02

Строение и колебательные спектры димерного комплексного фторида галлия (III) с катионом тетраметиламмония

© Е.И. Войт, Р.Л. Давидович, А.А. Удовенко, В.Б. Логвинова

Институт химии Дальневосточного отделения РАН, 690022 Владивосток, Россия e-mail: evoit@ich.dvo.ru

Поступила в редакцию 29.11.2018 г. В окончательной редакции 13.06.2019 г. Принята к публикации 20.06.2019 г.

Определена кристаллическая структура димерного комплексного фторида галлия(III) $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$, составленная из тетраэдрических катионов $[N(CH_3)_4]^+$ и димерных комплексных анионов $[Ga_2F_8(H_2O)_2]^{2-}$, образованных объединением двух слегка искаженных октаэдрических групп $GaF_5(H_2O)$ общим ребром F–F. Водородными связями O–H····F димерные комплексные анионы $[Ga_2F_8(H_2O)_2]^{2-}$ объединяются в полимерные цепи, между которыми расположены катионы тетраметиламмония. На основании квантово-химических расчетов выполнено отнесение полос в колебательных спектрах синтезированного соединения. В спектрах идентифицированы полосы, относящиеся к участвующим в водородных связях колебаниям молекул H₂O, аниона и катиона.

Ключевые слова: галлий(III), комплексный фторид, кристаллическая структура, тетраметиламмоний, димер, колебательная спектроскопия.

DOI: 10.21883/OS.2019.12.48683.351-18

Комплексные фториды металлов с катионом тетраметиламмония (ТМА) проявляют сегнетоактивность [1], претерпевают фазовые переходы [2] и перспективны в качестве функциональных материалов. Сведения о комплексных фторидах Ga(III) с катионом ТМА ограничены. Bukovec и Šiftar [3], исследуя систему GaF₃-N(CH₃)₄F-HF-H₂O методом мольных отношений компонентов, установили, что при отношении $GaF_3:N(CH_3)_4F$, равном 1:3, из раствора осаждается чистая твердая фаза, которая по результатам химического анализа соответствует формуле [N(CH₃)₄]GaF₄ · H₂O. Соединение охарактеризовано межплоскостными расстояниями порошковой рентгенограммы, частотами ИК спектра, а также температурами дегидратации и термического разложения. Сведения о кристаллической структуре $[N(CH_3)_4]GaF_4 \cdot H_2O$ в литературе отсутствовали.

В продолжение проводимых систематических исследований комплексных фторидов индия(III) и галлия(III) [4,5] и с целью выявления новых структурных мотивов в этом классе соединений исследована кристаллическая структура $[N(CH_3)_4]GaF_4 \cdot H_2O$ в сочетании с детальным анализом колебательных спектров соединения.

Экспериментальная часть

Синтез

Соединение $[N(CH_3)_4]GaF_4 \cdot H_2O$ синтезировано препаративным методом путем взаимодействия гидрата окиси тетраметиламмония (25%-раствор) и $GaF_3 \cdot 3H_2O$ в водном растворе HF в интервале мольных отношений компонентов 2-4:1 с последующим изотермическим испарением раствора при комнатной температуре. Образовавшийся через несколько дней кристаллический осадок отделяли от маточного раствора фильтрованием под вакуумом, промывали небольшим количеством охлажденной воды и сушили на воздухе. Индивидуальность полученного соединения контролировали методами рентгенофазового анализа и ИК спектроскопии.

Рентгеноструктурное исследование

Рентгеновский эксперимент соединения выполнен на дифрактометре Bruker КАРРА АРЕХ II (Мо K_{α} -излучение, графитовый монохроматор). Сбор и редактирование данных, уточнение параметров элементарной ячейки проведены по программам SMART и SAINT Plus [6].

Структура исследованного соединения определена прямым методом и уточнена методом МНК по F^2 в анизотропном приближении для неводородоподобных атомов по программе SHELXTL/PC [7]. Атомы водорода определены из разностной электронной плотности и уточнены в изотропном приближении. Основные кристаллографические данные приведены в табл. 1. СІГ-файл, содержащий полную информацию по исследованной структуре, был депонирован в ССDС под номером 1880819, откуда может быть свободно получен по запросу на интернет-сайте: www.ccdc.cam.ac.uk/data_request/cif.

