03

Численное исследование вихревых структур и теплообмена при сверхзвуковом обтекании области сопряжения затупленного тела и пластины

© Е.В. Колесник, Е.М. Смирнов

Санкт-Петербургский политехнический университет Петра Великого, 195251 Санкт-Петербург, Россия e-mail: kolesnik_ev@mail.ru

Поступило в Редакцию 5 июля 2019 г. В окончательной редакции 5 июля 2019 г. Принято к публикации 11 августа 2019 г.

Приведены результаты численного моделирования сверхзвукового ламинарного обтекания области сопряжения затупленного тела и пластины. Проанализированы газодинамическая и вихревая структуры потока, определяемые вязко-невязким взаимодействием. Представлены данные, показывающие качественное и количественное влияние на структуру потока и теплообмен таких определяющих параметров, как число Маха, число Рейнольдса, температурный фактор и длина пластины.

Ключевые слова: высокоскоростные течения, вязко-невязкое взаимодействие, подковообразные вихри, численное моделирование.

DOI: 10.21883/JTF.2020.02.48807.263-19

Введение

Необходимость проведения исследований структуры течения при обтекании сверхзвуковыми потоками какихлибо конструктивных элементов, закрепленных на обтекаемой поверхности, возникает во многих практических задачах авиакосмической отрасли и турбомашиностроения. В аэрокосмической отрасли задачи данной направленности встречаются, в частности, при конструировании таких элементов летательных аппаратов, как соединения фюзеляжа и крыла, хвостового оперения и других элементов. В этом случае наиболее важной характеристикой является интенсивность теплообмена в области перед обтекаемым телом. Результаты исследований показывают, что натекание пограничного слоя на препятствие приводит к сложным эффектам вязконевязкого взаимодействия, характеризующимся сильно неоднородным распределением теплового потока в области перед обтекаемым телом, значения которого могут в несколько раз превышать значения в невозмущенном пограничном слое. Поэтому получение детальных знаний о структуре потока в области перед обтекаемым телом, а также исследования влияние различных параметров на теплообмен в этой области, является актуальной задачей.

Структура потока и картина локального теплообмена в подобных конфигурациях зависят от большого числа параметров, таких как свойства среды, характеристики набегающего пограничного слоя, геометрия рассматриваемой конфигурации. Исследованиям по данной теме посвящено довольно много публикаций начиная с середины прошлого века. В то время особый интерес к этим задачам возник в связи с развитием сверхзвуковых и гиперзвуковых летательных аппаратов. Первые исследования были в основном экспериментальными [1–5]. Появившиеся следом расчетные работы (см., например, [6,7]) использовали недостаточно подробные сетки и, кроме того, существующие на тот момент численные методы не позволяли получить достаточно аккуратные разрешения особенностей вязко-невязкого взаимодействия.

Недавние публикации [8–15] показывают, что интерес к данной тематике возрос с выраженным уклоном в сторону проведения расчетных работ [8–14]. Исследования проводятся как для ламинарных режимов течения [9–13], так и турбулентных режимов [8,14,15], в последнем случае обычно решаются осредненные по Рейнольдсу уравнения Навье–Стокса (RANS подход) [14], однако имеются и попытки применения метода моделирования крупных вихрей (метод LES) для расчета течений данного класса [8].

За последние годы был получен значительный объем информации об особенностях течения, возникающего при взаимодействии отрывающегося пограничного слоя с головным скачком уплотнения. Обзоры литературы на данную тему можно найти, например, в работах [16–18].

В работе [9] представлены результаты экспериментального и численного исследований обтекания затупленного тела, установленного на расстоянии 15D (D диаметр затупленной части) от начала пластины при числе Маха M = 6.7. Дан анализ влияния диаметра Dна теплообмен перед обтекаемым телом. Показано, что расстояние от передней кромки тела до точки отрыва пограничного слоя, отнесенное к диаметру, остается постоянным. Авторами работы [10] проведено численное моделирование для тех же параметров, что и в

Рис. 1. Схематическое представление постановки задачи.

Рис. 2. Расчетная область.

работе из [9], и показано, что возникающее течение является нестационарным: в потоке возникают квазипериодические колебания, соответственно распределение теплового потока на поверхности пластины также имеет квазипериодический характер.

