01,13

Photoconductivities of Nanocrystalline Vanadium Pentoxide Thin Film Grown by Plasma Rf Magnetron Sputtering at the Different Condition of Deposition

© M.K. Khalaf¹, N.K. Hassan², A.I. Khudiar^{1,¶}, I.K. Salman²

 ¹ Center of Applied Physics, Directorate of Materials Research, Ministry of Sciense and Technology, Baghdad, Iraq
² Dept. of Physics, College of Science, University of Tikrit, Baghdad, Iraq
[¶] E-mail: ausamaikhudiar@yahoo.com

Received: July 29, 2019 Revised: August 5, 2019 Accepted: September 3, 2019

> In this study, the fabrication and characterization of a metal-semiconductor-metal (MSM) visible photodetector based on V₂O₅ were investigated. The V₂O₅ thin film was synthesized on n-type Si (100) as substrate by plasma RF-sputtering. The photoconductivity of the nanocrystalline vanadium pentoxide (V₂O₅|Si) was investigated at the different conditions of deposition (i.e. RF-sputtering power, pressure, and substrate temperature). The photoconductivity measurement of this work was performed in the darkness and under illumination, with applied voltage from a range of 0.1–10 V and illumination intensity 9.8 mW/cm². I–V characteristics under illumination showed that the films prepared from V₂O₅ on the basis of *n*-Si have good efficiency and the best is at power 150 W, pressure 0.03 Torr, and temperature 473 K. The fabricated photoconductive detector showed the spectral response (R_{λ}) value of 0.0783 AW⁻¹, quantum efficiency 18.04%, spectral detectivity $D^* = 6.984 \cdot 10^9$ cm \cdot Hz^{1/2} \cdot W⁻¹ at wavelength 600 nm, and low spectral responsivity in the UV region.

Keywords: vanadium pentoxide, photoconductivity, physical vapour deposition, plasma RF-sputtering.