05

Закономерности десорбции воды с поверхности материалов, деформированных или дробленых в различных газовых средах

© О.В. Клявин,¹ Н.Н. Аруев,¹ А.О. Поздняков,^{1,2} Ю.М. Чернов,¹ В.В. Шпейзман¹

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия
² Институт проблем машиноведения РАН, 199178 Санкт-Петербург, Россия e-mail: shpeizm.v@mail.ioffe.ru, klyavin@mail.ioffe.ru

Поступило в Редакцию 1 июля 2019 г. В окончательной редакции 1 июля 2019 г. Принято к публикации 31 июля 2019 г.

> Рассмотрено влияние среды гелия при дроблении порошка цемента и прокатке поликристаллического алюминия на количество и кинетику десорбции молекул воды с поверхности этих материалов при нагревании с постоянной скоростью. Произведено разделение пиков на кривых десорбции воды, и показано влияние среды гелия при разрушении (дроблении) и деформировании (прокатке) на характеристики десорбции. Оценены энергии активации процессов десорбции воды в различных температурных областях и их изменение при разрушении и деформации материалов в гелии и на воздухе. Высказано предположение о замещении атомами гелия вакантных для адсорбции молекул воды мест на вновь образующихся участках поверхности тел, подвергнутых механическому воздействию, и о проникновении адсорбированных атомов и молекул среды в приповерхностный слой материала по механизму дислокационно-динамической диффузии.

Ключевые слова: десорбция молекул воды, среда гелия, дробление цемента, прокатка алюминия.

DOI: 10.21883/JTF.2020.02.48816.251-19

Введение

В основе механодинамического проникновения (МДП) атомов и молекул внешней среды в кристаллические материалы лежит явление дислокационнодинамической диффузии (ДДД) [1-6]. Оно имеет атермическую природу и получило статус научного открытия [1]. Это явление обусловлено адсорбцией частиц внешней среды на ювенильной поверхности кристаллов, образующейся в результате выхода дислокаций на поверхность или при растрескивании поверхностного слоя деформируемых материалов, и дальнейшим проникновением частиц в приповерхностный слой кристалла по зарождающимся и движущимся дислокациям. Общность явления ДДД была доказана экспериментально на поликристаллических материалах с различным размером зерна, в том числе и нанокристаллических типом решетки, при деформации в области температур $T = 0.6 - 300 \, \text{K}$ на примере среды гелия и азота, находящихся в жидком или газообразном состояниях. При использовании гелия в качестве модельной среды было обнаружено [5-7], что характеристики МДП определяются наличием различных ловушек атомов гелия. В процессе его экстракции при нагревании деформированных кристаллических и аморфных материалов наблюдались отдельные пики выделения, по величине и положению на температурной шкале которых можно судить об энергетических параметрах ловушек гелия. Исследование влияния деформации на количество МДП-гелия показало, что его количество резко возрастает с ростом деформации.

Аналогичная картина наблюдалась и при использовании в качестве среды жидкого или газообразного азота, а также воды или ее паров в воздушной среде. Конкуренция различных атомов и молекул среды при их МДП может влиять на состояние дефектов в поверхностных слоях твердых тел и приводить к заметным эффектам при их деформации и разрушении. Так, исследование процесса дробления промышленного цемента в среде гелия показало [8–10], что эта среда обеспечивает получение наноразмерных частиц при резком сокращении времени и энергии его дробления по сравнению со средой воздуха. Микротвердость алюминия и железа при малых нагрузках, а также монокристаллов LiF зависит от среды (воздух, азот, гелий), в которой проводилась предварительная деформация этих материалов [11,12].

В настоящей работе исследовалось влияние среды при деформации алюминия и дроблении цемента. Показано, что энергетические характеристики десорбции молекул воды зависят от типа материала, наличия пластической деформации и появления ювенильной поверхности со специфическими свойствами в процессах дробления и прокатки. Полученные данные объясняются на основе явления ДДД.

