# 02

# Спектроскопические исследования изменений во вторичной структуре белков дентинной и десневой жидкостей по данным синхротронной ИК микроскопии

© П.В. Середин<sup>1</sup>, Д.Л. Голощапов<sup>1</sup>, Ю.А. Ипполитов<sup>2</sup>, Jitraporn (Pimm) Vongsvivut<sup>3</sup>

 <sup>1</sup> Воронежский государственный университет, 394036 Воронеж, Россия
 <sup>2</sup> Воронежский государственный медицинский университет им. Н.Н. Бурденко, 394036 Воронеж, Россия
 <sup>3</sup> Australian Synchrotron (Synchrotron Light Source Australia Pty LTD), VIC 3168, Australia
 e-mail: paul@phys.ysu.ru

Поступила в редакцию 14.05.2019 г. В окончательной редакции 24.07.2019 г. Принята к публикации 12.08.2019 г.

На основе данных ИК спектромикроскопии с использованием синхротронного излучения проведено исследование вторичной структуры белков дентинной и десневой жидкостей человека при развитии кариозного процесса в глубоких тканях дентина. Показано, что изменение формы профиля полосы Амид I в области 1700–1605 сm<sup>-1</sup> связано как с изменением соотношения интегральных интенсивностей вторичных структур  $\alpha$ -спираль и  $\beta$ -лист, так и положением компонент  $\beta$ -витки и  $\beta$ -лист в спектре. Установлено, что величина соотношения  $\alpha$ -спираль/ $\beta$ -лист как для дентинной, так и десневой жидкостей лежит ниже порогового уровня, при котором наблюдаются значительные изменения во вторичной структуре белков биологических жидкостей и однозначно свидетельствует о развитии патологии в твердой ткани. Обнаруженные нами особенности в профиле полосы Амид I биологических жидкостей ротовой полости совместно со спектральными маркерами развития кариозного процесса в дентине являются достоверными спектроскопическими сигнатурами патологии и могут быть детектированы с использованием десневой жидкости.

Ключевые слова: ИК микроскопия, синхротронное излучение, кариес дентина, спектроскопические сигнатуры патологических процессов.

DOI: 10.21883/OS.2019.12.48686.159-19

# Введение

Одной из значимых и все еще нерешенных проблем терапевтической стоматологии является задача эффективной персонализированной диагностики патологических процессов в тканях дентина зубов человека [1]. Современные исследования показывают, что обнаружение инфицированного, склеротичного и измененного дентина возможно лишь на поздних стадиях развития кариеса [2,3]. Несвоевременное обнаружение патологических процессов в глубоких тканях дентина зачастую ведет к утрате части или всего зуба, а также является угрозой здоровья человека в целом [4-6]. Поэтому так активно развиваются методики раннего обнаружения патологий дентина методами оптической спектроскопии, основанных на скрининге препарированных тканей зубов [7-10]. Одновременно с этим обращают на себя внимание научные работы, в которых возникновение воспалительных процессов в ротовой полости детектируется с использованием носителей маркеров патологий (воспаления) — биологических жидкостей. В случае превентивной диагностики заболеваний дентина кариозного характера идеальным кандидатом на

роль объекта скрининга может выступить дентинная жидкость, которая играет весомую роль в развитии кариеса дентина [11]. Однако трудоемкость и практическая невозможность забора дентинной жидкости *in vivo* [12] является главным препятствием развития нового направления диагностики. Иссечение тканей эмали для забора дентинной жидкости, является нецелесообразным в случае, например, фиссурного кариеса, когда речь идет об определении наличия воспалительного процесса в дентине. Поэтому скрининг развития патологий в дентине требует определения воспалительных факторов в других биологических жидкостях ротовой полости — слюне, крови и жидкости из десневой борозды [13,14].

Извлечение жидкости из десневой борозды для диагностики патологий дентина является более простой задачей, а ее молекулярный анализ, с последующим выделением маркеров развития кариозного процесса в дентине, может быть выполнен с использованием техники молекулярной идентификации [13,15–17]. Для данных задач наиболее информативным и прецизионным методом, позволяющим регистрировать изменения мо-



**Рис. 1.** ИК спектры образцов крови (1), десневой (2) и дентинной (3) жидкостей человека. Вертикальными штрихпунктирными линиями обозначен диапазон проявления характеристических особенностей альбумина и глобулинов.

лекулярного состава объектов биологической природы, является ИК спектроскопия [18-21]. С использованием метода ИК спектроскопии могут быть зарегистрированы изменения, происходящие во вторичной структуре биологических жидкостей ротовой полости, т.е. в пространственной структуре их белков, при развитии определенной патологии [22,23]. В ряде передовых работ, посвященных поиску математических алгоритмов анализа спектральных полос амидных групп, уже продемонстрированы перспективы развития этого подхода для скрининга изменений в протеоме ротовой жидкости человека при развитии заболеваний [24,25]. Привлечение для этого данных высокоразрешающей ИК спектроскопии позволило, в частности, проанализировать уровень кариесорезистентности у пациентов с множественным кариесом [26]. В рамках описанного подхода на основе расчета минерал/органического, углерод/фосфатного, амидного и иных соотношений, определенных из данных математического анализа колебательных полос в ИК спектрах, появляется возможность проанализировать изменения, происходящие в белково/органической составляющей биологических жидкостей ротовой полости, а также определить стадию развития патологии твердых тканей зубов и парадонта [21,25-27].

