Моделирование диффузии ускоренных частиц в бесстолкновительных ударных волнах с примесью ионов тяжелее водорода

© Ю.А. Кропотина,¹ А.М. Быков,¹ С.М. Осипов,¹ В.Е. Ермолина,² В.И. Романский¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН,
 194021 Санкт-Петербург, Россия
 ² Санкт-Петербургский политехнический университет Петра Великого (СПбПУ),
 195251 Санкт-Петербург, Россия
 e-mail: juliett.k@gmail.com

Поступило в Редакцию 25 марта 2019г. В окончательной редакции 15 мая 2019г. Принята к публикации 21 мая 2019г.

Представлены результаты гибридного моделирования диффузионного ускорения ионов с различным соотношением заряда к массе в квазипродольных бесстолкновительных ударных волнах. Рассмотрена водородная среда с динамически незначимой примесью ионов гелия и углерода в различных зарядовых состояниях. Определены пространственные области применимости бомовского приближения, а также квазилинейной теории диффузии. Обсуждается возможность недиффузионного распространения в областях далеко перед фронтом ударной волны.

Ключевые слова: диффузия, бесстолкновительные ударные волны, космические лучи, квазилинейная теория.

DOI: 10.21883/JTF.2020.01.48655.109-19

Введение

01

Ускорение Ферми 1-го порядка (диффузионное ускорение на ударных волнах) является эффективным механизмом генерации космических лучей — ионов, ускоренных до ультрарелятивистских энергий. Ускорение происходит за счет многократных отражений частиц по обе стороны фронта бесстолкновительной ударной волны (УВ). Из-за разницы скорости отражающих центров за и перед фронтом частицы приобретают энергию в каждом цикле и формируют степенной энергетический спектр с показателем µ, для нерелятивистских частиц зависящем от степени сжатия ударной волны χ как $\mu = -(2\chi + 1)/2(\chi - 1)$. Бесстолкновительные ударные волны характеризуются масштабами много меньше кулоновской длины пробега и возникают во многих астрофизических объектах, в том числе в остатках сверхновых, пульсарных туманностях, скоплениях галактик ИТ.Д.

В ряде аналитических работ (см., например, [1–4]) процесс диффузионного ускорения описывается при помощи уравнения диффузии-переноса. При этом в рамках опеределенных приближений (в частности, постоянства скорости потока перед фронтом ударной волны) стационарные спектры ускоренных частиц могут быть посчитаны и без знания точной формулы коэффициента диффузии. Однако в реальных бесстолкновительных УВ под воздействием ускоренных частиц происходит модификация УВ и появление так называемого предвестника — области перед фронтом, где происходит генерация электромагнитных неустойчивостей, замедление скорости потока и преднагрев вещества. Корректный аналитический учет всех нелинейных эффектов становится крайне сложным, что приводит к необходимости построения численных моделей.

Наиболее точное описание динамики бесстолкновительных ударных волн достигается при помощи кинетических кодов — гибридных и particle-in-cell, в которых уравнение Власова решается методом характеристик (макрочастиц) совместно с уравнениями Максвелла (см., например, [5,6]). Несмотря на неоспоримые достоинства, такие коды крайне ресурсоемки и позволяют моделировать лишь небольшие участки фронта ударной волны, достигая энергетического диапазона ускоренных частиц лишь в несколько декад. В то же время исследование дальнейшего ускорения космических лучей, а также их влияния на структуру и наблюдательные свойства астрофизических объектов, требует построения полуаналитических или численных моделей, где используется параметризация коэффициента диффузии. Таким образом, приобретает актуальность задача исследования зависимости коэффициента диффузии от импульса и координаты частицы в бесстолкновительных УВ.

Наиболее часто используемым приближением является бомовская диффузия, когда длина свободного пробега частицы приравнивается к ее ларморовскому радиусу r_L , и коэффициент диффузии становится равен

$$D_B = \frac{1}{3}r_L v = \frac{2c}{3eB_t}\frac{E}{Z}.$$
 (1)

Здесь D_B — коэффициент диффузии в бомовском приближении; v, E, Z — скорость, энергия и зарядо-