1. Экспериментальные методики

В качестве исходного сырья в настоящей работе использовался промышленный цемент марки М-400. Он диспергировался в лабораторной шаровой вибрационной мельнице типа МК-1 с агатовым шариком диа-

метром 52 mm. Для работы использовался стандартный технологический режим: время диспергирования 5h и амплитуда колебаний шарика A = 10 a.u. Исследовались две газовых среды — гелий и стандартная воздушная среда, которая обычно используется при дроблении промышленных материалов. Для дробления в среде гелия шаровая мельница была модернизирована с целью контролируемого впуска в ее камеру гелия и предотвращения его потерь в процессе работы мельницы. Размеры полученных частиц порошков измерялись методом динамического рассеяния света на приборе Coulter-4. На магнитном резонансном масс-спектрометре типа МИ-9301 [13] с использованием методики ионизации частиц электронным ударом с энергией 75 eV были получены кривые выделения Н2О после дробления порошка на воздухе и в гелии в области температур $T = 20 - 700^{\circ}$ С при постоянной скорости нагревания 120°С/тіп. Анализировался характер полученных кривых экстракции молекул Н2О и их ловушек. Обработка экспериментальных кривых проводилась двумя способами. В первом — разделение пиков и оценка вклада каждого из них в общее количество десорбированной воды определялись с использованием нормального закона распределения (по Гауссу) с вычислениями по программе Origin 8.5. Во втором — путем моделирования каждой стадии процесса решением кинетического уравнения вида $dn/dt = -Kn^m$, где dn/dt — скорость десорбции молекул воды, т — порядок реакции, К константа скорости вида $K = K_0 \exp(-U/RT), K_0$ предэкспоненциальный множитель, U — энергия активации. Сравнение двух методов анализа кривых десорбции воды позволяло уточнить информацию о количестве воды, выделившейся на разных стадиях. Расчеты были проведены с помощью программы FitterTM [14], с помощью которой были получены оценки параметров кинетических уравнений для разных стадий выделения волы.

Образцы алюминия АД1 (99.3 wt.% Al) диаметром 3 и высотой 6 mm были прокатаны до толщины 0.3 mm при комнатной температуре в среде гелия. Кривые выделения воды из исходных и прокатанных образцов были получены при нагревании до 630°С. Обработка результатов производилась способами, описанными выше для цемента.

Экспериментальные результаты 2. и их обсуждение

2.1. Цемент

Зависимости скорости выделения адсорбированной воды из порошков, дробленых в гелии и на воздухе, приведены на рис. 1. Как видно, скорость десорбции воды из порошка, дробленого в гелии, гораздо меньше, чем дробленого в воздухе. Были измерены размеры частиц полученных порошков. Средний размер частиц не дробленого порошка цемента составляет 0.3-0.5 mm,

Рис. 1. Зависимость скорости выделения воды из цемента, дробленого в гелии (1) и на воздухе (2).

дробленого на воздухе $\sim 0.5\,\mu{\rm m}$, а в гелии $\sim 10\,{\rm nm}$. После дробления на воздухе размеры частиц уменьшались в 10^3 раз, а в гелии в $5 \cdot 10^4$ раз (в 50 раз больше, чем в среде воздуха). Гелий резко усиливает интенсивность процесса дробления порошка цемента. Это происходит благодаря динамической диффузии атомов гелия в частицы порошка по механизму ДДД. Температурные зависимости скорости выделения воды из порошков, дробленых на воздухе и в гелии, приведены на рис. 2 и в табл. 1. Разделение пиков по Гауссу (G) и с использованием кинетического уравнения реакции по программе FitterTM (F) дало близкие результаты и позволило выделить для каждого состояния материала по два пика на температурной зависимости скорости десорбции воды из порошка цемента (рис. 2). Для порошка, дробленого в среде воздуха, первый максимум появляется при T = 150 (G) и 155° C (F), а для дробленого в гелии соответственно при T = 187 и 200°С, т.е. температура первого максимума выделения воды выше для порошка, дробленого в гелии, на 25-30%. Температура второго максимума практически не зависит от среды дробления: T = 405 (G) и 432° C (F) для среды гелия и T = 400 (G) и 428° C (F) для воздушной среды. Отличие на 7% между температурами высокотемпературного пика, определенного разными методами, связана с заметной асимметрией низкотемпературных пиков, построенных по уравнениям $dn/dt = -Kn^m$, для которых для улучшения аппроксимации экспериментальных данных порядок реакции т был увеличен от 1 (реакция первого порядка) до 1.5 для среды воздуха и 2.9 для гелия. Изменение порядка реакции может указывать на сложную, более чем двухстадийную, кинетику выхода молекул воды, которая не разрешена в условиях нашего эксперимента. По этой же причине не совпали оценки вкладов первого и второго пиков в общее количество десорбированной воды (табл. 1). Второй максимум на кривых на рис. 2 для среды воздуха и гелия характе-

