05

Сравнительный анализ роста кристаллов, выращенных на Земле и на космической станции, на примере синтеза CrSi₂ из расплава Zn в системе Cr–Si–Zn

© Е.В. Калашников,^{1,2} В.Н. Гурин,² С.П. Никаноров,² В.И. Николаев²

¹Московский государственный областной университет, 141014 Мытищи, Московская обл., Россия ² Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: ekevkalashnikov1@gmail.com

Поступило в Редакцию 20 февраля 2019 г. В окончательной редакции 20 февраля 2019 г. Принято к публикации 25 июля 2019 г.

Проанализирован рост кристаллов в "земных" условиях и в условиях космической станции. Показано, что кристаллы CrSi₂, выращенные из расплава Zn системы Cr–Si–Zn в условиях "невесомости", обладают избыточным напряжением, по величине сопоставимым с избыточным давлением в расплаве, вызванным "реакцией опоры" на Земле, а также лапласовским давлением.

Ключевые слова: спонтанная кристаллизация, неинерциальные системы, невесомость, несмачиваемость.

DOI: 10.21883/JTF.2020.02.48811.63-19

Введение

Эксперименты показывают, что кристаллизация в условиях невесомости (в условиях космической станции (КС) (далее в формулах — индекс "SS")) и в земных условиях (индекс "Е"в формулах) существенно разнятся [1-8]; условия невесомости при кристаллизации проявляют себя как экстремальные. Одной из причин такого различия являются особенности, связанные с доставкой вещества к растущему кристаллу. При спонтанной кристаллизации (массовой кристаллизации) в условиях КС (невесомости) конвективное движение жидкости [9], вызванное неоднородным распределением температуры, отсутствует [10], но присутствует течение и перенос вещества за счет градиента концентрации, точнее, градиента химического потенциала, который определяется различием количества одного и того же вещества в разных точках. Сам химический потенциал, помимо локальной (от координат) зависимости, зависит от давления и температуры. Воздействие температуры (нагрев) хорошо контролируется как в "земных" условиях, так и в условиях КС, т.е. является управляемым параметром. Однако зависимость химического потенциала от давления в "земных" условиях и условиях КС не так очевидна. Также не очевидно, что собой представляет давление в расплаве при возникновении зародышей кристаллов и в ходе дальнейшего их роста. Кроме того, как в условиях лаборатории на Земле, так и в условиях лаборатории на КС, рост кристаллов происходит в поле сил тяготения Земли. И в этом случае необходимо уточнение понятий "весомости" и "невесомости" и как они проявляются в условиях роста кристаллов. В обоих случаях ("земных" и КС) капсула с

расплавом, в котором возникают и растут кристаллы, находится (в общем) в неинерциальных системах отсчета. И здесь необходимо учесть поведение вещества в таких системах отсчета. Но прежде важно напомнить результаты экспериментов по выращиванию кристаллов CrSi₂ из расплава Zn системы Cr–Si–Zn.

Экспериментальные ситуации в "земных" условиях и условиях "невесосмости"

При экспериментальном изучении влияния гравитационного поля на спонтанный рост кристаллов CrSi₂ из раствора-расплава Zn были изучены три ситуации [1]:

1) синтез и рост кристаллов CrSi₂ из расплава Zn в условиях Земли;

2) синтез и рост кристаллов $CrSi_2$ из расплава Zn в условиях КC;

3) поведение выращенных кристаллов, полученных двумя предыдущими способами, в условиях Земли.

При этом:

4) образцы одного и того же состава помещаются в капсулы одинакового размера;

5) капсулы откачиваются и запаиваются;

6) при нагреве до температуры плавления и выше наступает существенное отличие в поведении "земных" и "космических" образцов — вступают в действие капиллярные силы.

Основными результатами этого исследования являются следующие.

Кристаллы, полученные в "невесомости" (космические образцы):

 а) имеют размеры, в 1.5-2 раза превышающие размеры изометрических кристаллов того же соединения, выращенных в земных условиях;

 б) имеют по отношению к "земным" кристаллам увеличенное число граней;

 в) имеют состав, отличающийся от стехиометрического;

г) по прошествии времени (~ 30 лет) в земных условиях "космические" кристаллы возвращаются к исходным размерам, характерным для земных условий.

2. Условия кристаллизации в "земных" условиях и условиях "невесомости"

В "земных" условиях смачиваемость и несмачиваемость внутренних стенок капсул металлическим расплавом проявляется в искажении границы раздела "газ (или вакуум)—жидкий металлический расплав" (рис. 1).