Параметр	Значение
Формула	$C_8H_{28}F_8Ga_2N_2O_2$
Молекулярная масса	475.76
Температура, К	296(2)
Излучение (λ, \mathbf{A})	MoK_{α} (0.71073)
Сингония, пр. гр.	Триклинная, <i>Р</i> 1
<i>a</i> , <i>b</i> , <i>c</i> , Å	6.9232(1), 8.1853(2), 9.0931(2)
α, β, γ , degrees	64.926(1), 82.866(1), 73.176(1)
V, Å ³ ; Z	446.75(2); 1
ρ (выч.), g/cm ³	1.768
μ , mm ⁻¹	3.095
F(000)	240
Размер кристалла, mm	0.180 imes 0.180 imes 0.130
Область сбора данных по θ , degrees	2.473-39.387
Интервалы индексов	$-11 \le h \le 12, -14 \le k \le 14, -16 \le l \le 16$
Измер./независ. отражений	18756/5282 [R(int) = 0.0221]
Отражений с $I > 2\sigma(I)$	5282
Число переменных уточнения	157
GOOF	1.006
R -фактор по $F^2 > 2\sigma(F^2)$	$R_1 = 0.0228, wR_2 = 0.0544$
<i>R</i> -фактор по всем отражениям	$R_1 = 0.0316, wR_2 = 0.0572$
Коэффициент экстинкции	0.062(3)
$\Delta \rho(\min)/\Delta \rho(\max), e/Å^3$	-0.356/0.393
CCDC №	1880819

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структуры [N(CH₃)₄]₂Ga₂F₈(H₂O)₂

Колебательная спектроскопия

Инфракрасные спектры зарегистрированы на спектрометре Shimadzu IR Affinity-1 в диапазоне 400–4000 сm⁻¹ с разрешением 4 сm⁻¹ на окне KRS-5 с образцов, приготовленных в виде суспензии в вазелиновом и перфторированном маслах. Спектры комбинационного рассеяния (KP) кристаллических образцов записаны с разрешением 2 сm⁻¹ на Bruker RFS100/S-спектрометре.

Квантово-химические расчеты проведены с применением программного комплекса Gamess [8]. Рассчитаны равновесная геометрия и частоты нормальных колебаний в гармоническом и ангармоническом (метод VSCF) приближениях. Вычисления выполнены на уровне теории функционала локальной плотности в сочетании с гибридным обменно-корреляционным потенциалом PBE0 [9,10], хорошо зарекомендовавшим себя при описании водородных связей. Использованы электронно-коррелированные базисные наборы Даннинга: для Ga(III) (aug-cc-pVDZ-pp с остовным потенциалом), для атома H (d-aug-cc-pVDZ), для атомов F и O (aug-cc-pVDZ). Результаты получены с использованием оборудования ЦКП "Дальневосточный вычислительный ресурс"] ИАПУ ДВО РАН (https://cc.dvo.ru).

Результаты и их обсуждение

В исследованном интервале мольных отношений компонентов $TMAOH: GaF_3 \cdot 3H_2O$ 2-4:1 кристаллизуется одно соединение состава $[N(CH_3)_4]GaF_4 \cdot H_2O$.

Рентгенографическим исследованием установлено, что соединению $[N(CH_3)_4]GaF_4 \cdot H_2O$ соответствует состав $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$. Соединение $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$ кристаллизуется в триклинной сингонии, пр. гр. $P\bar{1}$.

Структура $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$ составлена из тетраэдрических катионов $[N(CH_3)_4]^+$ и димерных комплексных анионов $[Ga_2F_8(H_2O)_2]^{2-}$ (рис. 1, *a*), образованных объединением двух слегка искаженных октаэдрических групп GaF₅(H₂O) общим ребром F–F (рис. 1, *b*). В октаэдрических группах GaF₅(H₂O), образующих димерный комплекс, длины концевых связей Ga–F равны 1.808(1)–1.865(1) Å. Мостиковые связи Ga–F несколько длиннее и составляют 1.960(1) Å и 1.981(1) Å. Координированная молекула H₂O удалена от атома Ga на расстояние 2.022(1) Å. В димерном комплексном анионе $[Ga_2F_8(H_2O)_2]^{2-}$ координированные молекулы H₂O занимают антиположения. Расстояние Ga(1)–Ga(1) в димерном комплексном анионе составляет 3.081(2) Å.