Рис. 2. Зависимость скорости выделения воды от температуры для цемента, дробленого на воздухе (a, b) и в гелии (c, d). Обработка данных (a, c) по формулам для химических реакций и (b, d) с использованием нормального закону распределения (по Гауссу).

Дробление	T_1 , °C		T_2 , °C		Доля 1 пика		Доля 2 пика	
	G	F	G	F	G	F	G	F
B He	187	200	405	432	38	63	62	37
E, kJ/mol. (eV)		28 (0.29)		40 (0.41)				
На воздухе	150	155	400	428	41	63	59	37
E, kJ/mol. (eV)		12 (0.12)		36 (0.37)				

Таблица 1. Характеристики пиков выделения воды для цемента, дробленого в гелии и на воздухе

 Π римечание. Разделение пиков по Гауссу (G) и с использованием кинетического уравнения реакции по программе FitterTM (F).

ризует энергию десорбции молекул воды, содержащихся в исходном сырье и выделяющихся при его дроблении в этих средах. Поэтому он сдвинут в сторону более высоких температур и практически совпадает по энергии активации (E) для обеих сред: при дроблении на воздухе E = 0.37 eV, в гелии E = 0.4 eV. Атомы гелия ввиду их очень малых размеров и химической инертности интенсивно проникают в движущиеся дефекты и возникающие в процессе дробления микротрещины. Это приводит к их остановке, закреплению и, как следствие, к росту локальных напряжений и интенсивному охрупчиванию частиц порошка, резкому уменьшению их размеров, времени дробления и снижению затрат энергии на получения частиц заданного размера.

Были выполнены масс-спектрометрические измерения общего содержания молекул воды в дробленых порошках. Оно оказалось почти в три раза больше для порошков, дробленых на воздухе, чем для дробленых

Рис. 3. Зависимость скорости выделения воды от температуры для поликристаллического алюминия: *1* — недеформированный, *2* — после интенсивной деформации.

в гелии, так как молекулы воды как компоненты воздуха входят в частицы порошка при его дроблении по механизму ДДД. Динамическая диффузия молекул воды была впервые обнаружена в [15] для монокристаллов LiF, деформированных в обычной и тяжелой воде на разные степени деформации сжатием. Обнаружена различная концентрация молекул воды в краевых и винтовых дислокациях и глубина их проникновения по дислокациям в поверхностный слой кристаллов. Из наночастиц, полученных в среде гелия, выделяются при нагревании в основном молекулы воды, имевшиеся в исходном сырье порошка цемента, количество которых значительно превышает содержание паров воды в среде гелия. Выходу молекул воды препятствуют адсорбированные на ювенильной поверхности частиц цемента атомы гелия. Нанопорошки цемента имеют высокую насыщенность атомами гелия, возникшую в процессе их дробления. На их поверхности образуется связанный с дефектной структурой наночастиц слой атомов гелия, затрудняющий адсорбцию молекул воды. Это приводит к увеличению энергии активации десорбции воды при дроблении в гелии более чем в два раза ($E = 0.28 \, \mathrm{eV}$) по сравнению со средой воздуха ($E = 0.12 \, \text{eV}$) и значительно уменьшает количество десорбированной воды.