Следует отметить, что в литературе нет информации о сопоставлении молекулярного состава дентинной и десневой жидкостей, а также данных об изменениях, происходящих в конформационном окружении их белков, при развитии патологических изменений в тканях дентина. Поэтому целью нашей работы стал поиск изменений во вторичной структуре белков дентинной и десневой жидкостей на основе данных их спектроскопических исследований.

# Материалы и методы исследования

В исследовании приняли участие 10 человек (5 мужчин и 5 женщин) в возрасте 22–28 лет. От каждого пациента с детектированным кариесом дентинабыли взяты три образца биологических жидкостей: дентинная жидкость, жидкость из десневой борозды и кровь из десны. Забор образцов биологических жидкостей ротовой полости был выполнен с использованием специализированной вакуумной установки и разработанных нами микрокапилляров, заполненных гомогенизированным порошком КВг. После забора образцов порошок КВг из микрокапилляров, содержащих биологические жидкости, высушивался при комнатной температуре.

Исследования молекулярного состава образцов дентинной жидкости, десневой жидкости и крови из десны человека были выполнены с использованием методики ИК спектроскопии с привлечением оборудования канала Инфракрасной Микроспектроскопии (IRM) (Австралийский синхротрон, Мельбурн, Австралия), спектрометра Bruker Vertex 80V с детектором, охлаждаемым жидким азотом (Bruker Optik GmbH, , Германия) [28].

# Экспериментальные результаты и их обсуждение

Анализ полученных методом ИК спектромикроскопии данных показал, что спектры однотипных образцов внутри группы участников эксперимента содержат абсолютно один и тот же набор колебательных мод. При этом в ИК спектрах образцов внутри рассматриваемой экспериментальной группы наблюдались незначительные отличия в изменении интенсивности присутствующих колебательных полос. Поэтому в нашей работе представлены усредненные по группе участников эксперимента спектры образцов биологических жидкостей. Следует отметить, что процедура усреднения спектров по экспериментальной группе позволяет избежать случайных ошибок эксперимента и индивидуальных особенностей лиц в конкретной группе [27].

На рис. 1 приведены ИК спектры поглощения образцов крови, дентинной и десневой жидкостей пациентов в области 1725-1190 ст<sup>-1</sup>. Выделенная отдельно область амидных полос 1710-1470 ст<sup>-1</sup> указывает регион в ИК спектрах, используемый для анализа вторичной структуры белковой составляющей биологических жидкостей человека. Выбор границ данной области основан на анализе данных из работ [22-24], а также определен с учетом влияния колебаний сложного эфира  $C = O (1740 \text{ cm}^{-1})$  и ДНК/РНК структур (1725 cm<sup>-1</sup>) на форму амидных полос. Анализ полученных данных и расшифровка ИК спектров были выполнены на основе литературных источников, в которых методом FTIR исследовались образцы биологических жидкостей ротовой полости, белки и аминокислоты [24,29-37]. Список активных колебаний в ИК спектрах образцов крови, дентинной и десневой жидкостей, а также частоты этих **Таблица 1.** Активные колебания в спектрах образцов крови, дентинной и десневой жидкостей пациентов. Интенсивности колебательных полос в спектрах: + — слабая; ++ — средняя, +++ — сильная, ++++ — очень сильная

| Принадлежность к<br>молекулярной группе                    | Мода колебаний                                                                             | Частота               | Биологическая жидкость |                       |                      | Источник         |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------|------------------------|-----------------------|----------------------|------------------|
|                                                            |                                                                                            | колебаний, сm $^{-1}$ | Кровь                  | Дентинная<br>жидкость | Десневая<br>жидкость | данных           |
| Карбоновая группа<br>эфира и ДНК                           | >C=O валентные,<br>C=O валентные,<br>характеристическая<br>парно-базовая<br>компонента ДНК | 1738–1713             | _                      | +                     | ++                   | [15,27,30,32,36] |
| Белки<br>вторичной структуры                               | $\beta$ -витки и $\beta$ -листы                                                            | 1684                  | ++                     | ++                    | ++                   | [24,36,37]       |
| Белки<br>вторичной структуры                               | Амид I β-спираль                                                                           | 1663                  | ++++                   | ++++                  | ++++                 | [24,29–32,37]    |
| Белки                                                      | Амид I C=O валентные<br>и Амид II N-H<br>деформационные                                    | 1647-1642             | ++++                   | ++++                  | ++++                 | [24,29–31,38]    |
| Белки, триптофан,<br>метгемоглобин                         | Амид II, валентные CN<br>и CNH деформационные                                              | 1548-1544             | +++                    | +++                   | +++                  | [24,29–32,37]    |
| Белки<br>Амид II, гуанин                                   | νC=N, νC=C                                                                                 | 1530-1525             | +++                    | +++                   | +++                  | [24,29,32,37]    |
| Белки, каротиноиды                                         | СН деформационные;<br>νC=C; Амид II                                                        | 1514-1504             | ++                     | ++                    | ++                   | [24,30,37,38]    |
| Боковые цепи аминокислот,<br>липиды и белки                | Асимметричные деформационные CH <sub>2</sub>                                               | 1469-1455             | ++                     | +++                   | ++                   | [24,29,30,32,37] |
| Фибриноген, боковые<br>цепи аминокислот,<br>липиды и белки | Симметричные CH <sub>3</sub><br>деформационные, COO<br>валентные                           | 1412-1396             | ++                     | ++                    | ++                   | [24,29,30,32,37] |
| Белки                                                      | Амид III С-N валентные                                                                     | 1312-1310             | +                      | ++                    | +                    | [24,29,37]       |
| Фосфодиэфирные<br>группы в ДНК, белки                      | Р=О of РО <sub>2</sub> - валентные,<br>Амид III Асимметричные<br>С-N валентные             | 1250-1240             | +                      | +++                   | ++                   | [24,29–31,37]    |