В работе [11] исследуется течение при числе Маха 14 и Re = 8000, проводится сравнение с экспериментальными данными. В дальнейших последующих работах тех же авторов [12,13] проводится детальное исследование влияния угла скоса (sweep angle) на структуру потока и теплообмен. Показано, что при обтекании наклонного тела (угол скоса 22.5°) область отрыва уменьшается примерно в 2 раза, и примерно в 3 раза уменьшается значение локального максимума давления на поверхности обтекаемого тела.

Основная часть опубликованных работ по данной тематике посвящена исследованиям гиперзвукового течения. Случай с умеренными числами Маха изучен недо-

статочно. В настоящей работе представляются результаты численного моделирования обтекания сверхзвуковым потоком модельной конфигурации — полубесконечного удлиненного цилиндрического тела с диаметром затупленной части *D*, установленного на пластине длиной *L*, вдоль которой развивается пограничный слой (рис. 1). Проводится исследование влияния определяющих параметров задачи на структуру течения и теплообмен, а именно влияния числа Маха, числа Рейнольдса, температурного фактора и длины пластины.

1. Параметры постановки задачи

Расчетная область для рассматриваемой задачи сверхзвукового обтекания удлиненного цилиндрического тела, установленного на пластине, вдоль которой развивается ламинарный пограничный слой, показана на рис. 2. Течение предполагается симметричным, и расчетная область охватывает только половину исходной конфигурации. Размеры области: R = 15D, H = 10D, L = 8D, где D диаметр затупленной части тела. Основная серия расчетов проводилась для пластины длиной $L_{plate} = 30D$, для исследования влияния толщины набегающего пограничного слоя рассматривались также пластины длинами 12D и 50D.

В рамках используемой модели вязкого совершенного газа рассматриваемое течение определяется следующим набором безразмерных параметров: числом Маха набегающего потока М, числом Рейнольдса Re, числом Прандтля Pr, температурным фактором T_w/T_∞ , относительной длиной пластины L_{plate}/D и показателем адиабаты γ .

В настоящей работе численные решения получены при задании теплофизических параметров воздуха: $\Pr = 0.71, y = 1.4$, остальные параметры варьировались; в табл. 1 приведены наборы параметров, для которых проводились расчеты.

На входной границе расчетной области задается однородный поток, на поверхности тела и пластине задаются условия прилипания. Поверхность тела и пластины поддерживаются при постоянной температуре T_w . При расчетах с разными числами Маха температура стенки задавалась равной половине адиабатической температуры. На боковых и верхних границах задаются неотражающие граничные условия, на выходе — условие нулевого градиента.

2. Вычислительные аспекты

Для расчетов использовался конечно-объемный неструктурированный программный код SINF/Flag-S, разрабатываемый на кафедре "Гидроаэродинамика, горение и теплообмен" Санкт-Петербургского политех-нического университета Петра Великого.

Решались полные трехмерные уравнения Навье-Стокса для термически и калорически совершенного газа.

N⁰	1	2	3	4	5	6	7	8	9	10
M	5	5	5	5	4	6	5	5	5	5
Re	2000	4000	8000	12 000	4000	4000	4000	4000	4000	4000
$L_{plate}/D \ T_{\mathrm{w}/T_{\infty}}$	30	30	30	30	30	30	12	50	30	30
	2.59	2.59	2.59	2.59	1.84	3.51	2.59	2.59	1.5	4

Таблица 1. Значения определяющих параметров

Зависимость коэффициента вязкости от температуры определялась формулой Сазерленда.

Детально численный метод для решения рассматриваемой задачи описан в [19]. Для расчетов конвективных потоков на гранях контрольных объемов использовалась схема AUSM [20]. Второй порядок точности достигался за счет использования MUSCL-похода [21], с применением TVD [22] ограничителя van Albada [23] для монотонизации решения. Обобщение TVD-подхода на случай неструктурированных сеток реализовано на основе подхода, развитого в работах [24,25].

Для получения стационарного сошедшегося решения использовался метод установления по псевдовремени в сочетании с неявной схемой "в приращениях".

Для расчетов использовалась квазиструктурированная сетка, содержащая 8.75 млн. ячеек (для пластины длиной 30*D*). Сведения о параметрах сетки, обеспечивающих получение аккуратного, практически не зависящее от сетки решения, даны в [19].

Для проведения расчетов использовались вычислительные ресурсы суперкомпьютерного центра Санкт-Петербургского политехнического университета Петра Великого (www.scc.spbstu.ru).