вое число частицы, с — скорость света, е — заряд электрона, B_t — среднеквадратичная стохастическая (турбулентная) составляющая магнитного поля. Здесь и далее предполагается, что полное магнитное поле представимо в виде суммы турбулентной и постоянной составляющих $\mathbf{B} = \mathbf{B}_0 + \mathbf{B}_t$. Второе равенство в выражении (1) верно для нерелятивистских частиц, но в данной работе рассмотрение будет ограничиваться частицами с *v* « *c*. Однако бомовская теория не имеет строгого обоснования, и ее применимость, согласно работе [7], ограничена узким диапазоном энергий частиц, а также требует существенного превышения турбулентной составляющей магнитного поля над средним значением. Следует отметить, что в работе [7] моделирование диффузии проводилось методом Монте-Карло в приложении к релятивистским частицам в колмогоровском спектре турбулентности. Как уже упоминалось, в нашей работе исследуются частицы на начальных стадиях ускорения, т.е. еще не достигшие релятивистских энергий. Кроме того, спектр турбулентности перед фронтом бесстолкновительной ударной волны отпределяется плазменными неустойчивостями, связанными с наличием ускоренных частиц, в частности, резонансной [8] или коротковолновой белловской [9] и имеет индекс, отличный от колмогоровского. Таким образом, результаты [7] не могут быть непосредственно сопоставлены с результатами настоящей работы.

Диффузия ускоренных протонов в генерируемых ими флуктуациях электромагнитного поля рассматривается в работе [3]. Приближенное соответствие зависимости смоделированного коэффициента диффузии от энергии D(E) теории Белла результатов гибридного моделирования показано в работе [10], также для протонов. Обе эти работы опираются на результаты квазилинейной теории, вообще говоря применимые только в области умеренной амплитуды флуктуаций электромагнитного поля, а также изотропной функции распределения ускоренных частиц. В то же время приближение малости флуктуаций магнитного поля по отношению к среднему значению $B_t = B_0$ нарушается в области сильной турбулентности вблизи фронта УВ, где может преобладать бомовский режим диффузии. Приближение же изотропии не выполняется в областях, удаленных от фронта ударной волны, где можно ожидать достаточно слабое рассеяние ускоренных частиц.

Таким образом, приобретает актуальность задача определения границ пространственной области в предвестнике УВ, где частицы диффундируют согласно квазилинейной теории. Кроме того, отдельный интерес представляет диффузия других сортов ионов в среде, преимущественно состоящей из водорода. Определение их динамики позволит включить ускорение различных сортов частиц в полуаналитические и численные модели.

В настоящей работе при помощи гибридного particlein-cell кода "Maximus" [11] проводится моделирование диффузии протонов, а также незначительной примеси ионов гелия и углерода в различных зарядовых состояниях в предвестнике водородной квазипродольной УВ с параметрами, характерными для остатков сверхновых. Для всех сортов ионов выделяются пространственные области, где распространение энергичных частиц может быть описано в рамках квазилинейной теории. Ближе к фронту ударной волны коэффициент диффузии может быть оценен в рамках бомовского приближения, в то время как далеко перед фронтом частицы рассеиваются реже, чем предсказывает квазилинейная теория. В этой области функция распределения ускоренных частиц становится анизотропной в системе покоя фронта. Результаты моделирования могут быть использованы для параметризации коэффициента диффузии энергичных частиц при моделировании ускорения на УВ. В разд. 1 кратко излагаются основные положения квазилинейной теории диффузии и производится их обобщение для описания диффузии ионов примеси (тестовых частиц различных сортов) в чисто водородной волне. В разд. 2 дается описание метода моделирования, а в разд. 3 приводятся и сравниваются с теорией его результаты.

Квазилинейная теория диффузии в предвестнике бесстолкновительных УВ

Квазилинейная теория диффузии описывает распространение частиц в среде со слабой турбулентностью $(B_t = B_0 \lesssim 1)$. Изначально она была разработана для описания диффузии протонов в протонной плазме, но, поскольку она легко обобщается на случай диффузии динамически незначимых ионов примеси, здесь и далее все формулы будут приведены для частиц с массовым числом *A* и зарядовым числом *Z*. Все уравнения в разд. 1 приводятся в системе покоя фронта УВ, находящегося в точке x = 0. Область перед фронтом соответствует положительным *x* и отрицательной скорости налетающего потока.

В случае изотропной функции распределения частиц квазилинейный коэффициент диффузии частиц с импульсом *p* и скоростью *v* вычисляется как

$$D_{ql} = \frac{4}{3\pi} \frac{pvc}{ZeBF(x; p_{res})} \equiv \frac{D_0(p, Z, A)}{F(x, p_{res})}, \qquad (2)$$

где p — импульс частицы, B — среднеквадратичное значение полного магнитного поля, $F(x, p_{res})$ — относительная доля энергии магнитного поля в резонансных флуктуациях в единичном логарифмическом диапазоне волновых чисел (резонанс определяется через равенство длины волны и ларморовского радиуса частицы).

