01

Стационарные и самоподобные волны в стержне с разномодульной нелинейностью, диссипацией и дисперсией

© В.Е. Назаров, С.Б. Кияшко

Федеральный исследовательский центр Институт прикладной физики РАН, 603950 Нижний Новгород, Россия e-mail: v.e.nazarov@appl.sci-nnov.ru

Поступило в Редакцию 5 марта 2019 г. В окончательной редакции 6 мая 2019 г. Принято к публикации 29 июня 2019 г.

> Исследовано распространение продольных упругих волн в стержне с разномодульной нелинейностью, линейной диссипацией и геометрической дисперсией фазовой скорости. Получены аналитические и численные решения для профилей стационарных волн и самоподобных периодических волн и импульсных возмущений, распространяющихся в таком стержне без изменения формы; проведен их графический анализ.

Ключевые слова: разномодульная нелинейность, диссипация, дисперсия, упругие волны.

DOI: 10.21883/JTF.2020.01.48654.82-19

Введение

Существует довольно широкий класс твердотельных сред, обладающих разномодульными упругими свойствами, т.е. различными модулями упругости при сжатии и растяжении [1]. К таким средам относятся некоторые полимеры, композиционные и конструкционные материалы, грунты, а также материалы, содержащие трещины. Изучению нелинейного распространения продольных упругих волн в разномодульных (или бимодульных) средах посвящено большое число работ [1-12]. В этих работах рассматривалось как распространение волн в идеальной разномодульной среде, так и влияние диссипации и релаксации на эволюцию волн в таких средах. В разномодульных средах нелинейный режим распространения имеет место только для разнополярных волн, однополярные же возмущения распространяются линейно, с постоянными, но различными скоростями, зависящими от их полярности. Нелинейное искажение первоначально гармонической (разнополярной) волны в идеальной разномодульной среде происходит таким образом, что на каждом периоде в ее профиле, уже на сколь угодно малом расстоянии от излучателя, образуется "перехлест" (неоднозначность), устраняемый введением искусственного разрыва — ударного фронта [5]. В результате такого искажения амплитуды высших гармоник нелинейной волны пропорциональны первой степени амплитуды первичной волны, при этом волна затухает до нуля на конечном расстоянии [5]. Линейные диссипация и дисперсия — всегда [7-12], а релаксация — только для относительно низкочастотных волн [8-10], предотвращают образование неоднозначностей в профиле волны в разномодульной среде и ее быстрое затухание (до нуля), однако амплитудные закономерности для высших гармоник волны сохраняются.

Изучение нелинейных волновых процессов (НВП) в разномодульных средах представляет научный и практический интерес. Научный интерес связан с выявлением закономерностей НВП в средах с неаналитической нелинейностью, а практический — с созданием эффективных методов диагностики их структуры. В частности, интерес к задачам о распространении продольных упругих волн в разномодульных средах во многом связан с линейной зависимостью разномодульной нелинейности от амплитуды деформации, что позволяет получать точные аналитические решения нелинейных волновых уравнений для таких сред.

В настоящей работе проводится теоретическое исследование распространения продольных упругих волн в стержне с разномодульной нелинейностью с учетом линейной диссипации и геометрической дисперсии фазовой скорости. Рассматривается распространение стационарных и автомодельных (самоподобных) разнополярных периодических волн и импульсных возмущений, распространяющихся в таком стержне без изменения формы.

1. Основные уравнения

Уравнение состояния разномодульного твердого тела имеет вид [1,5,7]:

$$\sigma(\varepsilon) = \begin{cases} E_1 \varepsilon, & \varepsilon \ge 0 \\ E_2 \varepsilon, & \varepsilon \le 0 \end{cases} = E[\varepsilon - \gamma |\varepsilon|], \quad (1)$$

где σ, ε — продольные напряжение и деформация, $E_{1,2}$ — модули упругости среды при ее растяжении и сжатии (для стержня это модули Юнга),

$$E = rac{E_1 + E_2}{2}, \quad \gamma = rac{E_2 - E_1}{E_1 + E_2}, \quad |\varepsilon| \ll 1, \quad |\gamma| \ll 1.$$

Для твердых тел с трещинами $E_2 > E_1$, но для других материалов может быть и наоборот, $E_2 < E_1$. Заметим, что нелинейность уравнения состояния (1) описывается неаналитической функцией $f(\varepsilon) = \gamma |\varepsilon|$ — непрерывной, но негладкой и недифференцируемой в точке $\varepsilon = 0$. Из уравнения (1) следует, что одиночные положительные ($\varepsilon \ge 0$) и отрицательные ($\varepsilon \le 0$) волновые возмущения в такой среде распространяются со скоростями C_+ и C_- соответственно, причем

$$C_{\pm} = (E_{1,2}/\rho)^{1/2} = \sqrt{(E/\rho)(1\mp\gamma)},$$

 ρ — плотность среды. Мы не будем учитывать геометрическую нелинейность уравнений движения (по сравнению с нелинейностью уравнения состояния), полагая, что $|\varepsilon| \ll |\gamma|$ [5]. В этом приближении ρ = const, при этом уравнения теории упругости в лагранжевых и эйлеровых координатах совпадают [5].