3. Результаты расчетов и их обсуждение

3.1. Характерная структура потока

Общий вид численного решения, полученного для набора параметров под номером 2 (табл. 1), представлен на рис. 3: показаны объемные линии тока и распределение числа Стэнтона на поверхности обтекаемого тела и пластины. Число Стэнтона вычисляется по формуле

$$St = \frac{q_w}{\rho V C_p (T_{aw} - T_w)}, \quad T_{aw} = T_\infty \left(1 + r \, \frac{\gamma - 1}{2} \, M^2\right),\tag{1}$$

где $r = \sqrt{\Pr}$ коэффициент восстановления.

В целом структура рассчитанного поля течения аналогична описанной ранее авторами работ [9–13], в которых решения получены для больших значений числа Маха. Перед телом образуется головной скачок уплотнения, который, взаимодействуя с пограничным слоем, вызывает отрыв последнего. Зона отрыва индуцирует косые волны сжатия, которые пересекаются с головным скачком. Внутри отрывной области возникают зоны

Рис. 3. Картина линий тока и распределение числа Стэнтона на поверхности тела и пластины.

сверхзвуковых скоростей и местные волны уплотнения, приводящие к повторному отрыву пристенного течения. В результате перед телом формируется протяженная отрывная область с цепочкой вихревых образований, каждое из которых становится "головой" огибающего тело подковообразного вихря.

Вследствие данной структуры потока на поверхности пластины и тела возникают области локального повышения теплоотдачи. Приведенное на рис. З распределение числа Стэнтона показывает, что максимум теплоотдачи наблюдается на поверхности тела в точке растекания потока. На поверхности пластины также формируется неоднородное распределение теплового потока, здесь локальные максимумы теплоотдачи наблюдаются в области между подковообразными вихрями — там, где поток натекает на пластину.

Детальная структура потока в плоскости симметрии показана на рис. 4, где приведено поле модуля градиента плотности в сочетании с картиной линий тока, а также представлены распределения числа Стэнтона вдоль линии симметрии на поверхности пластины и вдоль лобовой линии на теле.

В отрывной области отчетливо видно формирование четырех подковообразных вихрей: углового вихря *a*, основного и вторичного подковообразных вихрей *b* и *c*, между которыми образуется еще один вихрь *d* с противоположным направлением вращения, при этом его ось расположена ближе к пластине. Распределение числа Стэнтона вдоль линии симметрии на пластине содержит

Рис. 4. Поле градиента плотности и линии тока в плоскости симметрии, распределение числа Стэнтона вдоль линии симметрии на пластине и на лобовой линии на теле.

два локальных максимума, положение которых определяется общей вихревой структурой отрывной области. При взаимодействии с телом часть потока разворачивается по направлению к пластине, что приводит к формированию основного подковообразного вихря *b*, при этом поток здесь достигает сверхзвуковых скоростей. В результате в области между вихрями *a* и *b*, там, где происходит натекание этой части потока на пластину, наблюдается резкое увеличение теплоотдачи.

Вихри, заполняющие отрывную область, индуцируют возникновение косых волн уплотнения, которые при взаимодействии с головным скачком уплотнения приводят к изгибу его фронта в сторону обтекаемого тела. На рис. 4 отчетливо видно формирование двух косых волн уплотнения, которые взаимодействуют с головным скачком уплотнения на высоте $Z/D \approx 1.75$ и $Z/D \approx 1.25$, и примерно на той же высоте наблюдаются локальные максимумы теплоотдачи на поверхности.

3.2. Изменения в структуре потока при варьировании параметров задачи

Проведенные расчеты для различных наборов определяющих параметров показывают, что общая картина течения в области соединения тела и пластины получается схожей по структуре для всех вариантов: наблюдается обширная отрывная область перед телом, головной скачок уплотнения, а также косые волны уплотнения, формирующиеся при обтекании отрывной области. Аналогично работе [14] данная общая структура течения в плоскости симметрии может быть изображена схематично в виде, представленном на рис. 5.