Воздействие капиллярных сил приводит к лапласовскому давлению ΔP_{Lapl} , которое меняет внутреннее давление расплава:

(a)
$$P \to P_{inside} + \Delta P_{Lapl};$$
 (b) $P \to P_{inside};$
(c) $P \to P_{inside} - \Delta P_{Lapl}.$ (1)

Кроме того, отметим здесь важный момент, который в задачах кристаллизации вообще игнорируют или ему не придают значения. В обоих случаях ("земных" и "космических") возникает дополнительное давление, вызванное силой "реакции опоры" на вес тела (рис. 1).

3. Влияние неинерциальности систем отсчета на условия кристаллизации

Оценим силу реакции опоры на вес капсулы с расплавом в условиях КС и "земных". Для этого запишем уравнение движения материальной точки (центра масс

Рис. 1. Искажение границы раздела "расплав-газ" или "расплав-вакуум" внутренней стенкой капсулы в "земных" условиях: a — несмачиваемость, b — индифферентность, c — смачиваемость. $P_{outside}$ — давление насыщенного пара, R — реакция опоры.

Рис. 2. Схема обозначений в системе "Земля-космическая станция-капсула". С центром Земли связана инерциальная система отсчета E; \mathbf{r}_c — радиус-вектор центра масс расплава в капсуле относительно системы отсчета, связанной с КС, \mathbf{r}_j — радиус вектор *j*-й части КС относительно Земли.

расплава и кристаллов в нем) в общем виде для неинерциальной системы отсчета [11,12].

3.1. Общий случай

В качестве такой неинерциальной системы (рис. 2) возьмем КС, которая вращается вокруг Земли с постоянной угловой скоростью ω на расстоянии $|r_{ES}|$. Тогда уравнение движения центра масс расплава в закрепленной на станции капсуле

$$m\left(\frac{d^{2}\mathbf{r}_{c}}{dt^{2}}\right) = \mathbf{R} + \mathbf{F} - m\left(\frac{d^{2}\mathbf{r}_{ES}}{dt^{2}}\right) - m\left[\boldsymbol{\omega}[\boldsymbol{\omega}\mathbf{r}_{c}]\right] - 2m[\boldsymbol{\omega}\mathbf{r}_{c}].$$
(2)

Здесь **R** — реакция опоры, сила, которую следует найти, действующая, из-за закрепления, со стороны корпуса КС; **F** — сила притяжения центра масс расплава в капсуле к Земле:

$$\mathbf{F} = -\gamma \left(\frac{M_E m}{r_a^3}\right) \mathbf{r}_a,\tag{3}$$

где γ — гравитационная постоянная, M_E — масса Земли, m — центр масс расплава, r_a — расстояние от центра Земли до центра масс расплава. Учтем, что \mathbf{r}_{ES} — центр масс КС; а m_j — j-я составная часть массы КС. Это значит, что

$$\mathbf{r}_{ES} = \frac{\Sigma_j m_j \mathbf{r}_j}{\Sigma_j m_j}.$$
 (4)

Но на КС (Space Station, SS) действует сила притяжения со стороны Земли

$$m_{SS}\left(\frac{d^2\mathbf{r}_{ES}}{dt^2}\right) = -\gamma \Sigma_i \left(\frac{M_E m_j}{r_j^3}\right) \mathbf{r}_j.$$
 (5)

213

Учтем, что $\Sigma_j m_j \mathbf{r}_j = m_{SS} \mathbf{r}_{ES}$ (где $\Sigma_j m_j = m_{SS}$), и $|\mathbf{r}_j - \mathbf{r}_{j+1}| \ll |\mathbf{r}_{ES}|$ и $r_j \approx |\mathbf{r}_{ES}|$, тогда (5) можно переписать так

$$\left(\frac{d^2\mathbf{r}_{ES}}{dt^2}\right) = -\left(\frac{\gamma M_E}{m_{SS}}\right)\left(\frac{m_{SS}\mathbf{r}_{ES}}{r_{ES}^3}\right) = -\gamma M_E \frac{\mathbf{r}_{ES}}{r_{ES}^3}$$