Получим волновое уравнение для продольной деформации стержня, обладающего разномодульной нелинейностью, с учетом его линейной диссипации и геометрической дисперсии. Подставляя уравнение состояния (1) в уравнение движения $\rho U_{tt} = \sigma_x(\varepsilon)$ [13], и, учитывая линейную диссипацию [13] и геометрическую дисперсию фазовой скорости продольных (вдоль оси *x*) упругих волн в стержне конечного диаметра [14,15], получим одномерное квазилинейное волновое уравнение для смещения и деформации

$$U_{tt} - C_0^2 \varepsilon_x = -\gamma C_0^2 [|\varepsilon|]_x + \alpha \varepsilon_{tx} + \nu^2 r_0^2 [U_{tt} - C_{sh}^2 U_{xx}]_{xx},$$
(2)

где U(x,t) и $\varepsilon(x,t) = \partial U(x,t)/\partial x$ — продольные смещение и деформация, $C_0 = (E/\rho)^{1/2}$, $C_{sh} = (\mu/\rho)^{1/2} = [E/2(1+\nu)\rho]^{1/2} = C_0/[2(1+\nu)]^{1/2}$ — скорость сдвиговой волны, $\mu = E/2(1+\nu)$ — модуль сдвига, ν — коэффициент Пуассона, α — коэффициент диссипации, $r_0 = R/\sqrt{2}$, R — радиус стержня, $R < \Lambda/2$, Λ — длина волны. Дифференцируя уравнение (2) по x, получим волновое уравнение для деформации ε :

$$\varepsilon_{tt} - C_0^2 \varepsilon_{xx} = -\gamma C_0^2 [|\varepsilon|]_{xx} + \alpha \varepsilon_{txx} + \nu^2 r_0^2 [\varepsilon_{tt} - C_{sh}^2 \varepsilon_{xx}]_{xx}.$$
(3)

Это уравнение аналогично уравнению с двумя дисперсиями [15]; отличие заключается в замене нелинейного квадратичного слагаемого на нелинейное разномодульное $(-\gamma C_0^2[|\varepsilon|]_{xx})$ и наличии слагаемого $\alpha \varepsilon_{txx}$, учитывающего линейную диссипацию волны.

Полагая нелинейное, диссипативное и дисперсионное слагаемые в правой части уравнения (3) малыми, упростим это уравнение, используя метод медленноменяющегося профиля [14,16]. Переходя в уравнении (3) к сопровождающей системе координат $\tau = t - x/C_0$, $x' = x \ge 0$ и полагая в левой части уравнения (2)

$$\partial^{2} \varepsilon / \partial t^{2} = \partial^{2} \varepsilon / \partial \tau^{2},$$
$$\partial^{2} \varepsilon / \partial x^{2} \approx (1/C_{0}^{2}) \partial^{2} \varepsilon / \partial \tau^{2} - (2/C_{0}) \partial^{2} \varepsilon / \partial x \partial \tau$$

а в правой —

$$\begin{split} \partial^{2}|\varepsilon|/\partial x^{2} &\approx (1/C_{0}^{2})\partial^{2}|\varepsilon|/\partial \tau^{2}, \\ \partial^{3}\varepsilon/\partial t\partial x^{2} &\approx (1/C_{0}^{2})\partial^{3}\varepsilon/\partial \tau^{3}, \\ \partial^{4}\varepsilon/\partial x^{4} &\approx (1/C_{0}^{4})\partial^{4}\varepsilon/\partial \tau^{4}, \\ \partial^{4}\varepsilon/\partial x^{2}\partial t^{2} &\approx (1/C_{0}^{2})\partial^{4}\varepsilon/\partial \tau^{4}, \end{split}$$

получим эволюционное уравнение для волны деформации, бегущей в положительном направлении оси *x*:

$$\frac{\partial \varepsilon}{\partial x} = -\frac{\gamma}{2C_0} \frac{\partial |\varepsilon|}{\partial \tau} + \frac{\alpha}{2C_0^3} \frac{\partial^2 \varepsilon}{\partial \tau^2} + \frac{\nu^2 R^2 (1+2\nu)}{8C_0^3 (1+\nu)} \frac{\partial^3 \varepsilon}{\partial \tau^3}.$$
 (4)

Отметим, что для бегущей волны имеет место соотношение $\varepsilon(x, \tau) = -V(x, \tau)/C_0$, где $V(x, \tau) = \partial U(x, \tau)/\partial \tau$ — скорость частиц среды.