В свою очередь, флуктуации магнитного поля в предвестнике квазипродольной ударной волны с альвеновским числом Маха M_a генерируются самими ускоренными частицами за счет возникновения плазменных неустойчивостей. При этом для УВ с альвеновскими числами Маха $M_a \leq 30$, согласно работе [12], доминирует резонансная неустойчивость. Также рассматриваются только УВ, где преобладают протоны, а примесь более

тяжелых ионов динамически незначима. Можно ожидать, что эта модель с хорошей точностью соответствует солнечному составу плазмы. В такой среде стационарный спектр электромагнитных флуктуаций определяется только ускоренными протонами и в одномерном приближении может быть описан формулой [3]:

$$u\frac{\partial F(x,p)}{\partial x} - \sigma(p)\frac{\partial f(x,p)}{\partial x} = 0.$$
 (3)

Здесь f(x, p) — функция распределения протонов в фазовом пространстве координат и импульсов, нормированная так, чтобы при интегрировании по скоростям давать концентрацию частиц; u — скорость потока плазмы; $\sigma(p) = (4\pi/3)v_A p^4 v/U_M$; v_A — альвеновская скорость, U_M — плотность энергии магнитного поля.

Стационарное уравнение диффузии-переноса записывается в виде

$$u\frac{\partial f(x,p)}{\partial x} - \frac{\partial}{\partial x}\left[D(x,p)\frac{\partial f(x,p)}{\partial x}\right] = \frac{p}{3}\frac{du}{dx}\frac{\partial f(x,p)}{\partial p}.$$
(4)

А.Р. Белл в своей работе [3] получил решение уравнений (3) и (4) для протонов в приближении постоянной скорости налетающего потока перед фронтом *и*. Это решение может быть выписано в виде

$$F(x, p) = \frac{b(p)}{x_0(p) + x},$$
(5)

$$f(x, p) = \frac{a(p)}{x_0(p) + x},$$
(6)

где $b = -D_0(p, 1, 1)/u$, $a = D_0(p, 1, 1)/\sigma$, $x_0 = D_0(p, 1, 1)/(\sigma f(0))$, а функция распределения энергичных протонов при $x \to +\infty$ принята за нуль. Тогда, используя выражения (2) и (5), получаем коэффициент диффузии различных сортов ионов при резонансном рассеянии на флуктациях, генерируемых ионами водорода:

$$D_{ql}(x, p, Z, A) = -\frac{D_0(p, Z, A)u}{D_0(p_{res}, 1, 1)}(x_0(p_{res}) + x).$$
(7)

Таким образом, коэффициент резонансной диффузии для всех сортов ионов должен расти линейно с удалением от фронта. Поскольку ионы водорода рассеиваются на ими же сгенерированных флуктуациях поля, для них p_{res} в выражении (7) равен *p*, и градиент коэффициента диффузии равен скорости потока. Для других сортов ионов резонанс определяется условием равенства длины волны магнитных флуктуаций ларморовскому радиусу частицы: $\lambda = r_L(ion) = pc/(ZeB) = r_L(proton) = p_{res}c/(eB)$. Таким образом, $p_{res} = p/Z$, т.е. тяжелые ионы рассеиваются на флуктуациях, порождаемых ускоренными протонами с импульсом в Z раз меньше. Градиент коэффициента диффузии в этом случае оказывается равен $-uD_0(p, Z, A,)/D_0(p/Z, 1, 1) = -Zu/A$, и выражение (7) может быть переписано в виде

$$D_{ql}(x, p, Z, A) = \frac{4c}{3\pi eB} \frac{E}{Z} \frac{1}{F(0, p/Z)} + \frac{Z}{A} ux.$$
 (8)

Функция распределения ионов с данным импульсом будет спадать с удалением от фронта по закону [10]:

$$f(x, p) = f(0, p) \exp \int_{0}^{x} \frac{u(x')}{D(x', p, A, Z)} dx'.$$
 (9)

Для протонов в приближении постоянной скорости течения u этот интеграл совпадает с выражением (6), а для тяжелых ионов легко вычисляется с использованием (8). В работе [10] интеграл (9) использовался для оценки значения коэффициента диффузии в приближении не зависящих от координаты u(x) и D(x). В настоящей работе интеграл (9) будет вычисляться с использованием выражений (1) и (8) и спектром магнитных флуктуаций, а также профилями скорости потока и магнитного поля, полученными из результатов моделирования. Затем сравнение вычисленных профилей функции распределения с полученными при помощи гибридной модели позволит выделить области применимости бомовской и белловской аппроксимации коэффициента диффузии для частиц с различной энергией, зарядом и массой.