Сравним две силы -F и $F_{inert} = m \left(-\gamma M_E \frac{\mathbf{r}_{ES}}{r_{ES}^3}\right)$ из (2):

$$F - F_{inert} = -\gamma \left(\frac{M_E m}{r_a^3}\right) \mathbf{r}_a - \left(-\gamma \left(\frac{M_E m}{r_{ES}^3}\right) \mathbf{r}_{ES}\right)$$
$$= -\gamma M_E \left(\left(\frac{m}{r_{ES}^3}\right) \mathbf{r}_{ES} - \left(\frac{m}{r_a^3}\right) \mathbf{r}_a\right).$$

Учтем, что $r_a \cong r_{ES}$, тогда [12]

$$\mathbf{F} - \mathbf{F}_{inert} = -\gamma M_E \left(\left(\frac{m}{r_{ES}^3} \right) \mathbf{r}_{ES} - \left(\frac{m}{r_{ES}^3} \right) \mathbf{r}_{ES} \right) = 0.$$

Теперь уравнение (2) для движения центра масс расплава относительно системы *S*, жестко связанной с КС, преобразуется к виду

$$m\left(\frac{d^{2}\mathbf{r}_{c}}{dt^{2}}\right) = R - m\left[\boldsymbol{\omega}[\boldsymbol{\omega}\mathbf{r}_{c}]\right] - 2m[\boldsymbol{\omega}\boldsymbol{\nu}_{c}]. \tag{6}$$

Капсула сопряжена с корпусом спутника. Тогда движение капсулы с расплавом в спутнике отсутствует и $[\omega v_c] = 0$, и $v_c = 0$ и $\frac{d^2 r_c}{dt^2} = 0$. В таком случае выражение (6) превращается в соотношение

$$R - m \big[\boldsymbol{\omega} [\boldsymbol{\omega} \mathbf{r}_c] \big] = 0.$$

И вес капсулы в спутнике, обращающимся вокруг Земли с угловой скоростью ω , равен

$$R = m \big[\boldsymbol{\omega}[\boldsymbol{\omega}\mathbf{r}_c] \big]. \tag{7}$$

Или по величине $R = m\omega^2 r_c = 5.33 \cdot 10^{-5} N$. Однако если вектор **r**_c капсулы на станции ориентирован параллельно оси вращения станции вокруг Земли, т. е. $\omega \parallel \mathbf{r}_c$, то из (7) R = 0 и капсула с расплавом находится в полной невесомости.

3.2. Капсула находится на Земле (в лаборатории)

В этом случае уравнение (2) приобретает иной вид. Теперь вместо ω учитывается ω_E , равная угловой скорости суточного обращения Земли вокруг своей оси, и $r_a = R_E = 6.4 \cdot 10^6$ m — радиус Земли. Уравнение (2) превращается в уравнение движения расплава в капсуле, закрепленной на Земле и вращающейся вместе с Землей относительно неподвижной системы "*E*":

$$\mathbf{0} = \mathbf{R} + \mathbf{F} - m \big[\boldsymbol{\omega}_E[\boldsymbol{\omega}_E \mathbf{r}_c] \big]$$

или

$$\mathbf{R} = \gamma \left(\frac{M_E m}{r_a^3}\right) \mathbf{r}_a + m \big[\boldsymbol{\omega}_E[\boldsymbol{\omega}_E \mathbf{r}_c]\big]. \tag{8}$$

Оценим эту силу. Угловая частота вращения Земли $\omega_E \approx 7.3 \cdot 10^{-5} \, {
m s}^{-1}$, масса Земли $M_E = 5.9736 \cdot 10^{24} \, {
m kg}$; гравитационная постоянная $\gamma = 6.67259 \cdot 10^{-11} \, {
m m}^3/({
m kgs}^2)$. Высота орбиты КС $\approx 400 \cdot 10^3 \, {
m m}$. Частота обращения КС относительно Земли $\omega_{SS} \approx 10$ оборотов в сутки = $7.3 \cdot 10^{-4} \, {
m s}^{-1}$. Тогда

$$\mathbf{R} = \gamma \left(\frac{M_E m}{r_a^3}\right) \mathbf{r}_a + m \big[\boldsymbol{\omega}_E[\boldsymbol{\omega}_E \mathbf{r}_c]\big] \approx 9.7 \cdot 10^{-2} N.$$

Это значит, что сила реакции опоры на Земле больше той же реакции опоры на станции в $1.82 \cdot 10^3$ раз, если учитывать соотношение (7). Оценим теперь величину давления, вызванную реакцией опоры.

3.3. Давление, вызванное силой "реакции опоры" на вес тела

Рассмотрим, как реакция опоры сказывается на двух металлах, каждый из которых помещен в капсулу из кварца. Цинк в жидком состоянии не очень хорошо смачивает кварц, ртуть не смачивает кварц.