молекула H₂O образует две Координированная водородные связи: одну внутримолекулярную $O-H(13)\cdots F(3)$ с расстоянием 2.659(1) Å и вторую межмолекулярную $O-H(14)\cdots F(2)$ 2.568(1) Å, объединяющую димерные комплексные анионы $[Ga_2F_8(H_2O)_2]^{2-}$ в полимерную цепь вдоль оси *а* (рис. 1, *b*).

Катионы $[N(CH_3)_4]^+$ имеют строение, близкое к правильному тетраэдру. Длины связей N–C составляют 1.491(1)–1.494(1) Å, а углы CNC изменяются от 109.18(9)° до 109.88(9)°. Атомы углерода тетраметил-

Рис. 1. Фрагменты кристаллической структуры $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$ (*a*) и объединение комплексных анионов $[Ga_2F_8(H_2O)_2]^{2-}$ водородными связями в цепь (*b*).

аммония образуют слабые водородные связи $C-H\cdots F$ (3.280–3.430 Å), которые объединяют анионные комплексы в решетке.

Экспериментальные колебательные спектры исследованного соединения $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$ приведены на рис. 2. В ИК спектре соединения $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$ в диапазоне 3500–2500 сm⁻¹ наблюдается широкая интенсивная полоса с заметными максимумами 3300, 3153, 3066, 3036 сm⁻¹ и слабоинтенсивные полосы на низкочастотном крыле 2726, 2602, 2503 сm⁻¹. Под этой полосой лежат колебания, соответствующие растяжениям связей C–H катионов $(CH_3)_4N^+$ и валентным колебаниям молекул H₂O, участвующих в водородных связях.

Внутренние колебания катиона $(CH_3)_4N^+$ тетраэдрической симметрии ранее рассмотрены и обсуждены в ряде работ [11,12]. Интерпретация характеристических полос катионов $(CH_3)_4N^+$ в спектрах соединения $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$ выполнена, исходя из литературных данных. В спектре тетраэдрического $(CH_3)_4N^+$, согласно неприводимому представлению $\Gamma_{Td} = 3A1 + 1A2 + 4E + 4T1 + 7T2$, моды симметрии A1, E и T2 КР-активны, а ИК — только T2.

Учитывая низкую симметрию положений катионов $(CH_3)_4N^+$ в кристаллической решетке и их искажение в результате взаимодействия с анионом, к валентным колебаниям CH_3 -групп катионов можно отнести интенсивные полосы с небольшой полушириной и максимумами в ИК ~ 3066 , 3036 cm⁻¹ и KP ~ 3035 , 2978, 2934 и 2837 cm⁻¹ спектрах. Таким образом, происходит расщепление вырожденных мод и появление в спектре запрещенных переходов (табл. 2).

Деформационные колебания CH_3 -групп катионов проявляются в области $1500-1100 \text{ cm}^{-1}$. Наиболее интенсивные полосы с максимумами ~ 1498 и $\sim 1471 \text{ cm}^{-1}$ соответствуют плоскостным деформационным колебаниям CH_3 -групп, связанных с изменением H-C-Hуглов. Внеплоскостные изгибные колебания CH_3 -групп имеют меньшую интенсивность, им в спектрах отвечают полосы 1426, 1297, 1185 cm⁻¹.

Таблица 2. Положение полос поглощения катионов $N(CH_3)_4^+$ в спектрах $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$ и их отнесение

Экспериментальные частоты,* cm^{-1}		Отнесение (точечная группа)	
ИК 3066 c 3036 c	KP 3035 oc	$[(CH_3)_4N]^+ (T_d) \\ \nu_{13}(T2)\nu_{as}CH_3 \\ \nu_1(A1)\nu_sCH_3$	
2975—2830 сл	2978 cp 2934 cp 2837 cp	$ u_5(E) u_{as}$ CH ₃ $ u_{14}(T2) u_s$ CH ₃	
1498 c	1535 сл 1508 сл 1471 ос 1426 сл	$ u_{15}(T2)\delta CH_3 $ $ u_6(E)\delta CH_3 $ $ u_{16}(T2)\nu CH_3 $	
1297 сл	1297 сл	$v_{17}(T2)\omega CH_3$	
1180 сл	1185 сл	$ \nu_7(E)\omega \mathrm{CH}_3 $ $ \nu_{11}(T1)\delta_{\mathrm{tw}}\mathrm{CH}_3 $	
952 c	952 с 753 с 460 сл 378 ср		

 * Относительные интенсивности: ос — очень сильная, с — сильная, ср — средняя, сл — слабая.