колебательных мод и их принадлежность к конкретной молекулярной группе представлены в табл. 1.

Из полученных нами экспериментальных данных (рис. 1, табл. 1) следует, что среди группы колебательных полос белков в ИК спектрах образцов крови, дентинной и десневой жидкостей могут быть выделены полосы вторичных амидов: Амид I (валентные колебания C=O в области 1725–1590 cm<sup>-1</sup>), Амид II (N–H-деформационные и C–N- валентные колебания в области 1590–1500 cm<sup>-1</sup>) и Амид III (C–N-деформационные, N–H-деформационные в области 1350–1190 cm<sup>-1</sup>), а также колебания CH<sub>2</sub>/CH<sub>3</sub>-групп, расположенные в области 1480–1350 cm<sup>-1</sup> [38].

Отметим, что применение высококогерентного синхротронного излучения позволяет разрешить спектральные особенности амидных полос с большей точностью [28,37,39]. Поэтому в наших экспериментальных спектрах, например в спектре крови (рис. 1, кривая *I*), можно наблюдать ряд особенностей у колебаний Амид I и Амид II, которые относятся к компонентам белковой фракции крови: альбумину и глобулинам [22,29,30,40]. Эти особенности, наблюдаемые как ряд дополнительных плеч у основных интенсивных колебательных мод, обозначены на рис. 1 вертикальными пунктирными линиями. Полученные нами данные о различном спектральном положении колебательных полос альбумина и глобулина находятся в согласии с результатами работ [32,40].

### Анализ вторичной структуры белков

Как показывает анализ публикаций последних лет, изучение белковых структур с использованием ИК спектроскопии и последующий математический ана-



**Рис. 2.** (a) — модельный и экспериментальный ИК спектры в области 1710–1480 сm<sup>-1</sup>, с гауссовыми компонентами, для образца крови, полученной из десны зуба с диагностированным кариесом дентина, (b) — вторая производная экспериментального ИК спектра, (c) — четвертая производная экспериментального ИК спектра.

лиз спектрального профиля амидных полос (Амид I, Амид II и Амид III), позволяет установить зависимость интенсивности компонент вторичной структуры белков от их пространственной структуры [41]. Поэтому область 1750-1300 сm<sup>-1</sup> в экспериментальных ИК спектрах биологических жидкостей ротовой полости (рис. 1, кривые 1, 2, 3) является предметом тщательного изучения [32,40]. Наличие или отсутствие ферментов, липидов, факторов воспаления и других структур в биологических жидкостях влияет на вторичную структуру их белков и, в свою очередь, отражается на профиле амидных полос в ИК спектрах [42]. Поэтому изменение в конформации белка (пространственной конфигурации белковой молекулы), регистрируемое методом ИК спектромикроскопии, может быть связано с конкретным типом воспалительного процесса [39], что весьма ценно для ранней диагностики широкого ряда заболеваний человека [22,41,43-45].

Как уже было отмечено ранее, изменения в молекулярном составе биологических жидкостей, в частности во вторичной структуре их белков, наиболее явным образом находят свое отражение в ИК спектрах в виде особенностей в формы колебательных полос, относимых к Амид I и Амид II [40]. Поэтому в нашей работе для определения изменений во вторичной структуре белков образцов крови, дентинной и десневой жидкостей, взятых у пациентов с патологией глубоких тканей дентина кариозного характера, полосы Амид I и Амид II были разложены на компоненты с использованием гауссовых кривых. Пример такого разложения для образца крови представлен на рис. 2, а. При этом для выделения компонент в экспериментальном профиле использовались математические алгоритмы определения экстремумов с использованием второй и четвертой производной (рис. 2, b, c). Результаты моделирования, число компонент в модельном спектре и обнаруженные спектральные особенности сопоставлялись с данными из известных работ по анализу вторичной структуры белков сыворотки крови и десневой жидкости [23,32,41].