Для сферической капли ртути радиусом $r = 1 \text{ cm} = 10^{-2} \text{ m}$ лапласовское давление равно $p_c = \frac{2\gamma}{r} = 94.7 \left(\frac{N}{m^2}\right) = 94.7 \text{ Pa}.$ Объем капли ртути, ограниченной сферой: $V = (4/3)\pi r^3 = (4/3)\pi (10^{-2})^3.$ Тогда

Рис. 3. Границы раздела "расплав-газ" в капсуле на КС: a — несмачиваемость, b — индифферентность, c — смачиваемость. $P_{outside}$ — давление насыщенного пара.

Характеристики жидких металлов, помещенных в капсулу, в "земных" условиях

Металл	Плотность, $\rho \; (\text{kg/m}^3)$	Поверхностное натяжение, γ (J/m ²)	<i>р</i> _с , (Ра),	Давление столба, h (Pa)
Zn	$6.6\cdot10^3$	$755\cdot 10^{-3}$	151	862.4
	при температуре 723 К			
Hg	$13.540\cdot 10^3$	$473.5 \cdot 10^{-3}$	94.7	1769.22

высота *h* цилиндра радиусом $r = 10^{-2}$ m того объема V равна $h = (4/3)r = (4/3)10^{-2}$ m. же Давление, которое возникает в цилиндре ртути высотой h из-за реакции опоры $P_{supporting forse} =$ $= \rho \cdot g \cdot h = 1769.22 (N/m^2) = 1769.22$ Ра. Это значит, что для ртути в земных условиях давление в расплаве, вызванное реакцией опоры, в 10 раз больше, чем лапласовское давление (и в 57 раз меньше атмосферного давления). Эти давления добавляются к внутреннему давлению расплава. А на КС к внутреннему давлению добавляется только лапласовское давление. Оно и удерживает весь расплав в виде сферы (рис. 3). Полное избыточное давление в столбе ртути высотой h = (4/3)r(в земных условиях) равно: $P_{supportingforse} + \Delta P_{Lapl} =$ = 1769.22 Ра + 94.7 Ра = 1863.92 Ра. Для Zn аналогично (см. таблицу).

Таким образом, на Земле в расплаве внутреннее давление меняется:

$$P \to P_{inside} + \Delta P_{Lapl} \to P_{inside} + \Delta P_{Lapl} + P_{supporting forse}.$$
(9)

А внутреннее давление на КС меняется на величину только лапласовского давления

$$P_{inside} \pm 2\Delta P_{Lapl}.$$
 (10)

Знак "плюс" соответствует ситуации на рис. 3, *a*, *b*. Знак минус соответствует ситуации рис. 3, *c*.

4. Определение состояния кристалла, выросшего в условиях КС

В задачах роста кристаллов обычно контролирующими параметрами являются температура и давление. Подходящим термодинамическим потенциалом для описания состояния системы, состоящей из одного вещества, в которой возможен рост кристалла [14], является потенциал Гиббса:

$$G = U + PV - TS.$$

Учитывая его аддитивность, можно ввести химический потенциал $\mu(P, T)$:

$$G_j = n(u + Pv - Ts)_j = n\mu_j(P, T).$$
 (11)

Здесь n — число атомов (молекул); j — соответствует жидкому (L) или (Cr) состоянию кристалла.

Возникновение кристалла — это фазовый переход первого рода и носит локальный характер. Это значит, что только часть жидкого расплава объемом V_L претерпевает превращение в кристалл и соответственно число (*n*) атомов (молекул) в этом объеме полностью превращаются в кристалл объемом V_{cr} .

Из (11) имеем

$$\left(\frac{\partial \mu_j(P,T)}{\partial P}\right)_T = v_j = \frac{V_j}{n}, \quad j = L, Cr.$$
(12)

Интегрируя (12), получим
$$n \cdot \mu_j = \int_{P_{L-cr}}^{p} V_j dP$$
, [15].