Однако в деталях картины течения, рассчитанные при различных наборах параметров, могут отличаться весьма существенно как в отношении вихревой структуры в отрывной области, так и по ударно-волновой картине. На рис. 6, *а-е* приведены поля модуля градиента плотности и картины линий тока в плоскости симметрии для десяти рассмотренных вариантов. В табл. 2 приведены отдельные представительные характеристики полученных решений. Согласно обобщенной схеме (рис. 5), рассчитанное течение может характеризоваться следующими величинами: относительным расстоянием головного скачка уплотнения до тела (B/D), высотой расположения "тройной точки" (h_{tp}/D), являющейся точкой пересечения головного скачка уплотнения и первого косого скачка, толщиной пограничного слоя, которая наблюдалась бы в месте присоединения тела к пластине в случае его отсутствия (δ/D) , длиной отрывной области L_s/D и количеством явно выраженных подковообразных вихрей (N_{vortex}) .

Положение головного скачка уплотнения на удалении от пластины (B/D) зависит только от числа Маха. Полученные нами результаты хорошо согласуются с зависимостью (2) из [26], при этом наилучшее совпадение наблюдается для наибольшего числа Рейнольдса:

$$\frac{B}{D} = 0.19 + \frac{1.2}{M^2 - 1} + \frac{0.7}{(M^2 - 1)^2}.$$
 (2)

Из рис. 6, a-d можно видеть, что увеличение числа Рейнольдса приводит к повышению интенсивности косых волн уплотнения. Отрывная область при этом становится тоньше, т.е. больше "прижимается" к поверхности пластины, и в результате уменьшается высота расположения тройной точки. Длина отрывной области увеличивается, так же как и количество подковообразных вихрей. Основной подковообразный вихрь, отчетливо наблюдаемый при Re = 2000 и 4000, при увеличении Re отодвигается дальше от тела, и на его месте возникает еще один вихрь, а также между ними начинает формироваться вихрь с противоположным направлением

Рис. 5. Обобщенная схема течения в плоскости симметрии для области перед обтекаемым телом.

N⁰	1	2	3	4	5	6	7	8	9	10
B/D	0.258	0.252	0.246	0.242	0.276	0.24	0.252	0.252	0.246	0.258
δ/D	1.36	0.98	0.68	0.55	0.71	1.29	0.63	1.26	0.766	1.23
$h_{ m tp}/D$	1.92	1.8	1.79	1.75	1.88	1.9	1.3	2.1	1.6	2.12
$L_{\rm s}/D$	3.44	4.06	4.95	5.28	4.31	3.91	3.22	4.45	4.05	4.18
$N_{\rm vortex}$	3	4	6	7	5	4	4	4	4	4

Таблица 2. Характеристики течения, рассчитанные при разных наборах определяющих параметров

Рис. 6. Поле модуля градиента плотности и линии тока в плоскости симметрии; *а*-*j* соответствуют вариантам расчета 1–10 из табл. 1.

Рис. 7. Распределение числа Стэнтона вдоль линии симметрии (слева) и на поверхности тела (справа): влияние числа Рейнольдса (*a*), влияние числа Маха (*b*), влияние температурного фактора (*c*), влияние длины пластины (*d*).

вращения. Здесь следует отметить, что при дальнейшем увеличении числа Рейнольдса такая вихревая структура становится неустойчивой, и сошедшегося стационарного решения получить не удается.

При фиксированной длине пластины уменьшение числа Маха приводит к тому же результату, что и увеличение числа Рейнольдса: длина отрывной области увеличивается, при этом сама область становится тоньше и основной подковообразный вихрь отодвигается дальше от тела. Это можно объяснить тем, что в обоих случаях варьирование чисел Маха и Рейнольдса приводит в первую очередь к изменению толщины пограничного слоя. При дальнейшем уменьшении числа Маха вихревая структура становится неустойчивой, реализуется нестационарный режим обтекания.

При уменьшении температурного фактора в целом наблюдаются аналогичные тенденции, поскольку в этом случае толщина пограничного слоя также уменьшается. Однако механизм перестроения отрывной области в данном случае другой. Несмотря на то, что длина отрывной области увеличивается, и область становится тоньше, число вихрей, наоборот, уменьшается. Отчетливо наблюдаемый для больших значений температурного фактора вихрь, расположенный между основным и вторичным вихрями (аналогичный вихрю *d* на рис. 4), исчезает в случае $T_w/T_{\infty} = 1.5$. Таким образом, зависимость между длиной отрывной области и количеством вихрей не является монотонной.