Следует отметить, что при анализе энергий активации выделения гелия из порошков цемента, дробленых в гелии и на воздухе [9], наблюдается обратная картина: для частиц цемента, дробленых в гелии, эта энергия

Рис. 4. Зависимость скорости выделения воды от температуры для недеформированного Al (a, b) и после прокатки в атмосфере гелия (c, d). Обработка данных (a, c) по формулам для химических реакций и (b, d) с использованием нормального закону распределения (по Гауссу).

6

arepsilon=0	T_1 , °C				$T_2, ^{\circ}\mathrm{C}$			
	G		F		G		F	
		232	225		532		567	
	Доля 1 пика				Доля 2 пика			
	70		90		30		10	
E, kJ/mol. (eV)			23 (023)				134 (1.36)	
Прокат в Не от 3 до 0.3 mm	T_{2a} , °C		T_{2b} , °C		Доля пика 2а		Доля пика 2b	
	G	F	G	F	G	F	G	F
	194	194	320	317	54	44	46	56
E, kJ/mol. (eV)		41 (0.42)		48 (0.5)				

Таблица 2. Характеристики пиков выделения воды из недеформированного и прокатанного в гелии алюминия

Примечание. Разделение пиков по Гауссу (G) и с использованием кинетического уравнения реакции по программе FitterTM (F).

ниже, чем для дробленых на воздухе. Это представляется логичным, поскольку в случае десорбции гелия, адсорбированные молекулы воды (возможно, также и другие газы, находящиеся в воздухе) затрудняют его выход из порошков, дробленых на воздухе, по сравнению с дроблеными в гелии.

2.2. Алюминий

В недеформированном алюминии выделение молекул воды наблюдается до температур, близких к температуре плавления (рис. 3), и, возможно, оно будет продолжаться после плавления алюминия, поскольку при температурах, близких к температуре плавления, скорость выделения воды отлична от нуля. Деформация прокаткой в среде гелия привела к уменьшению количества выделившейся воды почти в три раза и смещению пиков выделения в сторону низких температур. Как видно из рис. 4 и табл. 2, в каждом из состояний алюминия разрешены два пика зависимости скорости выделения воды от температуры, и оба метода определения характеристик пиков дают близкие результаты.

В исходном алюминии обнаружен низкотемпературный пик с $T \sim 239^{\circ}$ С и энергией $E = 0.23 \, \text{eV}$ и высокотемпературный с $T \sim 545^{\circ}\mathrm{C}$ и высокой энергией активации $E = 1.36 \, \text{eV}$. Расположение пиков скорости выделения воды из алюминия в обоих состояниях (рис. 3) позволяет предположить, что после прокатки в гелии низкотемпературный пик исчез, а второй сдвинулся в сторону низких температур и раздвоился на близкие по энергиям активации (0.42 и 0.50 eV) пики с температурами 194 и 318°С. При этом средняя температура максимумов (256°C) близка к температуре первого пика в недеформированном алюминии. Можно полагать, что прокатка в среде гелия удалила ловушки, которые удерживали слабосвязанную воду, и изменила структуру более сильных ловушек молекул воды на поверхности и в тонком поверхностном слое образца,

так что произошло заметное разделение широкого пика на два пика с более низкой энергией связи молекул воды с решеткой металла. Влиянием деформации и среды можно объяснить уменьшение общего количества молекул воды: в результате деформации в среде гелия слабо закрепленная вода ушла, а заполнение молекулами воды новых ловушек препятствует среда гелия.

