01

Применение магнито-индуцированных переходов в атомах ⁸⁷Rb в когерентных оптических процессах

© А. Саргсян¹, Т.А. Вартанян^{2,¶}, Д. Саркисян¹

¹ Институт физических исследований Национальной академии наук Армении, 0203 Аштарак, Армения ² Университет ИТМО, 197101 Санкт-Петербург, Россия [¶] e-mail: Tigran.Vartanyan@mail.ru

Поступила в редакцию 16.09.2019 г. В окончательной редакции 16.09.2019 г. Принята к публикации 23.09.2019 г.

> Экспериментально продемонстрирована перспективность применения магнито-индуцированных (MI) переходов ⁸⁷Rb D₂-линии $F_g = 1 \rightarrow F_e = 3$ для формирования оптических резонансов в сильных магнитных полях вплоть до 3 kG. Используется ячейка микронной толщины, заполненная парами атомов Rb. Приведен простой и удобный метод для определения магнитной индукции с микронным пространственным разрешением. Необходимость в использовании реперного спектра при этом отпадает. Вероятность МІ-перехода в интервале магнитных полей 0.3-2 kG может превосходить вероятность обычного атомного перехода, что делает целесообразным его использование в качестве связывающего или пробного в Λ - и V-системах для формирования темных резонансов в процессах электромагнитно индуцированной прозрачности (ЕІТ). Темные резонансы, смещенные в сильных магнитных полях на величины порядка 10 GHz, могут найти ряд практических применений. Отметим, что в магнитных полях, превышающих 1 kG, в Λ -системах на обычных атомных переходах темные резонансы практически не формируются.

Ключевые слова: магнито-индуцированные переходы, сверхтонкая структура, D2-линия ⁸⁷Rb, микроячейка.

DOI: 10.21883/OS.2020.01.48833.259-19

Введение

Известно, что в сильных магнитных полях может происходить как значительное возрастание, так и уменьшение вероятности атомных переходов в атомах щелочных металлов [1-6]. Напомним, что в нулевом магнитном поле для разрешенных в дипольном приближении переходов между нижними и верхними уровнями сверхтонкой структуры должны выполняться правила отбора $F_e - F_g = \Delta F = 0, \pm 1$ для полного момента атома F [1]. В последние годы большой интерес вызывают атомные переходы между нижними и верхними уровнями сверхтонкой структуры, для которых выполняются условия $F_e - F_g = \Delta F = \pm 2$. Поскольку в нулевом магнитном поле (B = 0) такие переходы в дипольном приближении запрещены, процессы резонансного поглощения излучения и флуоресценции на них отсутствуют. Однако во внешних магнитных полях запрет снимается и происходит гигантское возрастание вероятностей как резонансного поглощения, так и флуоресценции. Поэтому соответствующие переходы естественно назвать магнито-индуцированными (MI). Ярким примером гигантского возрастания вероятности переходов служит поведение переходов $F_g = 3 \rightarrow F_e = 5$ (семь переходов) при использовании круговой поляризации σ^+ и переходов $F_g = 4 \rightarrow F_e = 2$ (пять переходов) при использовании круговой поляризации σ^- в атомах Cs (D₂линия) при приложении магнитного поля в интервале 500-1000 G [5]. В атомах ⁸⁵Rb (D₂-линия) было зарегистрировано аналогичное гигантское возрастание вероятностей переходов для оптического излучения с круговой поляризации σ^+ на переходах $F_g = 2 \rightarrow F_e = 4$ (пять переходов) и для излучения с круговой поляризации σ^- на переходах $F_g = 3 \rightarrow F_e = 1$ (три перехода) при приложении магнитного поля в интервале 200–500 G. В атомах ⁸⁷Rb (D₂-линия) гигантское возрастание вероятностей переходов $F_g = 1 \rightarrow F_e = 3$ (три перехода) для излучения σ^+ и $F_g = 2 \rightarrow F_e = 0$ (один переход) для излучения σ^- было зарегистрировано при приложении магнитного поля в интервале 400–800 G [6].

Для количественного определения степени взаимодействия атома с магнитным полем удобно использовать характеристическую величину магнитного поля $B_0 = A_{\rm hfs}/\mu_{\rm B}$, где $A_{\rm hfs}$ — магнитная дипольная константа для основного уровня атома, а $\mu_{\rm B}$ — магнетон Бора [7]. Для атома ⁸⁵Rb величина B_0 (⁸⁵Rb) = 0.7 kG, для атома 87 Rb величина B_0 (87 Rb) = 2.4 kG, для атома Cs величина B_0 (¹³³Cs) = 1.7 kG, а для атома ³⁹К величина B_0 $(^{39}K) = 165$ G. Максимальные вероятности МІ-переходов достигаются в магнитных полях $B \propto (0.2 - 0.4)B_0$. Поэтому в атомах ³⁹К гигантское возрастание вероятностей МІ переходов $F_g = 1 \rightarrow F_e = 3$ (три перехода) и $F_g = 2 \rightarrow F_e = 0$ (один переход) достигается при наименьших магнитных полях в интервале 30-50 G. Отметим, что вероятности отмеченных выше МІ переходов в очень сильных магнитных полях, когда $B \gg B_0$, быстро уменьшаются.