Важно отметить, что для анализа вторичной структуры белков мы детально рассмотрели только область  $1605-1710 \,\mathrm{cm^{-1}}$  полосы Амид I, поскольку входящие в нее связи C=O и C-N являются наиболее чувствительными к локальным изменениям, происходящим

| Ν                            | Компоненты вторицной                          | Би     | юлогическая жи       |                       |                 |
|------------------------------|-----------------------------------------------|--------|----------------------|-----------------------|-----------------|
|                              | структуры полосы Амид І                       | Кровь  | Десневая<br>жидкость | Дентинная<br>жидкость | Источник данных |
| $I(A_I)$                     | Аминокислотная боковая цепь                   | 1607.4 | 1610.1               | 1608.0                | [35,38,41–43]   |
| II $(A_{II})$                | Аминокислотная боковая цепь                   | 1618.1 | 1618.1               | 1618.1                | [22,35,42,43]   |
| III $(\beta_{\rm III})$      | $\beta$ -складчатый слой                      | 1629.6 | 1629.6               | 1627.7                | [39,41,43]      |
| IV $(\beta_{\rm IV})$        | $\beta$ -складчатый слой                      | 1641.3 | 1639.1               | 1637.4                | [38,41–43]      |
| $V\left(R_V ight)$           | Неупорядоченная структура                     | 1648.7 | 1648.3               | 1648.9                | [38,41–43]      |
| VI $(\alpha_{\rm VI})$       | $\alpha$ -спираль                             | 1658.9 | 1658.1               | 1658.6                | [38,41–43]      |
| $VII\ (T_{VII})$             | eta-виток                                     | 1672.1 | 1668.5               | 1668.5                | [38,41–43]      |
| VIII $(\beta_{\text{VIII}})$ | $\beta$ -лист антипаралельный $+\beta$ -виток | 1681.7 | 1681.7               | 1681.7                | [22,35,42,43]   |
| IX $(\beta_{IX})$            | $\beta$ -лист антипаралельный                 | 1693.3 | 1693.3               | 1695.2                | [22,35,42,43]   |

Таблица 2. Компоненты вторичной структуры белков в полосе Амид I и их частоты колебаний (ст<sup>-1</sup>) для образцов сыворотки крови, десневой и дентинной жидкостей человека

в молекулярном составе и окружении биологических жидкостей человека. При этом в начальном приближении для построения модельных спектров биологических жидкостей ротовой полости принимались во внимание известные соотношения между компонентами вторичной структуры белка [22,42,44,46]. Разложение спектров на компоненты производилось по предложенной и опробованной в ряде работ методике [22,24,44] с учетом накладываемых ограничений и критических замечаний, касающихся вычисления количества максимумов в спектре, проведения фоновой линии и определения сходимости результата разложения [23]. Выработанный алгоритм математической обработки спектральных данных позволил найти необходимый критерий сходимости и воспроизводимости результатов моделирования, а также обеспечил однозначность разложения полосы Амид I у исследуемых образцов.

Следует отметить, что при анализе вторичной структуры белков и изменений в ней существует необходимость рассмотрения полного профиля ИК полосы Амид I [24]. Это обусловлено тем фактом, что при разложении лишь части профиля ИК полосы соотношение интенсивностей мод колебаний, относимых к компонентам  $\alpha$ -спираль и  $\beta$ -лист в структуре вторичных белков, может быть двукратно искажено [23]. В сложных случаях для корректных расчетов учет слабых спектральных особенностей возможен только при полнопрофильном анализе полосы [23,24]. Поэтому для изучаемых биологических жидкостей мы провели полнопрофильный анализ полосы Амид I с учетом полосы Амид II (рис. 2, a).

Обратим внимание на тот факт, что диапазон 1660—1649 сm<sup>-1</sup> является сложным для моделирования и часто соответствует перекрытию нескольких полос  $\alpha$ -спирали во вторичной структуре белков. Так, в работе [23] было показано, что при моделировании данной

области без разделения  $\alpha$ -спирали на компоненты достичь в модельных кривых однозначного соответствия между моделью и экспериментальным спектром не удается. Поэтому в нашем расчете  $\alpha$ -спираль приводится как сумма двух высокоинтенсивных максимумов.

Анализируя полученные результаты моделирования, следует отметить следующие обнаруженные важные особенности. Тонкая структура полосы Амид I крови человека определяется в основном смешением альбуминовой (основной компоненты в составе) и глобулиновой фракции [22,40,45]. Как было показано в работе [42], при смешивании альбумина с ДНК и РНК происходит сдвиг полос вторичной структуры белков, поэтому в табл. 2 мы привели интервалы частот, где наблюдаются характеристические компоненты полосы Амид I, полученные в ходе обработки экспериментальных данных изучаемых биологических жидкостей.