Следует отметить, что в теории Белла $x_0(p_{res})$ в выражении (7) явно выражается через $f(0, p_{res})$. Следовательно, F(x, p) и $D_{ql}(x, p, Z, A)$ определяются однозначно через количество ускоренных частиц на фронте. Однако моделирование показало меньшие значения F(x, p) по сравнению с результатами Белла, что может указывать либо на наличие механизмов подавления резонансной неустойчивости, либо на меньшие значения инкремента σ в выражении (3). С другой стороны, значения коэффициента диффузии, вычисленные по формуле (8) с подстановкой реального значения магнитных флуктуаций, дают хорошую аппроксимацию модельных профилей функции распределения в протяженных областях перед фронтом УВ, что указывает на применимость выражения (2) для описания рассеяния частиц.

2. Гибридное моделирование бесстолкновительных ударных волн

Моделирование бесстолкновительных ударных волн осуществлялось при помощи трехмерного гибридного кода "Maximus" с точным сохранением нулевой дивергенции магнитного поля и вторым порядком точности по времени и координате. Подробное описание кода приводится в работе [11], в связи с чем в разд. 2 будет дана только краткая характеристика модели.

Гибридные коды представляют собой разновидность кинетических particle-in-cell кодов, в которых пространство разбивается на ячейки с постоянным электромагнитным полем. В каждой ячейке методом характеристик (так называемых макрочастиц) решается бесстолкновительное уравнение Власова совместно с уравнениями Максвелла, определяющими генерацию электромагнитных полей. С точки зрения реализации решение состоит из трех шагов, выполняемых в цикле: 1. Moment Collector — подсчет плотностей заряда и тока в ячейках суммированием по всем макрочастицам с использованием весовой функции.

2. Field Solver — вычисление электромагнитных полей в ячейках при помощи найденных на предыдущем шаге токов

3. Particle mover — перемещение макрочастиц под действием силы Лоренца.

Особенность гибридных кодов заключается в представлении электронов в виде безмассовой нейтрализующей жидкости (см, например, [13-15], что допустимо в случае сверхкритических бесстолкновительных УВ, динамика которых в основном определяется ионами. Это позволяет проводить моделирование на масштабах порядка инерционной длины протона $l_i = c \sqrt{m/4\pi ne^2}$ и временах порядка обратных протонных гирочастот $\Omega = eB_0/(mc)$, существенно превышающих соответствующие электронные масштабы. Таким образом значительно расширяется размер области и время моделирования, что делает возможным исследование динамики ускоренных частиц на протяжении нескольких декад по энергии. Тем не менее с учетом ресурсоемкости модели для исследования бесстолкновительных УВ была выбрана двумерная конфигурация области моделирования с единичным размером поперек плоскости начального магнитного поля.

УВ инициализировалась методом отражающей стенки (см., например, [5]), когда сверхальвеновский поток частиц в изначально постоянном магнитном поле отражается от проводящей стенки. Это приводит к развитию двухпотоковой неустойчивости и формированию фронта УВ, движущегося навстречу потоку налетающих частиц. В данной реализации поток двигался в отрицательном направлении оси x, стенка находилась на левой границе области моделирования, магнитное поле лежало в плоскости x-z под углом 10° к нормали к фронту (квазипродольная УВ).

Размеры области моделирования составляли 40000 × 1 × 100 ячеек размером $1 × 1 × 1 l_i^3$. Альвеновское число Маха налетающего потока в системе отсчета стенки было равно $M_A = 10$, а отношение теплового давления к магнитному $\beta = 1.0$. Параметры такого порядка характерны для головной УВ в оболочках остатков сверхновых.

Плазма состояла из ионов водорода и динамически незначимой примеси ионов He(+2), He(+1), C(+2), рассматривавшихся как тестовые частицы (т.е. не учитывавшихся при подсчете токов и плотностей на шаге Moment Collector). В начальный момент времени в каждой ячейке инициализировалось 50 протонов и 10 ионов каждого из тестовых сортов. Шаг по времени менялся адаптивно в целях удовлетворения критерия Куранта и условия стабильности шага Field Solver, полученного в работе [15].

Далее все результаты моделирования будут приведены в нормированных единицах: длины — в единицах l_i , времена — в единицах Ω^{-1} , скорости — в альвеновских

Рис. 1. *а* — пространственные профили функции распределения ускоренных протонов с различной энергией в квазипродольной бесстолкновительной УВ в момент времени $t = 1800 \ \Omega^{-1}$. Бомовские и белловские профили показаны штрихпунктирными и штриховыми линиями. *b* — профиль средней скорости потока в системе покоя фронта, *c* — профиль турбулентной составляющей магнитного поля.

скоростях v_A , магнитное поле — в единицах начального поля B_0 , энергия — в единицах $E_{\rm sh} \equiv 0.5 m v_s^2$, где v_s скорость налетающего потока в системе отсчета стенки.