Ниже по частоте расположены интенсивные узкие линии с максимумами ~ 952 (ИК, КР), 753, 460 и 378 (КР) ст⁻¹, которые являются характеристическими колебаниями группы NC₄ катиона (CH₃)₄N⁺. Наиболее интенсивная в ИК и КР-спектрах полоса при ~ 952 ст⁻¹ соответствует асимметричным растяжениям связей N–C. Симметричный аналог этой полосы активен в КР и имеет максимум при 753 ст⁻¹. Средней интенсивности в КР-спектре пики ~ 460 и 378 ст⁻¹ соответствуют деформационным колебаниям NC₄-групп.

С целью интерпретации полос в спектрах $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$, соответствующих колебаниям комплексного аниона, проведен квантово-химический расчет колебательных частот димерной группы $[Ga_2F_8(H_2O)_2]^{2-}$, составляющей основу исследованной

Экспериментальные частоты,* ст ⁻¹		Гармо- Ангармо-	Интенсивность ИК/КР	Симметрия	Отнесение**	
ИК (A_u)	$\operatorname{KP}(A_g)$	ничные	ничные	$(D^2/\mu A^2)/(A^4/\mu)$		
		3853	3555	3.5/0.0	A_u	vO-Н
		3852	3690	0.0/71.5	A_g	
3300 пл ш		3232	3006	41.9/0.0	A_u	$\nu O-H\cdots F$
3153 ос ш		3214	2973	0.0/139.8	A_g	
1585 ср ш		1626	1582	2.5/0.0	A_u	δH2O
		1628	1557	0.0/0.7	A_g	01120
		1122	1084	0.0/1.6	A_g	ω H ₂ O···F
1153 сл		1110	1071	5.5/0.0	A_u	
842 ср ш		811	772	7.1/0.0	A_u	ωH2O
		806	768	0.0/2.1	A_g	
		445	599	0.0/0.8	A_g	aH ₂ O
650 ср ш		453	664	2.1/0.0	A_u	ph ₂ 0
	569 c	562	554	0.0/6.6	A_g	$\nu_s GaF_2(eq)$
530 cp		532	536	8.1/0.0	A_u	$\nu_s \operatorname{GaF}_2(\operatorname{eq})$
561 c		551	543	5.1/0.0	A_u	$v_{as} \text{GaF}_2(\text{eq}) + v_{as} \text{GaF}_2(\text{moct} \parallel)$
	520 c	532	537	0.0/1.0	A_g	v_{as} GaF ₂ (eq)+ v_{as} GaF ₂ (moct=)
478 c		490	487	4.7/0.0	A_{u}	$\nu \text{GaF}_2(ax) + \nu_s \text{GaF}_2(\text{moct}=) + \rho \text{H}_2\text{O}$
	483 сл	482	501	0.0/7.9	A_g	$\nu \text{GaF}_2(ax) + \nu_s \text{GaF}_2(\text{moct}) + \rho \text{H}_2\text{O}$
	460 cp	439	562	0.0/0.4	A_g	v_{as} GaF(ax)H ₂ O- v_s GaF ₂ (moct)
458 сл	-	428	486	3.7/0.0	A_u	v_{as} GaF(ax)H ₂ O- v_s GaF ₂ (mocr=)
		346	360	3.1/0.0	A_u	
	330 осл	347	395	0.0/0.3	A_g	$\nu_s, \delta(2\text{Fmoct}) + \delta_{\omega}, \delta_{sc}(\text{GaF}_3\text{H}_2\text{O})$
		328	328	0.0/0.2	A_g	(H ₂ O, ax, еq, мост)
		327	325	1.5/0.0	A_u	
	286 cp	267	226	0.0/1.3	A_g	ν GaH ₂ O+ ν_s , δ (2Fmoct)
		243	228	0.6/0.0	A_u	(Н2О,мост)
		297	288	2.5/0.0	A_u	
	258 сл	251	240	0.0/0.4	A_g	
		232	266	1.7/0.0	A_u	$\delta_{\omega}, \delta_{sc} \text{GaF}_3 \text{H}_2 \text{O} (\text{eq.ax,H}_2 \text{O})$
	237 сл	234	230	0.0/0.6	A_g	
	199 сл	201	258	0.0/0.8	A_g	
		196	174	0.5/0.0	A_u	
		208	219	0.1/0.0	A_u	
		171	180	0.0/0.6	A_g	
		167	182	0.3/0.0	A_u	ρ , δ_{tw} GaF ₃ H ₂ O(eq,ax,H ₂ O)
	143 осл	154	177	0.0/0.2	A_g	
		150	154	0.0/0.3	A_g	
	11 осл	112	112	0.0/0.1	A_g	
	186 сл	186	172	0.0/0.4	A_g	$\nu_s[GaF_3H_2O+GaF_3H_2O]$
		136	200	0.1/0.0	A_u	
		101	101	0.1/0.0	A_u	$\delta[GaF_3H_2O+GaF_3H_2O]$
		86	86	0.1/0.0	A_u	