В работах [5,6] было установлено следующее общее правило для вероятностей МІ-переходов: вероятности МІ-переходов с $\Delta F = +2$ максимальны для излучения σ^+ (при этом максимально также число регистрируемых МІ-переходов). В то же время вероятности МІ-переходов с $\Delta F = -2$ максимальны для излучения σ^- (при этом максимально также число регистрируемых МІ-переходов). Для некоторых МІ-переходов различие в интенсивности при использовании излучениий σ^+ и σ^- может достигать нескольких порядков. Отметим, что МІ-переходы могут быть использованы в тех же задачах, в которых используются обычные атомные переходы.

В настоящей работе продемонстрирована перспективность применения МІ-переходов $F_g = 1 \rightarrow F_e = 3$ в атомах ⁸⁷Rb (D₂-линия) при использовании излучения σ^+ для определения магнитной индукции сильных магнитных полей, поскольку эти переходы расположены на высокочастотном крыле спектра и практически не перекрываются с другими переходами.

В работе также продемонстрирована перспективность применения МІ-переходов $F_g = 1 \rightarrow F_e = 3$ в атоме ⁸⁷Rb (D₂-линия) для процесса электромагнитно-индуцированной прозрачности (EIT) [8,9] в сильных магнитных полях. Это обусловлено двумя причинами. Во-первых, поскольку вероятность МІ перехода может существенно превосходить вероятность обычного атомного перехода, его включение в Λ -систему позволяет уменьшить интенсивность связывающего или пробного лазера. Вовторых, в сильных магнитных полях наряду с существенным увеличением вероятности МІ-перехода происходит его значительный частотный сдвиг, а это, в свою очередь, позволяет формировать перестраиваемый частотный репер и использовать его для стабилизации частоты лазера на сильно смещенной частоте [10].

Применение MI-переходов атомов ⁸⁷Rb (D₂-линия) для измерения магнитного поля

На рис. 1, а на верхней вставке магнито-индуцированные переходы 87 Rb D₂-линии $F_g = 1 \rightarrow F_e = 3$ для излучениия σ^+ приведены с номерами 1–3 в кружках. Теоретическая модель, описывающая модификацию вероятности и частотное положение атомного перехода в магнитном поле, использующая матрицу гамильтониана с учетом всех переходов внутри сверхтонкой структуры, подробно изложена в работах [1,2,4]. Зависимость вероятностей MI переходов 1-3 (номера в кружках) от магнитной индукции показана на рис. 1, а. Приведены только те атомные переходы, которые регистрируются при использовании излучения с круговой поляризацией σ^+ в магнитных полях $B \ge B_0$ (⁸⁷Rb). Из рис. 1, aвидно, что вероятность МІ-перехода 3 (номер в кружке) в интервале магнитных полей 0.5-2 kG наибольшая среди всех атомных переходов с нижнего уровня $F_g = 1$,

17

Рис. 1. (a) ⁸⁷Rb, D₂-линия, вероятности МІ-переходов с номерами 1–3 в кружках и переходов $F_g = 1 \rightarrow F_e = 2$, для излучения σ^+ (показаны на диаграмме на вставке) в зависимости от величины *B*. (b) ⁸⁵Rb и ⁸⁷Rb (D₂-линия) частотные смещения МІ и $F_g = 1 \rightarrow F_e = 2$ -переходов (при использовании излучения σ^+) в зависимости от величины *B*. Черными пунктирными линиями показаны пять МІ-переходов ⁸⁵Rb, $F_g = 2 \rightarrow F_e = 4$, вероятности которых быстро убывают при B > 1 kG.

а в интервале 2-7.5 kG все еще достаточна для его регистрации и применения.

Зависимости частотных сдвигов MI-переходов 1-3 (номера в кружках) и вероятностей переходов $F_g = 1
ightarrow F_e = 2$ для излучениия σ^+ от магнитной индукции показаны на рис. 1, b. Частоты этих МІпереходов находятся на высокочастотном крыле спектра. Пунктирными линиями показана частотная зависимость MI-переходов ⁸⁵Rb $F_g = 2 \rightarrow F_e = 4$ (пять переходов). Поскольку вероятности МІ-переходов ⁸⁵Rb в магнитных полях, больших 1500 G, быстро уменьшаются, МІ-переходы 1–3 (номера в кружках) не имеют пересечений по частоте с другими атомными переходами, что удобно для их иследования и применения.