Изменение длины пластины приводит к тому, что меняется толщина натекающего на препятствие пограничного слоя. Однако в этом случае структура потока, получающаяся для всех вариантов, очень похожа: сохраняется число вихрей и их размеры относительно друг друга, меняются только размеры отрывной области и положение тройной точки $h_{\rm tp}$, в соответствии с этим меняется положение косых волн уплотнения.

3.3. Характеристики теплообмена

На рис. 7 приведены распределения числа Стэнтона вдоль линии симметрии на пластине и вдоль лобовой линии на теле для всех рассмотренных вариантов. Иллюстрируется влияние на локальный теплообмен числа Рейнольдса (рис. 7, a), числа Маха (рис. 7, b), температурного фактора (рис. 7, c) и длины пластины (рис. 7, d). С другой стороны, общий анализ рис. 7 подтверждает выводы о структуре течения, сделанные ранее на основе анализа полей.

Как отмечалось выше, наличие локальных максимумов в распределении числа Стэнтона на пластине вдоль линии симметрии связано с формированием вихрей в отрывной области — локальное увеличение теплообмена наблюдается в области между вихрями, там, где поток "прижимается" к пластине. Можно отметить, что положение наибольшего локального максимума слабо зависит от числа Рейнольдса. Несмотря на то что при увеличении числа Рейнольдса главный подковообразный вихрь смещается дальше от тела, в том же месте образуется другой вихрь, который приводит к такому же повышению теплоотдачи. В соответствии с количеством вихрей при Re = 8000 и 12000 наблюдается больше локальных максимумов. В распределении числа Стэнтона вдоль лобовой линии для Re = 2000 наблюдается один локальный максимум, для больших чисел Рейнольдса локальных максимумов два, и чем больше число Рейнольдса, тем меньше величина этих максимумов и тем ближе к пластине они располагаются; это соответствует и тому, что уменьшается высота расположения тройной точки.

Как видно из рис. 7, b, c, аналогичные тенденции наблюдаются при уменьшении числа Маха и уменьшении температурного фактора, что подтверждает сделанные ранее выводы. Положение наибольшего локального максимума на пластине слабо зависит от параметров задачи. Однако можно отметить некоторую тенденцию, а именно — во всех случаях положение максимума смещается в сторону от тела при изменении параметров, соответствующих увеличению толщины пограничного слоя, при этом величина максимума может как уменьшаться (рис. 7, b), так и не меняться (рис. 7, c). Анализ распределений числа Стэнтона вдоль лобовой линии на теле показывает, что при увеличении толщины набегающего пограничного слоя величина локального максимума увеличивается и его положение смещается дальше от пластины.

191

В случае, когда при сохранении всех параметров меняется только длина пластины, полученные распределения числа Стэнтона оказываются подобными, т.е. имеют очень схожую форму и одинаковое количество локальных максимумов. Для пластины L = 12D на поверхности тела наблюдается максимум, соответствующий взаимодействию косого скачка уплотнения, формирующегося от начала пластины при обтекании пограничного слоя, с головным скачком уплотнения.

Заключение

Рассмотрена задача о взаимодействии сверхзвукового течения вязкого газа с удлиненным затупленным телом, установленным на пластине, вдоль которой развивается ламинарный пограничный слой. Проанализирована структура течения, формирующегося при обтекании рассмотренной конфигурации. Существенно трехмерное течение характеризуется ярким проявлением эффектов вязко-невязкого взаимодействия. Возникающая перед телом отрывная область имеет сложную вихревую структуру: вокруг тела формируется семейство подковообразных вихрей, что приводит к сильно неоднородному распределению теплового потока на пластине. Обтекание отрывной области сверхзвуковым потоком индуцирует возникновение косых волн уплотнения, взаимодействие которых с головным скачком приводит к формированию струи газа, вызывающей локальное увеличение теплового потока на поверхности тела.

Получено семейство решений для различных значений определяющих параметров. Проанализировано влияние на вихревую структуру и теплообмен изменения числа Рейнольдса, числа Маха, температурного фактора, длины пластины перед обтекаемым телом.