3. Результаты моделирования

По результатам моделирования были построены пространственные функции распределения ускоренных частиц с фиксированной энергией на заряд $f_{ion}(x; E = Z)$. Для удобства анализа они нормировались на $f_{ion}(0; E = Z)$, где точка x = 0 приблизительно соответствует положению фронта УВ (с точностью до гирорадиуса частицы и ширины фронта).

3.1. Диффузия ускоренных протонов

Профили функции распределения ионов водорода с различной энергией в момент времени $t = 1800 \,\Omega^{-1}$ от начала моделирования показаны на рис. 1, *а*. Качественно их вид хорошо вопроизводит наблюдаемые профили функции распределения в солнечном ветре (см., например, работу [16]). На нижних панелях приведены профили скорости потока и турбулентной составляющей магнитного поля, использовавшиеся в интеграле (9) и выражении (1). Видно, что вблизи фронта замедление скорости потока и усиление магнитного поля достаточно существенны, и ими нельзя перенебречь.

Рис. 2. Спектр энергии флуктуаций магнитного поля в нескольких пространственных областях перед фронтом бесстолкновительной УВ. F(k) — относительная плотность энергии магнитного поля в логарифмическом диапазоне k. Вертикальные штрихпунктирные линии ограничивают диапазон энергий ускоренных протонов. Внутри этого диапазона спектр непосредственно перед фронтом хорошо описывается функцией 0.001/k (пунктирная линия). Резонансные волновые числа для протонов с энергиями 15, 25, 50, 100, 150 $E_{\rm sh}$ (см. рис. 1) показаны треугольниками справа налево соответственно.

Значения интеграла (9) в предположении бомовского режима диффузии для всех значений энергии показаны штрихпунктирными линиями. Следует отметить, что ввиду двумерности задачи выражение (1) использовалось с поправочным коэффициентом, равным 2/3. Видно, что резкий спад функции распределения вблизи фронта хорошо описывается в рамках диффузионного приближения с бомовским коэффициентом для всех энергий. Тем не менее в функциях распределения присутствуют особенности, по всей видимости связаные с локально недиффузионным режимом распространения частиц (например, магнитными ловушками).

Как упоминалось выше, коэффициент диффузии близок к бомовскому в области сильной турбулентности. С удалением же от фронта энергия магнитных флуктуаций падает и происходит смена режима диффузии с бомовского на белловский (т. е. резонансный). Белловские профили показаны штриховыми линиями и отнормированы так, чтобы в точке смены режимов профиль функции распределения менялся непрерывно.

В связи с тем что флуктуации магнитного поля в гибридной модели оказались меньше, чем предсказанные Беллом, при интегрировании белловских профилей использовалось выражение (8) с модельным значением F(0, p) на фронте. Спектр магнитных флуктаций непосредственно перед фронтом F(0, k) приведен на рис. 2. Согласно определению, относительная плотность энергии магнитных флуктуаций в единичном логарифмическом диапазоне волновых чисел находилась из дискретного преобразования Фурье профилей поперечных компонент магнитного поля $B_y(x)$ и $B_z(x)$ по формуле $F(0, k) = k(|\tilde{B}_y(k)|^2 + |\tilde{B}_z(k)|^2)/B_0^2$. Исходя из квазилинейной теории Белла, F(0, k) должна падать пропорционально 1/k. Из рис. 2 видно, что это с хорошей точ-

ностью выполняется в резонансном диапазоне волновых чисел от $k_{\min}(E_{\max})$ до $k_{\max}(E_{sh})$, где E_{\max} — максимальная энергия ускоренных протонов в данный момент времени. Поэтому при интегрировании в выражение (8) подставлялось значение $F(0, p_{res}) = 0.001/k(p_{res})$ (аппроксимирующая функция, показанная пунктиром на рис. 2).

Для определения $k_{\rm min}$ максимальная энергия протонов $E_{\rm max}$ находилась из распределений частиц по энергиям, показанных на рис. 3, *b*. Как видно из рисунка, $E_{\rm max}/Z \approx 500 E_{\rm sh}$ и одинакова для всех сортов в согласии с работой [17]. Видно также, что спектральный индекс всех сортов одинаков и близок к стандартному значению $\Gamma = -1.5$ для нерелятивистских частиц в сильной УВ.

Белловские профили, отнормированные для наилучшего согласия с результатами моделирования, показаны на рис. 1. Видно, что для всех энергий область бомовской диффузии с удалением от фронта переходит в область применимости квазилинейной теории. Переход осуществляется не мгновенно, т.е. на границе режимов возникает область, где, судя по форме профиля, оба режима диффузии действуют попеременно.