Экспериментальная установка для регистрации спектра поглощения микроячейки толщиной $L = 1.5 \, \mu m$, заполненной рубидием, аналогична той, что применена в работе [11]. Конструкция Т-образной микроячейки (МС) приведена в работе [12]. Использовался непрерывный узкополосный диодный лазер ECDL с внешним резонатором с $\lambda = 780$ nm и шириной линии 1 MHz. Микроячейка толщиной $L = 1.5 \,\mu m$ помещалась между сильными постоянными магнитами, имеющими небольшое отверстие для прохождения лазерного излучения. Для усиления магнитного поля магниты фиксировались на металлическом магнитопроводе с сечением 40 × 50 mm [11]. Для формирования излучений с круговыми поляризяциями σ^+ (левый круг) и σ^- (правый круг) применялась пластинка λ/4. Часть лазерного излучения направлялась на ячейку с Rb длиной 4 cm, спектр поглощения которой служил частотным репером. В работах [11,13] было показано, что при толщине наноячейки $L \sim \lambda$ и $L \sim 2\lambda$ в спектре поглощения вследствие оптической накачки формируются селективные по атомным скоростям оптические резонансы (velocity selective optical pumping, VSOP, resonance), которые имеют спектральную ширину в 10-20 раз уже допплеровской.

На рис. 2 приведен экспериментальный спектр поглощения паров ⁸⁷Rb, D₂-линии, с использованием циркулярно поляризованного излучения σ^+ . Приложено продольное магнитное поле с индукцией B = 2.965 kG, лазерная мощность ~ 0.1 mW. Температура резервуара (в котором находится Rb) ~ 100°C, что обеспечивает концентрацию атомов $N \sim 10^{12}$ cm⁻³. Экспериментальный спектр поглощения (верхняя кривая) содержит МІпереходы с номерами 3 и 2 (в кружках) и два перехода $F_g = 1 \rightarrow F_e = 2$ (без кружков) (нумерация переходов показана на верхней вставке рис. 1, *a*). Из рис. 2 видно, что МІ-переходы с номерами 3 и 2 (в кружках) даже в магнитных полях ~ 3 kG все еще имеют большие амплитуды. Спектральная ширина атомных переходов (полная

Рис. 2. ⁸⁷Rb, D₂-линия, толщина $L \approx 1.5 \,\mu$ m, $B = 2.965 \,\text{kG}$, I - экспериментальный спектр пропускания излучения ν_P , МІ-переходы под номерами 2 и 3 в кружках, в спектре присутствуют также резонансы VSOP под номерами 1 и 2; 2 - расчетный спектр пропускания излучения ν_P .

Рис. 3. На вставке показан спектр пропускания для случая B = 1160 G, который содержит пять резонансов: резонансы под номерами 1, 2 и 3 в кружках — это МІ-переходы атомов ⁸⁷ Rb, и переходы под номерами 1 и 2. Нумерация переходов показана на вставке в рис. 1, *а.* Измеряя отношение частотных интервалов *А/В* и используя приведенную кривую зависимости отношения *А/В* от магнитного поля, можно определить магнитную индукцию с погрешностью 3–5%.

ширина на полувысоте, FWHM) составляет 60 MHz, что примерно в 10 раз меньше допплеровской ширины при ~ 100°С. Это позволяет спектрально разрешить все переходы в спектре. Как видно, наблюдается хорошее согласие эксперимента с теорией. В магнитном поле ~ 3 kG переходы с номерами 3 и 2 (в кружках) имеют относительно большие амплитуды и значительные частотные сдвиги, 8.5 и 10 GHz (рис. 1, *b*), относительно начального положения при нулевом магнитном поле, что удобно для их практического применения.

На вставке к рис. 3 приведен спектр пропускания, на котором присутствуют МІ-переходы 1, 2 и 3 (номера в кружках), и переходы 1 и 2. Измеряя отношение A/B, где A — частотный интервал между резонансами под номером 1 и под номером 2 (в кружке), а B — частотный интервал между переходом под номером 1 и под номером 3 (в кружке), и используя приведенную на рис. 3 кривую, можно определить индукцию магнитного поля. При этом отпадает необходимость в использовании спектра в нулевом поле в качестве частотного репера.

Применение МІ-переходов для формирования темного резонанса

Выше отмечались два преимущества применения МІпереходов для процесса электромагнитно индуцированной прозрачности в сильных магнитных полях, т.е. для формирования темного резонанса (dark resonance, DR) [8,9]. Схема эксперимента аналогична той, что применялась в работе [14]. Использовались излучения двух непрерывных узкополосных (с шириной ~ 1 MHz) диодных лазеров с внешним резонатором, один из которых (связывающий лазер) имел фиксированную частоту *v*_C, а второй (с перестраиваемой частотой) являлся пробным лазером с частотой v_P. С помощью двух призм Глана поляризации связывающего и пробного лазеров формировались линейными и взаимно перпендикулярными. Оба лазерных луча диаметром ~ 1 mm совмещались третьей призмой Глана и направлялись на микроячейку, заполненную парами атомов рубидия. Микроячейка помещалась в печку. Часть пробного излучения *v*_P направлялась на дополнительную ячейку, заполненную парами атомов рубидия. В этой ячейке, длина которой составляла 4 cm, с помощью техники насышенного поглощения формировался частотный репер (reference). Регистрация излучений проводилась фотодиодами FD-24K. Сигналы с фотодиодов усиливались операционным усилителем и далее подавались на четырехлучевой цифровой осциллограф Tektronix TDS2014B. Часть излучения связывающего лазера $v_{\rm C}$ направлялась на систему, в которой формировался сигнал ошибки (error), для стабилизации его частоты [15]. Для формирования сильных магнитных полей использовались постоянные магниты (РМ) из сплава неодим-железобор, изготовленные в виде дисков ($\emptyset = 60 \text{ mm}$, толщина $\sim 30\,\mathrm{mm})$ с отверстиями ($\varnothing = 2\,\mathrm{mm})$ для прохождения лазерного излучения. Постоянные магниты крепились на два немагнитных столика с возможностью плавного изменения расстояния между ними. С помощью дополнительной четвертой призмы Глана излучение связывающего лазера отсекалось и регистрировалось только пробное излучение. Для дополнительной селекции частоты *v*_P использовался интерференционный фильтр IF ($\lambda = 780$ nm, с шириной пропускания 10 nm). Для подбора необходимых мощностей излучений лазеров использовались нейтральные фильтры.