Что же касается возможных частотных сдвигов в положении компонент вторичной структуры, относимых к  $\beta$ -виток и  $\beta$ -лист, то необходимо отметить, что данные компоненты слабо разрешимы, их форма и вид в каждом отельном случае зависят от многих факторов. Поэтому при проведении разложения экспериментального спектра согласно рекомендациям из [23] мы опирались не только на условие сходимости модельной и экспериментальной кривой (рис. 3, *a*, *b*, *c*) и их производных (рис. 3, *f*, *e*, *d*), но также, как указывается в ряде работ [24,41–43], на наименьшее количество максимумов, с использованием которых, в пределах ошибки, можно провести моделирование.

Нужно сказать, что представленные на рис. 3, *f*, *e*, *d* графики производных экспериментальных и модельных кривых демонстрируют удовлетворительное соответствие в пределах точности эксперимента. Наибольшая разница между кривыми наблюдается на краях рассмат-

d а Absorbance, arb. units  $d^2A/d^2v$ , arb. units 1659.5 1695 1672.1  $\beta_{III}$ 1639.7 Absorbance, arb. units  $d^2A/d^2v$ , arb. units 1658.5  $R_{\rm V}$ T<sub>VII</sub>  $\beta_{III}$ 1639 3 1694  $A_{II}$ β, 1668 5 Absorbance, arb. units  $d^2A/d^2v$ , arb. units  $R_{\chi}$  $\beta_{VIII}$ 1695.5 1637.3 1668.5 1700 1700 1680 1660 1640 1620 1680 1660 1640 1620 Wavenumber, cm<sup>-1</sup> Wavenumber, cm<sup>-1</sup>

**Рис. 3.** Экспериментальная (точки) и модельная (красная кривая) полоса Амид I, ее гауссовы компоненты (слева, a-c), вторая производная экспериментальной (черные линии) и модельной (красные линии) полосы Амид I (справа, d-f) в спектрах образцов — крови из десны человека (a, d), жидкости из десневой борозды (b, e), дентинной жидкости (c, f).

риваемой области: 1700 и 1610 сm<sup>-1</sup>. Этот факт объясняется выбором для моделирования гауссовой функции, а также нелинейностью фона и статистическими особенностями экспериментального спектра.

# Анализ и обсуждение полученных результатов

Результаты разложения полосы Амид I на компоненты для образцов крови, дентинной и десневой жидкостей (рис. 3, *a*, *b*, *c* и табл. 2) показывают, что положение основных компонент вторичной структуры белков в этих образцах практически не изменяется. Данный факт обусловлен тем, что дентинная и десневая жидкости являются производными плазмы крови и схожи с ней по составу глобулярных белков. Единственное значимое смещение во вторичной структуре белков обнаруживается для компоненты  $\beta_{IV}$ -складчатый слой, которая в спектре дентинной жидкости сдвинута на 4 сm<sup>-1</sup> в низкочастотную сторону относительно положения этой компоненты в ИК спектре образцов крови (табл. 2). Также смещение наблюдается и для компоненты  $\beta_{\text{VIII}}$ витки, которая в спектре дентинной жидкости расположена около 1668.5 сm<sup>-1</sup>, а в спектре образцов крови локализована около 1672.1 сm<sup>-1</sup>. Результаты, представленные в табл. 2, показывают, что аналогичную тенденцию частотного сдвига компонент  $\beta$ -витки и  $\beta$ -лист можно обнаружить и у образцов десневой жидкости, относительно образца крови.

Как следует из работы [42], подобные сдвиги положения компонент вторичной структуры белка, например альбумина сыворотки крови человека (одной из составляющих всех исследуемых жидкостей), могут наблюдаться в присутствии определенных ферментов. Принимая во внимание данный факт, необходимо отметить, что в спектрах дентинной и десневой жидкостей присутствуют моды сложного эфира, локализованные в области 1738 сm<sup>-1</sup>, что свидетельствует о кариесогенной патологии [27]. Поэтому частотный сдвиг компонент вторичной структуры  $\beta$ -витки и  $\beta$ -лист в спектре дентинной и десневой жидкостей может быть связан с изменением их молекулярного состава при развитии кариеса дентина.

Детальное рассмотрение полосы Амид I всех образцов (рис. 3, a, b, c) показывает, что основные изменения формы профиля обусловлены перераспределением интенсивностей компонент вторичной структуры белков  $\alpha$ -спираль, случайная спираль,  $\beta$ -витки и  $\beta$ -складчатый слой. Несмотря на достаточно большое процентное содержание неупорядоченных структур — R<sub>V</sub>, положение компоненты α-спираль в спектрах образцов биологических жидкостей практически не изменятся  $(\sim 1658\,{\rm cm^{-1}},$  табл. 2), что отражает близость состава всех рассматриваемых жидкостей. С другой стороны, количественное содержание компонент белковой фракции в биологических жидкостях может различаться ввиду взаимодействия десневой и дентинной жидкостей с пораженными кариесом твердыми тканями зуба. Поэтому интенсивность компоненты α-спираль по отношению к другим компонентам в полосе Amid I может изменяться (рис. 3, *a*, *b*, *c*).