Квазилинейная теория диффузии оказывается применима в областях длиной порядка нескольких тысяч инерционных длин, т.е. примерно на порядок более протяженных, чем область бомовской диффузии. Тем не менее на существенных расстояниях от фронта стано-

Рис. 3. a — пространственные профили функции распределения различных сортов ионов с $E/Z = 70E_{\rm sh}$. Бомовский профиль для этой энергии на заряд показан штрихпунктирной линией, а белловские профили для каждого сорта частиц — штриховыми; b — энергетический спектр тех же сортов ионов за фронтом УВ при $t = 1800 \, \Omega^{-1}$.

вятся заметны отклонения формы профилей функции распределения от белловских. На рис. 1 это наиболее заметно для протонов с энергией $15E_{\rm sh}$. Видно, что примерно на $3000 l_i$ от фронта смоделированная функция распределения начинает спадать медленнее, чем белловская, а на расстояниях порядка $5000 l_i$ выходит на почти постоянный уровень. Кроме того, функция распределения $f(v_x)$ в удаленной от фронта области анизотропна с преобладанием частиц, летящих в направлении от фронта.

Это указывает на то, что рассеяние частиц в удаленной от фронта области становится слабее, чем предсказывает квазилинейная теория. Причиной такого поведения, по-видимому, является недостаточная амплитуда резонансных флуктаций. Следует отметить, что в этой области распространение частиц может носить сверхдиффузионный характер, т.е. соответствовать распространению с $\langle x^2 \rangle \propto t^{\alpha}$, $\alpha > 1$ (см., например, [16,18,19]).

3.2. Диффузия других сортов ионов

Рассеяние тяжелых ионов происходит на флуктуациях поля, генерируемых ионами водорода. Поскольку гирорадиус тяжелого иона в $\sqrt{A/Z}$ больше, чем гирорадиус протона с той же энергией на заряд, наиболее энергичные тяжелые ионы не могут рассеиваться резонансно изза отсутствия соответствующих гармоник. Следовательно, теория из разд. 1 может быть применена только к тяжелым ионам с $E/Z < E_{\text{max}}Z/A$, где $E_{\text{max}} \approx 500E_{\text{sh}}$ — максимальная энергия ускоренных протонов. Таким образом, для ионов C(+2) при $t = 1800 \,\Omega^{-1}$ максимальная резонансная энергия составляет около $83E_{\text{sh}}$. Реально это значение несколько больше из-за наличия флуктуаций с длиной волны, больше резонансных (рис.2). Для остальных исследуемых ионов граничная энергия выше.

На рис. 3, а показаны профили функции распределения различных сортов ионов с одинаковой энергией на заряд $E/Z = 70E_{\rm sh}$ (значение заведомо меньше граничного для всех сортов). Штрихпунктирной линией показан бомовский профиль (он одинаков для всех ионов), а штриховыми — белловские профили, полученные с использованием выражения (8). Видно, что качественно профили для всех сортов воспроизводят ту же последовательную смену режимов, что и для протонов, однако границы областей смещаются к фронту с ростом A/Z. В результате для ионов с максимальным A/Z = 6(C(+2))область бомовской диффузии исчезающе мала, а область резонансного рассеяния находится в пределах $1000l_i$ от фронта. В удаленной от фронта области нарушается квазилинейная теория и возникает анизотропия фазовых пространств тяжелых ионов, также отмеченная в работе [17]).

Таким образом, для всех сортов ионов в предвестнике бесстолкновительной квазипродольной УВ могут быть выделены три пространственные области, где действуют следующие режимы распространения частиц: бомовская диффузия, белловская диффузия и удалунная от фронта

Рис. 4. *а* — точка перехода бомовского режима диффузии в белловский для различных сортов ионов в зависимости от энергии. Для протонов штрихпунктирной линией показана линейная аппроксимация; *b* — приблизительная верхняя граница белловского режима для всех сортов ионов.

область, поведение частиц в которой требует дополнительного анализа. Переход между режимами осуществляется не мгновенно, а с возникновением переходной области. Критерии перехода и примерные границы между областями обсуждаются ниже в разд. 3.3.

3.3. Границы между областями с различными режимами диффузии

Фронт надкритической бесстолкновительной УВ при взаимодействии с резонансными волнами в предвестнике испытывает квазипериодические реформации (см., например, [20,21]). При этом периодически меняется ширина скачка, и, соответственно, профили функции распределения ускоренных частиц вблизи фронта также испытывают пульсации. Реформация фронта, а также наличие переходной бомовско-белловской области, существенно затрудняет определение точной зависимости ширины бомовской области от энергии, заряда и массы частицы. Тем не менее для успешной параметризации коэффициента диффузии в полуаналитических моделях необходимо знать границы областей применимости различных режимов диффузии. В связи с этим в настоящем параграфе будут произведены оценки, позволяющие приблизительно определить критерии и точки перехода режимов.