Ранее было показано, что использование тонких ячеек с толщинами $L = \lambda$ или 2λ , где λ — длина волны резонансного лазерного излучения (в нашем случае $\lambda = 780 \,\mathrm{nm}$), позволяет сформировать высококонтрастный темный резонанс DR. Контраст определяется как отношение амплитуды DR к значению пикового поглощения паров при отсутствии связывающего излучения [14]. Кроме того, как отмечалось выше, при использовании ячеек, содержаших пары атомов металлов с толщиной столба паров $\sim 1\,\mu{
m m}$, могут быть использованы сильные постоянные магниты. Поэтому в эксперименте была использована Т-образная микроячейка (MC-microcell), заполненная парами атомов Rb с толщиной $L \approx 1.5 \, \mu$ m. Температура резервуара МС не превышала 100°С, а температура на окнах была на 15-20 градусов выше, чтобы избежать конденсации паров атомов Rb на окнах. Для исследований была выбрана Л-система в атоме ⁸⁷Rb (D₂-линия), показанная на диаграмме (верхняя левая вставка на рис. 4). Частота v_C находится в резонансе с переходом 2-3' (штрихом отмечены верхние уровни), а частота ν_P сканируется по переходам $1 \rightarrow 2', 3'$. При

19

Рис. 4. ⁸⁷Rb, D₂-линия, толщина слоя паров $L \approx 1.5 \,\mu$ m, B = 915 G. I — спектр пропускания излучения ν_P , содержащий DR, частота ν_P в резонансе с МІ-переходом под номером 3 в кружке, конфигурация частот ν_C и ν_P , образующих Λ -систему, показана на верхней левой вставке, в спектре присутствуют также VSOP резонансы. 2 — спектр пропускания излучения ν_P . 3 — спектр пропускания излучения ν_P , содержащий DR, частота ν_P находится в резонансе с МІ-переходом под номером 2 в кружке, конфигурация частот ν_C и ν_P показана на верхней правой вставке. 4 — расчетный спектр пропускания излучения ν_P .

наличии внешнего магнитного поля формируются Λ системы с участием разных подуровней m_F , поэтому, используя представление в виде $|F, m_F\rangle$, можно сказать, что частота ν_C находится в резонансе с переходом $|2, -1\rangle \rightarrow |3', 0'\rangle$, и для формирования DR частота ν_P находится в резонансе с переходом $|1, -1\rangle \rightarrow |3', 0'\rangle$.

Мощности связывающего P_C (1-15 mW) и пробного P_P (< 1 mW) лазеров подбирались таким образом, чтобы иметь минимальную спектральную ширину DR при его хорошем контрасте. На рис. 4 кривая 1 показывает спектр пропускания пробного излучения при наличии связывающего излучения v_C, содержащий DR (приложено продольное магнитного поле с индукцией B = 915 G). Профиль DR хорошо апроксимируется гауссовой кривой со спектральной шириной 20 MHz (полная ширина на полувысоте, FWHM). На спектре присутствуют также резонансы VSOP, которые могут быть саттелитами DR и имеют большую спектральную ширину (50-60 MHz) при меньшей амплитуде. Ярко выраженный DR имеет контраст ~ 40%. Кривая 2 показывает спектр пропускания только пробного излучения v_P. Кривая 3 показывает спектр пропускания пробного излучения, содержащий DR, в случае, когда излучение v_P настроено на МІ-переход |1,0
angle
ightarrow |3',+1'
angle (переход под номером 2 в кружке), а частота $v_{\rm C}$ в резонансе с переходом $|2,0\rangle \rightarrow |3',+1'\rangle$ (конфигурация излучений $\nu_{\rm C}$ и $\nu_{\rm P}$ показана на верхней правой вставке). Кривая 4 — расчетный спектр пропускания только пробного излучения $\nu_{\rm P}$, амплитуды VSOP и их частотные положения хорошо согласуются с экспериментальной кривой 2.