В случае пластины неизменной длины определяющим параметром, влияющим на структуру потока, является толщина натекающего на препятствие пограничного слоя. При варьировании параметров, которое приводит к уменьшению толщины набегающего пограничного слоя, длина отрывной области перед телом увеличивается, поток больше "прижимается" к поверхности пластины, т. е. отрывная область становится тоньше. Вихревая структура при этом зависит от факторов, под действием которых набегающий пограничный слой становится тоньше. В случае изменения чисел Маха и Рейнольдса тенденции схожи: количество вихрей увеличивается, а в случае изменения температурного фактора, наоборот, уменьшается, и они становятся более вытянутыми. Расчеты при фиксированных динамических параметрах, но для пластины разной длины, показывают, что картина качественно получается весьма схожей: сохраняется число вихрей и их размеры друг относительно друга, меняются только размеры отрывной области в целом.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Войтенко Д.М., Зубков А.И., Панов Ю.А. // Известия АН СССР. Механика жидкости и газа. 1966. № 1. С. 121.
- [2] Адуевский В.С., Медведев К.И. // Известия АН СССР. Механика жидкости и газа. 1967. № 1. С. 25–34.
- [3] *Тетерин М.П.* // Известия АН СССР. Механика жидкости и газа. 1967. № 2. С. 143–147.
- [4] Dolling D.S., Bogdonoff S.M. // AIAA J. 1982. Vol. 20. N 12.
 P. 1674–1680.
- [5] Ozcan O., Holt M. // AIAA J. 1984. Vol. 22. N 5. P. 611-617.
- [6] Lakshmanan B., Tiwari S.N. // J. Aircraft. 1994. Vol. 31. N 1. P. 64–71.
- [7] Wiedermann A. // Fluid Dynamics Res. 1997. Vol. 21. P. 221– 232.
- [8] Oliveira M., Liu C. // 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010. DOI: 10.2514/6.2010-874
- [9] Tutty O.R., Roberts G.T., Schuricht P.H. // J. Fluid Mechan. 2013. Vol. 737. P. 19–55.
- [10] Zhuanga Y.Q., Lua X.Y. // Proced. Engineer. 2015. Vol. 126.
 P. 134–138. DOI: 10.1016/j.proeng.2015.11.195
- [11] Mahsa Mortazavi // AIAA 2017-0536. 2017. DOI: 10.2514/6.2017-0536
- [12] Mahsa Mortazavi. Doyle Knight. Numerical Simulation of Shock Wave/Laminar Boundary Layer Interaction Over a Blunt Geometry // EUCASS2017-65. 2017.
- [13] Mahsa Mortazavi, Doyle Knight. Numerical Investigation of the Effect of the Sweep Angle of a Cylindrical Blunt Fin on the Shock Wave/Laminar Boundary Layer Interaction in a Hypersonic Flow // 47th AIAA Fluid Dynamics Conference. 2017.
- [14] Lindörfer S.A., Combs C.S., Kreth P.A., Schmisseur J.D. // AIAA. Paper 2017-0534. 2017.
- [15] Borovoy V., Mosharov V., Radchenko V., Skuratov A. // 7th European Conference for Aeronautics and Space Sciences (EUCASS). 2017. Report 2017-63. P. 1–8.
- [16] Babinsky H., Harvey J.K. Shock wave/boundary-layer interactions. Cambridge: Cambridge University Press, 2011. 461 p.
- [17] Gaitonde D.V. // Prog. Aerosp. Sci. 2015. Vol. 72. P. 80-99.
- [18] Dolling D.S. // AIAA J. 2001. Vol. 39. N 8. P. 1517–1531.

- [19] Колесник Е.В., Смирнов Е.М., Смирновский А.А. // Научно-технические ведомости СПбГПУ. Физ.-мат. науки. 2019. Т. 12. № 2. С. 7–22. DOI: 10.18721/JPM.12201
- [20] Liou M.S., Steffen C.J. // J. Comput. Phys. 1993. Vol. 107. N 1. P. 23–39.
- [21] Van Leer B. // J. Comput. Phys. 1979. Vol. 32. N 1. P. 101– 136.
- [22] Harten A. // J. Comput. Phys. 1983. Vol. 49. N 3. P. 357–393.
- [23] Van Albada G.D., Van Leer B., Roberts W.W. // Astronom. Astrophys. 1982. Vol. 108. N 1. P. 76–84.
- [24] Le Touze C., Murrone A., Guillard H. // J. Comput. Phys. 2015. Vol. 284. P. 389–418.
- [25] Бахвалов П.А., Козубская Т.К. // Математическое моделирование. 2016. Т. 28. № 3. С. 79–95.
- [26] Amick J.L. Pressure measurements on sharp and blunt 50 and 150 half cone at Mach number 3.86 and angles of attack to 1000. // NASA TN D-173. 1961.