Сравним эти (для j = L, Cr) два выражения. (В условиях равновесия $\mu_L = \mu_{cr}$, тогда и $P - P_{L-cr} = 0$, здесь P_{L-cr} — давление на границе раздела "расплав-кристалл". Это значит, что граница раздела "расплав-кристалл" неподвижна и влияния давления не определить. Поэтому рассматриваем условия, при которых есть движение границы раздела. И это, кстати, задает кинетику роста кристалла, при которой кристалл растет и получает огранку:

$$n(\mu_L - \mu_{cr}) = \int_{P_{L-cr}}^{p} (V_L - V_{cr}) dP$$
(13a)

или

$$n(\mu_L - \mu_{cr}) = (P - P_{L-cr})(V_L - V_{cr}).$$
 (136)

Здесь учтено возможное перемещение границы раздела "расплав-кристалл". Это выражено в том, что давление $P - P_{L-cr}$ на этой границе раздела отличается от равновесного. В свою очередь, это влечет за собой отклонение от равновесия ($\mu_L \neq \mu_{cr}$): $\mu_L - \mu_{cr}$. При этом температура T = const (12).

Чтобы отследить, как и в чем проявляется различие в росте кристалла в условиях "земных" и "космических", воспользуемся соотношениями (13а) и (13б). Для "земных" условий

$$n(\mu_L - \mu_{cr})_E = (P - P_{L-cr})_E (V_L - V_{cr})_E.$$
 (14a)

То же самое запишем для условий КС:

$$n(\mu_L - \mu_{cr})_{SS} = (P - P_{L-cr})_{SS}(V_L - V_{cr})_{SS}.$$
 (146)

Левые части обоих уравнений (14а) и (14б) одинаковы, поскольку они определяются только работой по переносу атомов (молекул) из расплава к кристаллу. Тогда правые части также равны:

$$(P - P_{L-cr})_E (V_L - V_{cr})_E = (P - P_{L-cr})_{SS} (V_L - V_{cr})_{SS}.$$
(15a)

Разность $(P - P_{L-cr})_E$ отличается от $(P - P_{L-cr})_{SS}$ на величину $P_{supporting forse}$ (здесь пренебрегли лапласовским давлением). Тогда

$$(P - P_{L-cr})_{SS} = (P - P_{L-cr})_E = P_{supporting\ forse} \quad (156)$$

и уравнение (15а) запишется так

$$(P - P_{L-cr})_E = ((P - P_{L-cr})_E - P_{supporting forse}) \times (V_L - V_{cr})_{SS}.$$
 (16)

Если принять во внимание, что, как в эксперименте (разд. 1, пункт а), размеры кристалла, выращенного на КС, в 1.5–2 раза превышают "земные"), то

$$(V_L - V_{cr})_{SS} = 2(V_L - V_{cr})_E, (17)$$

Журнал технической физики, 2020, том 90, вып. 2

т.е. кристалл не может вырасти бо́льшим, если ему не предоставлен бо́льший объем. Это предполагает, что, если принять экспериментальные результаты (пункт а), то в условиях КС объем ($V_L - V_{cr}$) расплава, который участвует в формировании кристалла, увеличивается также в 1.5–2 раза. Теперь, вернувшись к (16), получим

$$(P - P_{L-cr})_E ((V_L - V_{cr})_E - 2(V_L - V_{cr})_E)$$
$$= (-P_{supporting\ forse}) 2(V_L - V_{cr})_E$$

или

$$2 \cdot P_{supporting forse} = (P - P_{L-cr})_E.$$
(18)

Подставив это значение в (15б), получим

$$(P - P_{L-cr})_{SS} = 2 \cdot P_{supporting forse} - P_{supporting forse}$$
$$= P_{supporting forse}.$$
(19)

Это означает, что выращенный в КС кристалл обладает избыточным напряжением

$$\sigma_{jk} = \delta_{jk} P_{supporting forse}, \qquad (20)$$

модуль которого $|\sigma_{jk}| = P_{supporting forse}$.

Из условий (17) следует еще одна важная особенность, связанная с огранкой кристалла. Следуя Вульфу [15], кристалл можно разбить на пирамиды, вершины которых исходят из одной его внутренней точки О. Тогда объем кристалла равен сумме объемов пирамид:

$$(V_L - V_{cr})_E = \sum_i (1/3) A_i h_i.$$
(21)

Здесь $(V_L - V_{cr})_E$ — объем выросшего кристалла в "земных" условиях, A_j — площадь, h_j — расстояние от центра кристалла О до *j*-й грани. Но поскольку в условиях невесомости кристаллу предоставляется больший объем (17), то и число граней в нем будет большим.