Важно отметить следующее. В работе [16] было установлено следующее правило для излучений v_C и v_P для формирования DR при использовании МІ-переходов: при использовании МІ-переходов с $\Delta F = +2$ второй переход Л-системы с частотой связывающего лазера, для которого выполняется условие $F_e - F_g = \Delta F = +1$, должен возбуждаться излучением σ^+ , а при использовании МІ-переходов с $\Delta F = -2$ второй переход с условием $F_e - F_g = \Delta F = -1$ должен возбуждаться излучением σ^- , т.е. наблюдается аномальный циркулярный дихроизм. Заметим, что поскольку атомные переходы для связывающего и пробного излучений имеют различные нижние уровни, то отмеченное выше правило является далеко не очевидным. Для выявления этого правила в работе [16] излучения $v_{\rm C}$ и $v_{\rm P}$ направлялись на ячейку под углом друг-другу. Это позволяло независимо изменять круговые поляризации излучений v_C и v_P, поскольку при коллинеарном взаимодействии, если, скажем, оба излучения имеют одинаковую круговую поляризацию σ^+ , то регистрацию пробного излучения $\nu_{\rm P}$ отдельно от связывающего излучения v_C провести технически невозможно, поскольку частоты этих двух излучений очень близки. Одним из недостатков наличия конечного угла между лазерными пучками на частотах $v_{\rm C}$ и *v*_P является дополнительное спектральное уширение DR [17]. Поэтому в настоящей работе оба излучения (с взаимно перпендикулярными линейными поляризациями) пространственно совмещались и направлялись на МС. Следует помнить, что в формировании DR при участии МІ-переходов с $\Delta F = +2$ участвуют только σ^+ составляющие линейных поляризаций излучений v_C и v_P.

На рис. 5 кривая 1 показывает спектр пропускания пробного излучения $v_{\rm P}$ при отсутствии связывающего излучения $v_{\rm C}$. Продольное магнитное поле равно 1.25 kG. Присутствуют только резонансы VSOP с номерами 2 и 3 в кружках и с номером 1. На рис. 5 кривая 2показывает спектр пропускания пробного излучения, содержащий DR при наличии связывающего излучения, $v_{\rm C}$. Конфигурация излучений $v_{\rm C}$ и $v_{\rm P}$ показана на нижней правой вставке. Профили DR и VSOP под номером 3 в кружке аппроксимированы гауссовыми кривыми со спектральными ширинами 15 и 29 MHz соответственно.

На рис. 6 кривая 1 показывает спектр пропускания пробного излучения, содержащий DR, при наличии связывающего излучения $v_{\rm C}$ (магнитное поле 2.1 kG). Конфигурация излучений $v_{\rm C}$ и $v_{\rm P}$ такая же, как в случае, показанном на рис. 4 кривой 1. Профили DR и VSOP под номером 3 в кружке аппроксимированы гауссовыми кривыми с ширинами 16 и 38 MHz соответственно (показаны на верхней левой вставке). Кривая 2 показывает спектр пропускания только пробного излучения $v_{\rm P}$. Кривая 3 показывает спектр пропускания $v_{\rm P}$, содержащий DR, когда частота $v_{\rm C}$ отстроена от резонанса с переходом 2 — 3' на величину $\Delta \sim 150$ MHz (см. вставку в верхнем правом углу). Как показано в

Probe frequency detuning, MHz

Рис. 5. ⁸⁷Rb, D₂-линия, B = 1.25 kG. I — спектр пропускания излучения на частоте v_P . 2 — спектр пропускания пробного излучения на частоте v_P , содержащий DR, излучение v_P настроено на МІ-переход под номером 3 в кружке. Конфигурация частот v_C и v_P , образующих Λ -систему, показана на нижней правой вставке; профили DR и VSOP под номером 3 в кружке аппроксимированы гауссовыми кривыми со спектральными ширинами 15 и 29 MHz соответственно.

Рис. 6. ⁸⁷Rb, D₂-линия, B = 2.1 kG. 1 — спектр пропускания пробного излучения v_P , содержащий DR, излучение v_P настроено на МІ-переход под номером 3 в кружке. 2 — спектр пропускания излучения на частоте v_P . 3 — спектр пропускания излучения v_P , содержащий DR, частота v_C отстроена от резонанса с переходом $2 \rightarrow 3'$ на 150 MHz. Конфигурация частот v_C и v_P приведена на верхней правой вставке; профили DR и VSOP под номером 3 в кружке аппроксимированы гауссовыми кривыми со спектральными ширинами 16 и 38 MHz соответственно.

работах [14,18], при формировании DR в сверхтонких ячейках наибольший контраст и минимальная ширина достигаются тогда, когда частота $\nu_{\rm C}$ находится в точном резонансе с атомным переходом (т. е. при $\Delta = 0$). В этом

Рис. 7. ⁸⁷Rb, D₂-линия, B = 2.75 kG. 1 — спектр пропускания пробного излучения ν_P , содержащий DR, излучение ν_P настроено на МІ-переход под номером 3 в кружке. 2 — спектр пропускания излучения ν_P . 3 — расчетный спектр пропускания излучения ν_P , профили DR и VSOP под номером 3 в кружке аппроксимированы гауссовыми кривыми со спектральными ширинами 40 и 90 MHz соответственно и показаны на вставке.