Заключение

Влияние воды на разрушение и деформацию твердых тел известно давно. К классу подобных явлений можно отнести и коррозионные процессы в металлах и сплавах [16], и знаменитые эффекты Иоффе (упрочнение кристаллов NaCl за счет удаления поверхностных дефектов водой) [17] и Ребиндера (разупрочнение в результате воздействия адсорбированной воды) [18], и многие другие процессы. Адсорбция воды на поверхности полупроводников и диэлектриков изучена в [19], на наноразмерных пленках оксида алюминия в [20]. В настоящей работе вода выступает не в качестве основной среды, а как конкурент среды гелия, активно проникающей в материалы, подвергнутые механическому воздействию, по механизму ДДД. Снижение количества десорбированной воды и энергии активации ее десорбции при дроблении цемента на воздухе по сравнению дроблением в гелии или после деформации алюминия в гелии по сравнению с недеформированным состоянием, полученное в работе, свидетельствует о доминирующей роли гелия в эффектах, связанных с влиянием среды на механические свойства по механизму ДДД.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Агафонов Г.И., Клявин О.В., Мамырин Б.А., Хабарин Л.В., Чернов Ю.М., Юденич В.С. Диплом на открытие: "Явление дислокационно-динамической диффузии", № 50, выдан 20.06.97, РАЕН, МААНО. Москва.
- [2] Klyavin O.V., Likhodedov N.P., Orlov A.N. // Progr. Surf. Sci. 1990. Vol. 33. N 4. P. 259.
- [3] Клявин О.В., Мамырин Б.А., Хабарин Л.В., Чернов Ю.М., Бенгус В.З., Табачникова Е.О., Шумилин С.Э. // ФТТ. 2000. Т. 42. Вып. 7. С. 1256.
- [4] Клявин О.В., Мамырин Б.А., Хабарин Л.В., Чернов Ю.М. // ФТТ. 2002. Т. 44. Вып. 2. С. 291.
- [5] Клявин О.В., Николаев В.И., Хабарин Л.В., Чернов Ю.М., Шпейзман В.В. // ФТТ. 2003. Т. 45. Вып. 12. С. 2187.
- [6] Клявин О.В., Николаев В.И., Смирнов Б.И., Хабарин Л.В., Чернов Ю.М., Шпейзман В.В. // ФТТ. 2009. Т. 51. Вып. 3. С. 473.
- [7] Клявин О.В., Николаев В.И., Поздняков О.Ф., Смирнов Б.И., Чернов Ю.М., Шпейзман В.В. // Изв. РАН. Сер. физ. 2009. Т. 73. Вып. 10. С. 1503.
- [8] Клявин О.В., Дринберг А.С., Чернов Ю.М., Шпейзман В.В. // ФТТ. 2012. Т. 54. Вып. 5. С. 1019.
- [9] Клявин О.В., Аруев Н.Н., Болтенков Б.С., Поздняков А.О., Чернов Ю.М., Шпейзман В.В. // ФТТ. 2014. Т. 56. Вып. 2. С. 326.
- [10] Клявин О.В., Аруев Н.Н., Чернов Ю.М., Дринберг А.С., Федоров В.Ю., Шпейзман В.В. // ФТТ. 2014. Т. 56. Вып. 6. С. 1131.
- [11] Клявин О.В., Аруев Н.Н., Деркаченко В.И., Федоров В.Ю., Чернов Ю.М., Шпейзман В.В. // ФТТ. 2016. Т. 58. Вып. 4. С. 692.
- [12] Клявин О.В., Федоров В.Ю., Чернов Ю.М., Шпейзман В.В. // ФТТ. 2015. Т. 57. Вып. 9. С. 1755.
- [13] Аруев Н.Н., Болтенков Б.С. // ЖТФ. 2012. Т. 82. Вып. 8. С. 134.
- [14] Pomerantsev A.L., Rodionova O.Ye. // Chem. Intell. Lab. Syst. 2005. Vol. 79. N 1–2. P. 73.
- [15] Швец Г.И., Клявин О.В., Банщиков Г.А. // ФТТ. 1985. Т. 27. Вып. 9. С. 2618.
- [16] Гликман Л.А. Коррозионно-механическая прочность металлов. Л.: Машгиз, 1955. 174 с.
- [17] Иоффе А.Ф., Кирпичева Н.В., Левитская М.А. // ЖРФХО. 1924. Т. 56. С. 489.
- [18] Ребиндер П.А., Щукин Е.Д. // УФН. 1971. Т. 08. № 1. С. 1.
- [19] Киселев В.Ф., Крылов О.В. Адсорбционные процессы на поверхности полупроводников и диэлектриков. М.: Наука, 1978. 256 с.
- [20] Сайко Д.С., Ганжа В.В., Титов С.А., Арсентьев И.Н., Костюченко А.В., Солдатенко С.А. // ЖТФ. 2009. Т. 79. Вып. 12. С. 86.