Рассмотрим сначала переход между бомовским и белловским режимами диффузии. Из рис. 1 ясно, что

точка перехода x_1 определена с точностью до сотен инерционных длин (ширина переходной области). Тем не менее можно формально определить ее как точку пересечения бомовского и белловского профилей. Для протонов зависимость координаты этой точки от энергии на заряд с хорошей точностью оказывается линейной $(x_1[l_i] \approx 13E/Z[E_{sh}])$ (рис. 4, *a*). Это можно объяснить тем, что характерный масштаб спада функции распределения ускоренных частиц (а, следовательно, и плотности энергии резонансных флуктуаций) в этой области пропорционален $D_B \propto E/Z$.

Для других сортов частиц область бомовской диффузии существенно уже, а для He(+1) и C(+2) практически отсутствует. Таким образом, для тяжелых слабо заряженных ионов турбулентность даже вблизи фронта оказывается слишком слабой для бомовского режима, и рассеяние почти сразу осуществляется только резонансным образом.

Рассмотрим теперь зависимость верхней границы применимости квазилинейной теории x_2 от энергии на заряд, показанную на рис. 4, *b*. Граница определялась визуально из формы профилей, поэтому график носит скорее качественный характер.

Видно, что для всех сортов частиц граница применимости удаляется от фронта с ростом энергии. Как объяснялось в параграфе 3.1, это связано с отсутствием коротковолновых резонансных флуктуаций на удалении от фронта. Естественно предположить, что при падении F(k) ниже некоторого критического значения F_c рассеяния становятся маловероятными. F_c можно оценить, анализируя спектры флуктуаций поля в точках перехода.

На рис. 2 показана эволюция спектра флуктуаций магнитного поля с удалением от фронта. Видно, что энергия магнитных флуктуаций падает во всех диапазонах волновых чисел, но коротковолновые флуктуации затухают быстрее, и к тому же слабее изначально. Как следует из рис. 1, для протонов с энергией 15E_{sh} граница применимости квазилинейной теории соответствует $x \approx 3000 l_i$. Спектр флуктуаций в области $3000-3600 l_i$ от фронта показан на рис. 2, а резонансное волновое число для $E/Z = 15E_{\rm sh}$ соответствует самому правому треугольному маркеру. Значение $F(k_{res})$ на границе оказывается порядка 10^{-3} . Для энергии же $25E_{\rm sh}$ (второй справа треугольный маркер) значение F(kres) опускается до 10^{-3} только при $x \approx 6000 l_i$, что соответствует значению x₂ для этой энергии. Аналогично для энергии 50E_{sh} (следующий маркер) смена режима происходит в точке $x \approx 7000 l_i$ при $F(k_{res}) < 10^{-3}$. Следовательно, пороговое значение F(k) для резонансного рассеяния может быть оценено как примерно 10⁻³. Резкий рост x_2 при $E/Z > 60E_{\rm sh}$ (рис. 4) связан с присутствием длинноволновых флуктуаций далеко перед фронтом. Согласно равновесной квазилинейной теории, они должны спадать по закону (5), однако в этой теории не учитывается поток уходящих в область перед фронтом ускоренных ионов, которые вышли из режима диффузионного ускорения, но обладают достаточной энергией

Рис. 5. Траектории двух тестовых ионов C(+2) в стационаром электромагнитном поле, взятом из результатов гибридного моделирования. Цветом показано значение B_y .

для генерации резонансных длинноволновых флуктуаций. Благодаря этому режим резонансного рассеяния для наиболее энергичных частиц наблюдается вплоть до границ области моделирования.

В то же время для тяжелых слабо заряженных частиц область применимости белловской теории существенно уже. Из рис. З и 4 видно, что бомовский режим быстро переходит в резонансный, отклонения же от последнего вознивают на расстояниях порядка нескольких тысяч l_i . Анализируя спектры флуктуаций магнитного поля в точках перехода, можно оценить критический уровень резонансных флуктуаций для тяжелых ионов как $F_c \sim 10^{-2}$.