случае в формировании DR участвуют атомы, которые летят параллельно стенкам ячейки. Время взаимодействия этих атомов с полем определяется временем их пролета через лазерный пучок диаметром D, а именно время взаимодействия равно $\tau = D/V$, где V — тепловая скорость атома. Ситуация оказывается существенно иной при наличии ненулевой частотной отстройки. В этом случае в формировании DR участвуют атомы, которые летят в направлении распространения лазерного излучения (вдоль оси z) со скоростью $V_z = 2\pi\Delta/k$, где $k = 2\pi/\lambda$. Это приводит к уменьшению времени пролета $\tau = L/V_z$ и быстрому увеличению скорости дефазировки когерентности, так как $L \ll D$. Последнее обстоятельство приводит к уменьшению спектральной пирины DR и уменьшению его контраста.

Детальное исследование зависимости параметров DR от расстройки Δ и толщины субмикронной ячейки приведено в работах [14,18]. На рис. 7 кривая 1 показывает спектр пропускания пробного излучения, содержащий DR, при наличии связывающего излучения v_C (магнитное поле 2.75 kG). Конфигурация излучений $v_{\rm C}$ и $v_{\rm P}$, такая же, как для случая, показанного на рис. 4 для кривой 1. Важно отметить, что при использовании обычных атомных переходов в А-системе в магнитных полях, больших 1 kG, интенсивность DR становится практически нулевой [19], в то время как контрастный DR при использовании МІ-перехода под номером 3 (в кружке) регистрируется и при магнитных полях ~ 3 kG. Профили DR и VSOP под номером 3 (в кружке) аппроксимированы гауссовыми кривыми со спектральными ширинами 40 и 90 MHz соответственно (показаны на верхней вставке). Такое дополнительное спектральное уширение (почти в 3 раза) обусловлено увеличением неоднородности магнитного поля (с возрастанием магнитного поля) вдоль поперечного сечения лазерного пучка. Кривая 3 представляет расчетный спектр пропускания одного пробного излучения $v_{\rm P}$. Указаны переходы под номерами 1, 2 и номерами 2 и 3 в кружках (все переходы показаны на вставке в рис. 1, *a*). Пять маленьких пиков — это МІ-переходы ⁸⁵Rb, $F_g = 2 \rightarrow F_e = 4$, амплитуды которых с увеличением магнитного поля быстро уменьшаются.

21

Применение МІ-переходов для формирования резонанса в V-системе

Было проведено сравнение применения МІ-переходов для формирования резонанса в конфигурациях Л- и Vсистем. Результаты по формированию узких оптических резонансов в V-системах приведены в работах [20-23]. Для выявления условий, накладываемых на круговые поляризации излучений σ^+ и σ^- , так же как это было проделано в работе [16], излучения $v_{\rm C}$ и $v_{\rm P}$ направлялись на ячейку под небольшим углом друг к другу, что позволяло независимо изменять круговую поляризацию излучений v_C и v_P. Как и ранее, частота v_P сканировалась по переходам $1 \rightarrow 2', 3',$ а частота ν_C оставалась в резонансе либо с переходом $|1, -1\rangle \rightarrow |3', 0'\rangle$, либо с переходом $|2, -1\rangle \rightarrow |3', 0'\rangle$. На рис. 8 кривая 1 показывает спектр пропускания пробного излучения при наличии связывающего излучения v_C, которое находится в резонансе с переходом $|1, -1\rangle \rightarrow |3', 0'\rangle$. Продольное магнитное поле составляет 650 G.

Конфигурация V-системы, сформированной излучениями $v_{\rm C}$ и $v_{\rm P}$, показана на нижней левой вставке рис. 8. Наряду с резонансами VSOP в случае, когда частота v_P настроена на МІ-переход под номером 3 в кружке, формируется темный резонанс DR_V. Важно отметить, что резонанс DR_V формируется только в том случае, когда используется поляризация σ^+ связывающего излучения v_C. Следовательно, так же как и при формировании DR в Л-системе, для DR_V наблюдается аномальный циркулярный дихроизм. На рис. 8 кривая 2 показывает спектр пропускания пробного излучения при наличии связывающего излучения v_C, которое находится в резонансе с переходом $|2, -1\rangle \rightarrow |3', 0'\rangle$. Конфигурация излучений в Л-системе показана на верхней левой вставке рис. 4. В случае, когда частота v_P настроена на МІ-переход под номером 3 в кружке, формируется ранее расмотренный DR. Кривая Reference показывает спектр насыщенного поглощения при нулевом магнитном поле. Профили DR и DR_V, аппроксимированые гауссовыми кривыми и имеющие спектральные ширины 18 и 90 MHz соответственно, показаны на верхней правой вставке. Меньшая спектральная ширина DR при использовании Л-системы имеет следующее объяснение [8,9]. Нижними уровнями Л-системы в нашем случае являются уровни $5S_{1/2}$, $F_g = 1$ и $5S_{1/2}$, $F_g = 2$ (вставка на рис. 4). Оптические переходы между ними запрещены в дипольном приближении, поэтому спектральная ширина этих уровней может составлять несколько десятков Hz (если нет внешнего возмущения). В отличие от этого спектральная ширина уровня $5P_{3/2}$, $F_e = 3$, который участвует в формировании DR_V, составляет приблизительно 6 MHz.

