09.014
- [17] Fomchenko A.L., Belova A.S., Kwabia Tchana F. // Rus. Phys. J. 2018. V. 60. P. 2230–2235. doi 10.1007/s11182-018-1351-4
- [18] Fomchenko A.L., Belova A.S., Bekhtereva E.S., Kwabia Tchana F. // Rus. Phys. J. 2018. V. 61. P. 287–291. doi 10.1007/s11182-018-1399-1
- [19] Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Fomchenko A.L., Kwabia Tchana F. // J. Quant. Spectrosc. Radiat. Transf. 2017. V. 202. P. 210–219. doi 10.1016/j.jqsrt.2017.08.005