Таблица 3. Экспериментальные и рассчитанные колебательные частоты и интенсивности комплексного аниона $[Ga_2F_8(H_2O)_2]^{2-1}(S_2)$ и их отнесение

* Относительные интенсивности: oc — oчень сильная, c — сильная, cp — средняя, сл — слабая, ocл — oчень слабая, пл — плечо, ш — широкий. ** Обозначения колебаний: ν — валентные, деформационные: δ_{sc} — ножничные (в плоскости), ω — веерные (из плоскости), δ_{tw} — твист (из плоскости), ρ — маятниковые (в плоскости). Колебаний мостиковых атомов F: поперек (||) и вдоль (=) направления мостиковых связей.

Рис. 2. ИК спектры $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$ (*a*) в перфторированном, (*b*) в вазелиновом маслах; (*c*) КР-спектр $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$. * — полосы вазелинового масла.

Рис. 3. Равновесная геометрия комплексного аниона $[Ga_2F_8(H_2O)_2]^{2-}$ в отсутствие окружения и в окружении катионами.

структуры. Комплексный анион $[Ga_2F_8(H_2O)_2]^{2-}$ имеет точечную симметрию S_2 и, согласно неприводимому представлению $\Gamma_{S2} = 21A_u(MK) + 21A_g(KP)$, его колебательный спектр характеризуется 42 фундаментальными колебательными частотами. Рассчитанная равновесная геометрия изолированного модельного аниона отличается от найденной в структуре $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$, главным образом, завышением расстояния Ga–OH₂. Включение внешнесферного катионного окружения в расчет приводит к приближению равновесной геометрии к структурным данным (рис. 3).

(табл. Согласно результатам расчета 3), в экспериментальных колебательных спектрах $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$ к валентным колебаниям аниона можно отнести КР (569, 520, 483, $460 \,\mathrm{cm}^{-1}$) и ИК (561, 530, 478, 458 cm⁻¹) полосы. Первая пара частот 561/569 cm⁻¹ (ИК/КР) связана с растяжением экваториальных концевых связей Ga-F аниона и относится к симметричной и асимметричной комбинациям валентных колебаний v_s GaF₂(eq). Вторая $530/520 \,\mathrm{cm}^{-1}$ (ИК/КР) соответствует пара полос комбинациям асимметричных валентных колебаний

905

 v_{as} GaF₂(eq). Максимумы 478, 458 cm⁻¹ (ИК) и 483, 460 cm⁻¹ (КР) можно отнести к комбинациям валентных колебаний аксиальных связей Ga-F с небольшим вкладом валентных колебаний мостиковых связей Ga-F-Ga.

В области 400–300 сm⁻¹ лежат деформационные колебания димерного аниона с преимущественным участием мостиковых атомов фтора. Ниже 300 сm⁻¹ находятся деформационные колебания, связанные с бо́льшим вкладом концевых атомов F (eq, ax), им в экспериментальном KP-спектре соответствуют полосы \sim 286, 258, 237 сm⁻¹ (табл. 3). В эту же группу вносят вклад валентные колебания ν Ga–H₂O.