На спектрах *I* и *2* следует отметить интересное поведение перехода под номером 3. В случае, когда частота связываюшего излучения вместе с частотой пробного излучения образует V-систему (вставка в верхнем левом углу рисунка), формируется резонанс типа DR_V, который демонстрирует уменьшение поглощения. В случае, когда частота связываюшего излучения находится в резонансе с переходом $|2, -1\rangle \rightarrow |3', 0'\rangle$, происходит перенос атомов с уровня $F_g = 2$ через верхний уровень $F_e = 3$ на уровень $F_g = 1$. В результате происходит увеличение населенности уровня $F_g = 1$ и, как следствие, увеличение полощения на частоте перехода 3.

Кривая *1* на рис. 9 показывает спектр пропускания пробного излучения при наличии связывающего излучения $v_{\rm C}$, частота которого имеет расстройку Δ с переходом $|1, -1\rangle \rightarrow |3', 0'\rangle$. Магнитное поле составляет 1.4 kG, конфигурация V-системы показана на вставке в рис. 9. Резонанс DR_V формируется только в том случае, когда используется поляризация σ^+ связывающего

Probe frequency detuning, MHz

Рис. 8. B = 650 G. I — спектр пропускания пробного излучения, связывающее излучение находится в резонансе с переходом $|1, -1\rangle \rightarrow |3', 0'\rangle$, V-система показана на нижней вставке; резонанс DR_V формируется только при поляризации σ^+ -излучения $\nu_{\rm C}$. 2 — спектр пропускания пробного излучения, связывающее излучение находится в резонансе с переходом $|2, -1\rangle \rightarrow |3', 0'\rangle$ (Λ -система); профили DR и DR_V аппроксимируются гауссовыми кривыми со спектральными ширинами 18 и 90 MHz соответственно (верхняя правая вставка), кривая Reference — спектр насыщенного поглощения при B = 0.

Probe frequency detuning, MHz

Рис. 9. ⁸⁷Rb, D₂-линия, мощности P_P и P_C равны 0.2 и 13 mW соответственно, магнитное поле 1.4 kG. I — спектр пропускания пробного излучения при наличии излучения v_C , оба излучения имеют поляризацию σ^+ , регистрируется DR_V. 2 — спектр пропускания пробного излучения при наличии излучения v_C с поляризацией σ^- , DR_V отсуствует; 3 — спектр пропускания пробного излучения σ^+ .

излучения $v_{\rm C}$ (поляризация пробного излучения также σ^+). Кривая 2 показывает спектр пропускания пробного излучения в случае, когда используется поляризация σ^- связывающего излучения $v_{\rm C}$. Как видно, резонанс DR_V в этом случае отсутствует. Это подтверждает утверждение, что и для DR_V, как и для DR, наблюдается аномальный циркулярный дихроизм [5]. Кривая 3 показывает спектр пропускания пробного излучения $v_{\rm P}$ при отсутствии связывающего излучения $v_{\rm C}$.

Заключение

В работе продемонстрирована перспективность применения МІ-переходов $F_g = 1 \rightarrow F_e = 3$ в атоме ⁸⁷Rb (D₂-линия) для процесса формирования оптических резонансов VSOP в сильных магнитных полях вплоть до 3 kG. Приведен простой и удобный метод для определения индукции магнитного поля с микронным пространственным разрешением. При этом отсутствует необходимость в наличии реперного частотного спектра в нулевом поле.

В работе также продемонстрирована перспективность применения МІ-переходов $F_g = 1 \rightarrow F_e = 3$ в атоме ⁸⁷Rb (D₂-линия) для формирования DR в процессе EIT в сильных магнитных полях. Это обусловлено двумя обстоятельствами. Во-первых, поскольку вероятность МІ-перехода в интервале магнитных полей 0.3–2 kG может превосходить вероятность обычного атомного перехода, представляется целесообразным его использование в качестве перехода, на частоте которого действуют связывающий или пробный лазеры в Λ -системе. Во-вторых, поскольку было продемонстрировано, что в магнитном

поле $\sim 3 \text{ kG}$ МІ-переходы с номерами 3 и 2 (в кружках) имеют относительно большие амплитуды и значительные частотные сдвиги (8.5 и 10 GHz) относительно начального положения при нулевом магнитном поле, появляется возможность формирования перестраиваемого частотного репера и стабилизации частоты лазера на сильно смещенной частоте [10].

Впервые сформирован темный резонанс в V-системе и продемонстрировано, что, так же как и для формирования DR в Λ -системе, при использовании MI-переходов с $\Delta F = +2$ как пробное, так и связывающее излучения должны иметь поляризацию σ^+ , т.е. в обоих случаях наблюдается аномальный циркулярный дихроизм.