Избыток напряжения в кристалле предполагает релаксацию этих напряжений [16] в случае, если кристалл помещен в "земные условия"

$$\frac{d\sigma_{jk}}{dt} = -\frac{\sigma_{jk}}{\tau}.$$

Однако напряжения, вызываемые избыточным давлением (19), (20) в кристалле почти в 10 раз меньше атмосферного давления и вряд ли приведут к возникновению дислокаций, которые могли бы свидетельствовать о релаксации напряжений таким путем. Например, для нитевидных кристаллов [17] релаксация напряжений через возникновение дислокаций имеет характерный порядок времени релаксации $\tau \sim 10$ s. В нашем же случае время релаксации оказывается порядка $\tau \sim 10^9$ s, что характерно для диффузионной релаксации, вызванной, в первую очередь, отклонением от стехиометрии полученных на КС кристаллов.

Заключение

В работе на примере сравнительного анализа синтеза и роста кристаллов CrSi2 при спонтанной кристаллизации в расплаве Zn, выращенных на Земле и космической станции, установлено, что кристаллы CrSi₂, выращенные на КС, обладают избыточным напряжением. Показано, что в расплаве на Земле существует избыточное давление, вызванное реакцией опоры. В условиях невесомости это избыточное давление отсутствует. Это приводит к тому, что локальный объем, принимающий участие в возникновении зародыша и его росте, увеличивается в размере прежде, чем превратится в кристалл. Следствием такого локального увеличения объема в невесомости являются увеличенные размеры кристалла и увеличенное число его граней (что подтверждается экспериментом), по сравнению с кристаллами, полученными при избыточном давлении, вызванным реакцией опоры.

Благодарности

Рентгенодифракционные измерения выполнены с использованием оборудования федерального ЦКП "Материаловедение и диагностика в передовых технологиях" (ФТИ им. А.Ф. Иоффе).

Финансирование работы

Работа выполнена при (частичной) финансовой поддержке Министерства образования и науки РФ (идентификатор проекта RFMEFI62117X0018) в рамках исследований по теме 9.7(0040-2014-0007).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Gurin V.N., Derkatchenko L.I., Nikanorov S.P. // Proceed. AIAA/IKI Microgravity Sci. Symp. 13–17 May 1991. Moscow, Pabl. by AIAA, Washington. 1991. P. 134–137.
- [2] Стрелов В.И., Куранова И.П., Захаров Б.Г., Волошин А.Э. // Кристаллография. 2014. Т. 59. № 6. С. 863-890.
- [3] Kun Zhang, Liang Bi Wang // Frontiers in Heat and Mass Transfer (FHMT). 2016. Vol. 7. N 18. P. 1–7.
- [4] Kundrot Craig E., Judge Russell A., Pusey Marc L., Snell Edward H. // Crystal Growth & Design. 2001. Vol. 1. N 1. P. 87–99.
- [5] Takahashi Takuya, Ohuchi Haruka, Nomura Ryuji, Okuda Yuichi // Sci. Adv. 2015. 1:e1500825. P. 1–5.
- [6] *Vonortas N.S.* Protein crystallization for drug development: FinalReport Nasa. 2015. 30 p.
- [7] Hayakawa Y., Kumar Velu N., Arivanandhan M., Rajesh G., Koyama T., Momose Y., Sakata K., Ozawa T., Okano Y., Inatomi Y. // J. Microgravity Sci. Appl. 2017. Vol. 34. N 1. P. 340111-1-11.

- [8] Шульпина И.Л., Захаров Б.Г., Парфеньев Р.В., Фарбитейн И.И., Серебряков Ю.А., Прохоров И.А. // ФТТ. 2012. Т. 54. Вып. 7. С. 1264–1268.
- [9] Волков П.К. // Природа. 2001. № 11. Р. 36-42.
- [10] Гидромеханика и тепломассообмен в невесомости / Под ред. В.С. Авдуевский, В.И. Полежаев. М.: Наука, 1982. 263 с.
- [11] Ландау Л.Л., Лифшиц Е.М. Механика. М.: Наука, 1988. 215 с.
- [12] Ольшанский И.И. Курс теоретической механики для физиков. М.: МГУ, 1974. 569 с.
- [13] Амброк А.Г., Калашников Е.В. // Расплавы. 1997. № 4. С. 41-50.
- [14] *Калашников Е.В.* Рост и физические свойства кристаллов. СПб.: НИУ ИТМО, 2013. 117 с.
- [15] *Фольмер М.* Кинетика образования новой фазы. М.: Наука, 1980. 205 с.
- [16] Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Наука, 1987. 246 с.
- [17] Петров Ю.В., Бородин И.Н. // ФТТ. 2015. Т. 57. Вып. 2. С. 336–341.