Кроме того, в экспериментальном ИК спектре $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$ можно выделить полосы, отвечающие внутренним колебаниям молекул $H_2O(C_{2v})$, координированных атомами Ga (рис. 2). К растяжениям связей О-Н в спектре можно отнести уширенный максимум 3153 (v_1) и плечо при 3300 (v_3) сm⁻¹. Форма и низкочастотное положение полосы валентных колебаний молекул H₂O соответствуют образованию упрочненных водородных связей О-Н... F, что согласуется с рентгеноструктурными данными (расстояния O-H···F(3) 2.659 Å и О··· F(2) 2.568 Å) и результатами расчетов колебательных частот модельного аниона $[Ga_2F_8(H_2O)_2]^{2-}$ (табл. 3), в котором одна из О-Н-связей молекулы H₂O образует внутридимерную водородную связь (рис. 3). Также проявление в ИК спектре полос либрационных колебаний молекул H_2O (842 и 650 cm⁻¹) с увеличенной полушириной подтверждает образование молекулами Н₂О в структуре упрочненных водородных связей.

Участие в колебаниях молекул H_2O легкого атома водорода предполагает проявление эффектов ангармонизма [13]. Рассчитанные значения частот аниона $[Ga_2F_8(H_2O)_2]^{2-}$ более точно передают положение в ИК спектре деформационных (δH_2O) и либрационных колебаний молекул H_2O . Необычно низкое положение δH_2O характерно также для соединений состава $MGaF_4 \cdot 2H_2O$ (M = Rb, Cs) [14].

Заключение

Синтезирован и структурно исследован новый комплексный фторид галлия $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$. В кристаллической решетке атомы Ga образуют димерные комплексные анионы состава $[Ga_2F_8(H_2O)_2]^{2-}$. Отличительной особенностью в организации кристаллической решетки $[N(CH_3)_4]_2[Ga_2F_8(H_2O)_2]$ является система водородных связей. Координированная молекула H_2O образует две водородные связи: одну внутримолекулярную $O-H(13)\cdots F(3)$ с расстоянием 2.659(1) Å и вторую межмолекулярную $O-H(14)\cdots F(2)$ длиной 2.568(1) Å, объединяющую димерные комплексные анионы $[Ga_2F_8(H_2O)_2]^{2-}$ в полимерную цепь. Катионы тетраметиламмония компенсируют отрицательный заряд аниона и слабыми водородными связями $C-H\cdots F$

(3.280-3.430 Å) сшивают анионные цепи в каркас. Полученные экспериментальные колебательные (ИК, КР) спектры исследуемого вещества сравнены с результатами квантово-химических расчетов частот в гармоническом и ангармоническом приближениях. В спектрах идентифицированы полосы, относящиеся к участвующим в водородных связях колебаниям молекул H₂O, аниона и катиона.

Список литературы

- Göbel O.F., van Hummel G.J., Elshof J.E. // Z. Krystallogr. 2011. V. 226. P. 78. doi 10.1524/zkri.2011.1279
- [2] Герасименко А.В., Гайворонская К.А., Давидович Р.Л., Диденко Н.А. // Журн. структурн. химии. 2016. Т. 57. С. 1226. doi 10.15372/JSC20160615
- Bukovec P, Šiftar J. // Monatsh. Chem. 1975. V. 106. P. 483. doi 10.1007/BF01150529
- [4] Davidovich R.L., Fedorov P.P., Popov A.I. // Rev. Inorg. Chem. 2017. V. 37. P. 147. doi 10.1515/revic-2017-0010
- [5] Давидович Р.Л., Удовенко А.А., Логвинова В.Б., Ткачев В.В., Шилов Г.В., Кайдалова Т.А. // Журн. струкутрн. химии. 2018. Т. 59. С. 1452. doi 10.26902/JSC20180621
- [6] Bruker. APEX II. Bruker AXS Inc., Madison, Wisconsin, USA. 2008.
- [7] Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112. doi 10.1107/S0108767307043930
- [8] Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. // J. Comput. Chem. 1993. V. 14. P. 1347. doi.org/10.1002/jcc.540141112
- [9] Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996.
 V. 77. P. 3865. doi.org/10.1103/PhysRevLett.77.3865
- [10] Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. P. 6158. doi 10.1063/1.478522
- [11] Wilson W.W., Christe K.O. // Inorg. Chem. 1989. V. 28.
 P. 4172. doi 10.1021/ic00321a027
- [12] Malchus M., Jansen M. // Acta Crystallogr. B. 1998. V. 54.
 P. 494. https://doi.org/10.1107/S0108768197018351
- [13] Bouman J.M. // J. Chem. Phys. 1978. V. 68. P. 608.
- Bukovec P, Orel B, Šiftar J. // Monatsh. Chem. 1973. V. 104.
 P. 194. https://doi.org/10.1007/BF00911160