Важно отметить, что при использовании когерентно связанных излучений (пробного и связывающего), а также сантиметровой ячейки, заполненной рубидием и буферным газом (или с нанесенным антирелаксационным покрытием), можно на несколько порядков уменьшить спектральную ширину DR [8,9].

Отметим, что МІ-переходы D₂-линий Cs, K и Na также могут быть успешно применены во всех выше отмеченных исследованиях [24].

Финансирование работы

Авторы благодарят ГК МОН РА за финансовую поддержку, проект № 18Т-1С018. А. Саргсян также благодарит ГК МОН РА за финансовую поддержку, проект для молодых ученых № 19YR-1С017. Работа Т.А. Вартаняна была выполнена при государственной финансовой поддержке ведущих университетов Российской Федерации (субсидия 08-08).

Благодарности

Авторы благодарят А. Тонояна за расчетные кривые.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Tremblay P., Michaud A., Levesque M., Thériault S., Breton M., Beaubien J., Cyr N. // Phys. Rev. A. 1990. V. 42. P. 2766.
- [2] Александров Е.Б., Хвостенко Г.И., Чайка М.П. Интерференция атомных состояний. М.: Наука, 1991.
- [3] Sargsyan A., Tonoyan A., Hakhumyan G., Papoyan A., Mariotti E., Sarkisyan D. // Laser Phys. Lett. 2014. V. 11. P. 055701.
- [4] Sargsyan A., Klinger E., Hakhumyan G., Tonoyan A., Papoyan A., Leroy C., Sarkisyan D. // J. Opt. Soc. Am. B. 2017. V. 34. P. 776.
- [5] Саргсян А., Тоноян А., Ахумян Г., Саркисян Д. // Письма в ЖЭТФ. 2017. Т. 106. С. 669.
- [6] Tonoyan A., Sargsyan A., Klinger E., Hakhumyan G., Leroy C., Auzinsh M., Papoyan A., Sarkisyan D. // EuroPhys. Lett. 2018. V. 121. P. 53001.

[7] Olsen B.A., Patton B., Jau Y.Y., Happer W. // Phys. Rev. A. 2011. V. 84. P. 063410.

23

- [8] Wynands R., Nagel A. // Appl. Phys. B. 1999. V. 68. P. 1.
- [9] Fleischhauer M., Imamoglu A., Marangos J.P. // Rev. Mod. Phys. 2005. V. 77. P. 633.
- [10] Sargsyan A., Tonoyan A., Mirzoyan R., Sarkisyan D., Wojciechowski A., Gawlik W. // Opt. Lett. 2014. V. 39. P. 2270.
- [11] Sargsyan A., Hakhumyan G., Leroy C., Pashayan-Leroy Y., Papoyan A., Sarkisyan D. // Opt. Lett. 2012. V. 37. P. 1379.
- [12] Саргсян А., Бейсон М.Г., Саркисян Д., Мохапатра А.К., Адамс Ч.С. // Опт. и спектр. 2010. Т. 109. С. 581.
- [13] Sargsyan A., Hakhumyan G., Papoyan A., Sarkisyan D., Atvars A., Auzinsh M. // Appl. Phys. Lett. 2008. V. 93. P. 021119.
- [14] Sargsyan A., Pashayan-Leroy Y., Leroy C., Cartaleva S., Sarkisyan D. // J. Mod. Opt. 2015. V. 62. P. 769.
- [15] Gazazyan E., Papoyan A., Sarkisyan D., Weis A. // Laser Phys. Lett. 2007. V. 4. P. 801.
- [16] Sargsyan A., Tonoyan A., Papoyan A., Sarkisyan D. // Opt. Lett. 2019. V. 44. P. 1391.
- [17] Carvalho P.R.S., de Araujo L.E.E., Tabosa J.W.R. // Phys. Rev. A. 2004. P. 70. P. 063818.
- [18] Саргсян А., Саркисян Д. // Опт. и спектр. 2011. Т. 111. С. 364.
- [19] Мирзоян Р., Саргсян А., Саркисян Д., Wojciechowski A., Stabrawa A., Gawlik W. // Опт. и спектр. 2016. Т. 120. С. 864.
- [20] Gavra N., Rosenbluh M., Zigdon T., Wilson-Gordon A.D., Friedmann H. // Opt. Commun. 2007. V. 280. P. 374.
- [21] Vdovic S., Ban T., Aumiler D., Pikhler G. // Opt. Commun. 2007. V. 272. P. 407.
- [22] Lezama A., Barreiro S., Akulshin A.M. // Phys. Rev. A. 1999.
 V. 59. T. 4732.
- [23] Sargsyan A., Sarkisyan D., Margalit L., Wilson-Gordon A.D. // J. Mod. Opt. 2016. V. 63. P. 1713.
- [24] Саргсян А., Klinger E., Leroy С., Вартанян Т.А., Саркисян Д. // Опт. и спектр. 2019. Т. 127. С. 389.