3.4. Траектории тестовых частиц

Если в близкой к фронту области распространение ускоренных частиц хорошо объясняется в рамках существующих теорий диффузии, выводы о законах рассеяния ионов в области за границей квазилинейного режима требуют анализа траекторий отдельных частиц. На рис. 5 приведены траектории двух ускоряющихся ионов C(+2) в стационарном электромагнитном поле, взятом из результатов гибридного моделирования. По осям у и z при этом были установлены периодические граничные условия, а левая и правая граница по оси х были открытыми. Частицы перемещались методом Бориса (см, например, [5]). Согласно рис. 4, граница применимости квазилинейной теории для ионов этого сорта находится на расстоянии порядка 1000*l*_i от фронта. Из рис. 5 видно, что в этой области рассеяния становятся намного реже и присутствуют большие участки практически баллистического распространения. Тем не менее вывод о наличии сверхдиффузионного распространения в данной области требует дополнительного анализа статистики рассеяний. Если же длина свободного пробега частиц сравнима с длиной области моделирования, то окончательный вопрос о режиме распространения частиц в удаленной от фронта области требует ресурсоемких запусков гибридного кода с существенно большим числом ячеек во всех направлениях.

Заключение

Моделирование показало, что для всех сортов ионов можно выделить три смежные пространственные области с различным режимом диффузии:

1. Область сильной турбулентности непосредственно возле фронта, где коэффициент диффузии с хорошей точностью описывается формулой Бома

2. Область резонансного рассеяния, где функция распределения энергичных частиц в пространстве описывается квазилинейной теорией Белла.

3. Удаленная от фронта область, где функция распределения ускоренных частиц спадает медленнее, чем по теории Белла, и стремится к постоянному значению. Также в этой области нарушается изотропия функции распределения. Это указывает на слабое взаимодействие частиц со средой, а также может быть признаком недиффузионного распространения частиц (сверхдиффузии). Тем не менее окончательный вывод о наличии сверхдиффузии требует дополнительного анализа.

Для наиболее энергичных протонов квазилинейная теория выполнялась во всей области моделирования, в то время как для тяжелых слабо заряженных ионов почти отсутствовала область бомовской диффузии. Тем не менее для большинства частиц имеют место три указанных режима распространения. Границы областей связаны с падением уровня резонаных флуктуаций ниже порогового значения.

Благодарности

Авторы выражают благодарность Вычислительному комплексу "Торнадо" СПбПУ за возможность проведения ресурсоемких расчетов.

Финансирование

Кропотина Ю.А., Осипов С.М., Ермолина В.Е. и Романский В.И. выполнили исследование при финансовой поддержке РФФИ в рамках научного прокта № 18-32-00158.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Skilling J. // MNRAS. 1975. Vol. 172. P. 557-566.
- [2] Axford W.I., Leer E., McKenzie J.F. // A&A. 1982. Vol. 111.
 P. 317–325.

- [3] Bell A.R. // MNRAS. 1978. Vol. 182. P. 147-156.
- [4] McKenzie J.F., Volk H.J. // A&A. 1982. Vol. 116. P. 191–200.
- [5] *Lipatov A.S.* The hybrid multiscale simulation technology. Berlin: Springer, 2002. 403 p.
- [6] Birdsall C.K., Langdon A.B. Plasma physics via computer simulation. Bristol: IOP Publishing, 1991. P. 373.
- [7] Casse F., Lemoine M., Pelletier G. // Phys. Rev. D. 2002.Vol. 65. N 2. P. 023002.
- [8] Skilling J. // MNRAS. 1975. Vol. 173. P. 245-254.
- [9] Bell A.R. // MNRAS. 2004. Vol. 353. P. 550–558.
- [10] Caprioli D., Spitkovsky A. // ApJ. 2014. Vol. 794. N 1. ID. 47.
- [11] Kropotina J.A., Bykov A.M., Krassilchtchikov A.M., Levensh K.P. // CCIS. 2018. Vol. 965. P. 242.
- [12] Caprioli D., Spitkovsky A. // ApJ. 2014. Vol. 794. N 1. ID. 46.
- [13] Winske D. // Space Sci. Rev. 1985. Vol. 42. P. 5366.
- [14] Matthews Alan P. // J. Comput. Phys. Vol. 112. P. 102-116.
- [15] Gargate L., Bingham R., Fonseca R.A., Silva L.O. // Comp. Phys. Commun. 2007. Vol. 176. P. 419–425.
- [16] Prete G., Perri S., Zimbardo G. // Adv. Space Res. 2019. Vol. 63. P. 2659–2671.
- [17] Caprioli D., Yi D.T., Spitkovsky A. // Phys. Rev. D. 2017.
 Vol. 119. N 17. ID 171101.
- [18] Perri S., Zimbardo G., Eenberger F., Fichtner H. // A&A. 2015. Vol. 578. N A2.
- [19] Bykov A.M., Ellison D.C., Osipov S.M. // Phys. Rev. E. 2017. Vol. 95. N 3. ID 033207.
- [20] Caprioli D., Pop A.-R., Spitkovsky A. // ApJ. 2015. Vol. 798. N 2. ID L28.
- [21] Zekovic V. 2019. eprint arXiv:1903.01169