Анализ данных математического моделирования показывает, что при развитии патологий дентина кариозного характера в образцах крови, десневой и дентинной жидкостях процентное содержание компоненты  $\alpha$ -спираль ( $\alpha_{\%}$ ) во вторичной структуре белка не изменяется. Величина  $\alpha_{\%}$  лежит в пределах 28% (кровь)–31% (десневая жидкость)– 32% (дентинная жидкость), что значительно ниже той, которая наблюдается в норме для белка сыворотки крови (HSA) и должна быть в пределах 50–60% [44,47,48]. Данный факт является весомым индикатором изменений во вторичной структуре белка, сигнализируя о конформационных трансформациях, происходящих в органической составляющей биологических жидкостей пациентов при развитии кариеса дентина.

В то же время расчет важного для белков соотношения α-спираль/β-лист показал, что наибольшие изменения во вторичной структуре наблюдаются в дентинной жидкости. В самом деле, соотношение  $\alpha$ -спираль/ $\beta$ -лист, как это было показано Jitto Titus и соавторами [22], является статистически значимым маркером развития воспалительных процессов. В работе [44] на примере альбумина сыворотки крови человека было доказано, что возникновение внутримолекулярных структур βлист, связано с агрегацией белковых молекул, что, в свою очередь, отрицательно сказывается на функционировании белка. Математическая оценка спектральных данных для образцов сыворотки крови, проведенная в работе [22], показала, что в результате скрининга воспалительных процессов при развитии артрита соотношение  $\alpha$ -спираль/ $\beta$ -лист для вторичной структуры белка

должно принимать значения ниже уровня 3.9. Полученные нами результаты показывают, что коэффициент  $\alpha$ -спираль/ $\beta$ -лист для образца крови принимает значение  $\alpha_{VI}/\beta_{IV} = 1.5$ , для десневой жидкости  $\alpha_{VI}/\beta_{IV} = 1.32$  и для дентинной жидкости  $\alpha_{VI}/IV = 1.35$ , что значительно ниже порогового уровня. Для дентинной жидкости это соотношение принимает самое низкое значение, что связано со значительными изменениями в ее вторичной структуре из-за ее непосредственного контакта с тканью дентина.

Полученные в нашей работе результаты свидетельствуют о том, что развитие патологических процессов кариозного характера в дентине находит свое отражение в составе биологических жидкостей ротовой полости. Определенные изменения во вторичной структуре белка биологических жидкостей являются достоверными спектроскопическими сигнатурами патологии и могут быть легко детектированы без трудоемкого и нецелесообразного извлечения дентинной жидкости, поскольку одновременно присутствуют и в десневой жидкости, забор которой для скрининга не представляет собой столь сложной задачи.

# Заключение

На основе данных математического моделирования полосы Амид I и выделения в ней компонент вторичной структуры белков в образцах крови, десневой и дентинной жидкостей в работе установлено, что развитие патологических процессов кариозного характера в тканях дентина влияет на молекулярный состав биологических жидкостей ротовой полости человека, контактирующих с твердой тканью зуба. Изменение формы экспериментального профиля полосы Амид I связано с перераспределением интегральных интенсивностей компонент  $\alpha$ -спираль и  $\beta$ -лист вторичной структуры белка, а также частотным сдвигом компонент  $\beta$ -витки и  $\beta$ -лист.

Впервые показано, что во вторичной структуре белков образцов крови, десневой и дентинной жидкости не изменяется процентное содержание компоненты  $\alpha$ -спираль. Установлено, что  $\alpha$ -спираль/ $\beta$ -лист соотношение, рассчитанное из анализа вторичной структуры белков дентинной и десневой жидкостей, лежит ниже порогового уровня, при котором характерны значительные изменения во вторичной структуре белков биологических жидкостей человека, что в свою очередь однозначно свидетельствует о развитии патологии в тканях дентина.

Обнаруженные нами особенности в профиле колебательной полосы Амид I биологических жидкостей ротовой полости, совместно с обнаруженными спектральными маркерами развития кариозного процесса в дентине являются достоверными спектроскопическими сигнатурами патологии и могут быть легко детектированы на основе анализа только десневой жидкости.

#### Благодарности

The part of this research was undertaken with The Infrared Microspectroscopy (IRM) beamline at the Australian Synchrotron.

# Финансирование

Исследование выполнено за счет гранта Российского научного фонда (проект № 16-15-00003).

#### Соблюдение этических стандартов

Все процедуры, выполненные в исследовании с участием людей, соответствуют этическим стандартам Хельсинкской декларации 1964 года и ее последующим изменениям или сопоставимым нормам этики. От каждого из включенных в исследование участников было получено информированное добровольное согласие.

### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов

# Список литературы

- Liu Y, Yao X, Liu Y.W, Wang Y. // Caries Res. 2014. V. 48. N 4. P. 320. doi 10.1159/000356868
- [2] Ribeiro Figueiredo A.C., Kurachi C., Bagnato V.S. // Caries Res. 2005. V. 39. N 5. P. 393. doi 10.1159/000086846
- [3] Almahdy A., Downey F.C., Sauro S., Cook R.J., Sherriff M., Richards D., Watson T.F., Banerjee A., Festy F. // Caries Research. 2012. V. 46. N 5. P. 432. doi 10.1159/000339487
- [4] Rôças I.N., Alves F.R.F., Rachid C.T.C.C., Lima K.C., Assunção I.V., Gomes P.N., Siqueira J.F. // PLoS One. 2016.
   V. 11. N 5. doi 10.1371/journal.pone.0154653
- [5] Tanner A.C., Kressirer C., Faller L., Lake K., Dewhirst F., Kokarash A., Paster B., Frias-Lopez J. // J. Oral Microbiology. 2017. V. 9. N supl. 1. P. 1325194. doi 10.1080/20002297.2017.1325194
- [6] Slimani A., Nouioua F., Panayotov I., Giraudeau N., Chiaki K., Shinji Y., Cloitre T., Levallois B., Gergely C., Cuisinier F., Tassery H. // International J. Experimental Dental Science. 2016. V. 5. N 1. P. 1. doi 10.5005/jp-journals-10029-1115
- Salehi H., Terrer E., Panayotov I., Levallois B., Jacquot B., Tassery H., Cuisinier F. // J. Biophotonics. 2012. V. 6. N 10.
   P. 1. doi 10.1002/jbio.201200095
- [8] Seredin P., Goloshchapov D., Prutskij T., Ippolitov Y. // PLoS ONE. 2015. V. 10. N 4. P. 1. doi 10.1371/journal.pone.0124008
- [9] Seredin P.V., Goloshchapov D.L., Prutskij T., Ippolitov Yu.A. // Opt. Spectrosc. 2018. V. 125. N 5. P. 803. doi 10.1134/S0030400X18110267
- [10] Chen Q.G., Zhu H.H., Xu Y., Lin B., Chen H. // Laser Physics. 2015. V. 25. N 8. P. 085601. doi 10.1088/1054-660X/25/8/085601
- [11] Love R.M., Jenkinson H.F. // Critical Reviews in Oral Biology & Medicine. 2002. V. 13. N 2. P. 171. doi 10.1177/154411130201300207

- [12] Geraldeli S., Li Y., Hogan M.M.B., Tjaderhane L.S., Pashley D.H., Morgan T.A., Zimmerman M.B., Brogden K.A. // Arch. Oral Biol. 2012. V. 57. N 3. P. 264. doi 10.1016/j.archoralbio.2011.08.012
- Barros S.P., Williams R., Offenbacher S., Morelli T. // Periodontol. 2000. 2016. V. 70. N 1. P. 53. doi 10.1111/prd.12107
- [14] Gao X., Jiang S., Koh D., Hsu C.-Y.S. // Periodontol. 2000.
   2016. V. 70. N 1. P. 128. doi 10.1111/prd.12100
- [15] Xiang X.M., Liu K.Z., Man A., Ghiabi E., Cholakis A., Scott D.A. // J. Periodontal Research. 2010. V. 45. N 3. P. 345. doi 10.1111/j.1600-0765.2009.01243.x
- [16] *Gupta G.* // J. Med Life. 2013. V. 6. N 1. P. 7–13. PMID: 23599812
- [17] Carneiro L.G., Nouh H., Salih E. // J. Clinical Periodontology. 2014. V. 41. N 8. P. 733. doi 10.1111/jcpe.12262
- [18] Shaw R.A., Mantsch H.H. Infrared Spectroscopy in Clinical and Diagnostic Analysis // Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd, 2006. P. 20.
- [19] Xiang X., Duarte P.M., Lima J.A., Santos V.R., Gonçalves T.D., Miranda T.S., Liu K.-Z. // J. Periodontology. 2013.
   V. 84. N 12. P. 1792. doi 10.1902/jop.2013.120665
- [20] Avraamova O.G., Ippolitov Y.A., Plotnikova Y.A., Seredin P.V., Goloshapov D.V., Aloshina E.O. // Stomatologiia (Mosk).
   2017. V. 96. N 2. P. 6–11. PMID: 28514339
- [21] Seredin P., Goloshchapov D., Kashkarov V., Ippolitov Y., Bambery K. // Results in Physics. 2016. V. 6. P. 315. doi 10.1016/j.rinp.2016.06.005
- [22] Titus J., Ghimire H., Viennois E., Merlin D., Perera A.G.U. // J. Biophotonics. 2018. V. 11. N 3. P. e201700057. doi 10.1002/jbio.201700057
- [23] Baldassarre M., Li C., Eremina N., Goormaghtigh E., Barth A., Baldassarre M., Li C., Eremina N., Goormaghtigh E., Barth A. // Molecules. 2015. V. 20. N 7. P. 12599. doi 10.3390/molecules200712599
- [24] Júnior C., Cesar P., Strixino J.F., Raniero L., Júnior C., Cesar P., Strixino J.F., Raniero L. // Research on Biomedical Engineering. 2015. V. 31. N 2. P. 116. doi 10.1590/2446-4740.0664
- [25] Elangovan S., Margolis H.C., Oppenheim F.G., Beniash E. // Langmuir. 2007. V. 23. N 22. P. 11200. doi 10.1021/la7013978
- [26] Fujii S., Sato S., Fukuda K., Okinaga T., Ariyoshi W., Usui M., Nakashima K., Nishihara T., Takenaka S. // Anal Sci. 2016. V. 32. N 2. P. 225. doi 10.2116/analsci.32.225
- [27] Seredin P., Goloshchapov D., Ippolitov Y., Vongsvivut P. // EPMA Journal. 2018. V. 9. N 2. P. 195. doi 10.1007/s13167-018-0135-9
- [28] Vongsvivut J., Pérez-Guaita D., Wood B.R., Heraud P., Khambatta K., Hartnell D., Hackett M.J., Tobin M.J. // Analyst. 2019. doi 10.1039/c8an01543k
- [29] Makhnii T., Ilchenko O., Reynt A., Pilgun Y., Kutsyk A., Krasnenkov D., Ivasyuk M., Kukharskyy V. // Ukrainian J. Physics. 2016. V. 61. N 10. P. 853. doi 10.15407/ujpe61.10.0853
- [30] Lopes J., Correia M., Martins I., Henriques A.G., Delgadillo I., da Cruz e Silva O., Nunes A. // J. Alzheimer?s Disease. 2016. V. 52. N 3. P. 801. doi 10.3233/JAD-151163
- [31] Orphanou C.-M. // Forensic Science International. 2015.
   V. 252. P. e10. doi 10.1016/j.forsciint.2015.04.020
- [32] Matthäus C., Bird B., Miljković M., Chernenko T., Romeo M., Diem M. // Methods Cell Biol. 2008. V. 89. P. 275. doi 10.1016/S0091-679X(08)00610-9

925

- [33] Badea I., Crisan M., Fetea F., Socaciu C. // Romanian Biotechnological Letters. 2014. V. 19. N 6. P. 9817.
- [34] Workman J, Weyer L. Practical guide and spectral atlas for interpretive near-infrared spectroscopy. 2nd Edition. CRC Press, 2012. 209 p.
- [35] Barth A. // Biochimica et Biophysica Acta (BBA) —
   Bioenergetics. 2007. V. 1767. N 9. P. 1073. doi 10.1016/j.bbabio.2007.06.004
- [36] *Elkins K.M.* // J. Forensic Sciences. 2011. V. 56. N 6. P. 1580. doi 10.1111/j.1556-4029.2011.01870.x
- [37] Seredin P.V., Goloshchapov D.L., Ippolitov Y.A., Kalivradzhiyan E.S. // Russian Open Medical J. 2018. V. 7. N 1. P. e0106. doi 10.15275/rusomj.2018.0106
- [38] Kong J., Yu S. // Acta Biochim. Biophys. Sin. (Shanghai).
   2007. V. 39. N 8. P. 549–559. PMID: 17687489
- [39] Hoffner G., André W., Sandt C., Djian P. // Reviews in Analytical Chemistry. 2014. V. 33. N 4. doi 10.1515/revac-2014-0016
- [40] Guaita D.P., Ventura-Gayete J., Rambla C.P., Andreu M.S., de la Guardia M., Mateo S.G. // Analytical and Bioanalytical Chemistry. 2012. V. 404. N 3. P. 649. doi 10.1007/s00216-012-6030-7N
- [41] Stuart B.H. Infrared Spectroscopy of Biological Applications // Encyclopedia of Analytical Chemistry. American Cancer Society, 2006. P. 31.
- [42] Tajmir-Riahi H.A., N'soukpoé-Kossi C.N., Joly D. // Spectroscopy. 2009. V. 23. N 2. P. 81. doi 10.3233/SPE-2009-0371
- [43] Yang H., Yang S., Kong J., Dong A., Yu S. // Nature Protocols. 2015. V. 10. N 3. P. 382. doi 10.1038/nprot.2015.024
- [44] Huang Y.-T., Liao H.-F., Wang S.-L., Lin S.-Y. // AIMS Biophysics 2016. V. 3. P. 247. doi 10.3934/biophy.2016.2.247
- [45] Depciuch J, Sowa-Kućma M., Nowak G., Dudek D., Siwek M., Styczeń K., Parlińska-Wojtan M. // J. Pharmaceutical and Biomedical Analysis. 2016. V. 131. P. 287. doi 10.1016/j.jpba.2016.08.037
- [46] Petibois C., Gionnet K., Gonçalves M., Perromat A., Moenner M., Déléris G. // Analyst. 2006. V. 131. N 5. P. 640. doi 10.1039/B518076G
- [47] Guo H., Huang F., Li Y., Fang T., Zhu S., Chen Z. // Analytical Letters. 2016. V. 49. N 18. P. 2964. doi 10.1080/00032719.2016.1166507
- [48] de Cássia Fernandes Borges R., Navarro R.S., Giana H.E., Tavares F.G., Fernandes A.B., Silveira L., Jr. // Research on Biomedical Engineering. 2015. V. 31. N 2. P. 160. doi 10.1590/2446-4740.0593