Для получения и анализа решений уравнения (4) приведем его к безразмерному виду

$$\frac{\partial e}{\partial z} = -\frac{\partial |e|}{\partial \theta} + \mu \frac{\partial^2 e}{\partial \theta^2} + \delta \frac{\partial^3 e}{\partial \theta^3},\tag{5}$$

где $e = \varepsilon/\varepsilon_0$, $\theta = \omega\tau$, $z = \gamma\omega x/2C_0$, ε_0 и ω — характерные амплитуда и частота волны, $\mu = \alpha\omega/\gamma C_0^2$, $\delta = \nu^2 R^2 (1 + 2\nu) \omega^2 / 4\gamma (1 + \nu) C_0^2$. Коэффициент μ — это коэффициент, обратный акустическому числу Рэйнольдса, а коэффициент $\delta = Ur^{-1}$ — это обратный параметр Урселла $Ur = 4\gamma (1 + \nu) C_0^2 / \nu^2 R^2 (1 + 2\nu) \omega^2$ [14,16]. Для разномодульной среды число Рэйнольдса и параметр Урселла не зависят от амплитуды волны $\varepsilon = \varepsilon(x, \tau)$, поэтому и решения уравнения (4) также не зависят от этой амплитуды, т.е. если функция $\varepsilon = \varepsilon(x, \tau)$ является решением уравнения (4), то и функция $\varepsilon = C\varepsilon(x, \tau)$, где C = const > 0, также является решением этого уравнения.

Волновое уравнение (5) — это аналог уравнения Кортевега-де Вриза-Бюргерса [14,16] для среды с разномодульной нелинейностью. Квазилинейное уравнение (5) — это, по существу, два линейных дифференциальных уравнения третьего порядка: одно — для положительной части $[e_+(z, \theta) \ge 0]$ волны $e = e(z, \theta)$, другое — для отрицательной $[e_-(z, \theta) \le 0]$. Положительная и отрицательная части волны непрерывно (вместе с производными $\partial e_{\pm}(z, \theta)/\partial \theta$ и $\partial^2 e_{\pm}(z, \theta)/\partial \theta^2$) переходят друг в друга при $e_{\pm}(z, \theta) = 0$.

Из уравнения (5) следует, что эволюция волны в разномодульном стержне зависит от двух коэффициентов μ и δ , причем в случае $\mu \ll 1$ и $|\delta| \ll 1$ получим сильнонелинейную волну, а в случае $\mu \gg 1$ или $|\delta| \gg 1$ — практически ее линейное распространение. Далее для определенности мы будем полагать, что $\gamma > 0$ и, следовательно, $\delta > 0$, $\mu > 0$ и $z \ge 0$.

Рис. 1. Форма стационарной волны при $\delta = 0.07$, $\mu = 0.6$, $\mu^2 > 4\delta(a)$; при $\delta = 0.4$, $\mu = 0.1$, $\mu^2 < 4\delta(b)$.

2. Стационарные волны

Как и уравнения Бюргерса и Кортевега-де Вриза [14,16], нелинейное уравнение (5) имеет частные точные решения, описывающие стационарные волны, не зависящие от координаты z, и распространяющиеся без изменения формы. Полагая в уравнении (5) $\partial e(z, \theta)/\partial z = 0$, получаем уравнение для стационарной волны типа скачка-перехода (при $\gamma > 0$) из состояния $e_{-}(\theta \to \infty) = -1$ в состояние $e_{+}(\theta \to -\infty) = 1$:

$$\delta \frac{d^2 e}{d\theta^2} + \mu \frac{d e}{d\theta} - |e| = -1.$$
(6)

(При $\gamma < 0$ устойчивым будет обратный переход: из $e_+(\theta \to -\infty) = 1$ в $e_-(\theta \to \infty) = -1$.) При $\mu^2 > 4\delta$ решение уравнения (5) имеет вид плавного перехода ступеньки (рис. 1, *a*)

$$e_{+}(\theta \leq 0) = 1 - \exp(\lambda_{1}^{+}\theta) \geq 0,$$

$$e_{-}(\theta \geq 0) = -1 + \frac{1}{2} \left(1 + \frac{2\mu - \sqrt{\mu^{2} + 4\delta}}{\sqrt{\mu^{2} - 4\delta}}\right) \exp(\lambda_{3}^{-}\theta) + \frac{1}{2} \left(1 - \frac{2\mu - \sqrt{\mu^{2} + 4\delta}}{\sqrt{\mu^{2} - 4\delta}}\right) \exp(\lambda_{4}^{-}\theta) \leq 0, \quad (7)$$

$$e_{-}(\theta \geq 0) = -1 + \frac{1}{2} \left(1 - \frac{2\mu - \sqrt{\mu^{2} + 4\delta}}{\sqrt{\mu^{2} - 4\delta}}\right) \exp(\lambda_{4}^{-}\theta) \leq 0, \quad (7)$$

где

$$\lambda_{1,2}^+ = [-\mu \pm \sqrt{\mu^2 + 4\delta}]/2\delta, \quad \lambda_1^+ \ge 0, \quad \lambda_2^+ < 0,$$

 $\lambda_{3,4}^- = [-\mu \pm \sqrt{\mu^2 - 4\delta}]/2\delta \le 0, \quad \lambda_3^- \le 0, \quad \lambda_4^- < 0$ При $\mu^2 < 4\delta$ и выполнении условия

$$\begin{split} &\ln\!\left(\frac{2\sqrt{2\delta}}{\mu+\sqrt{4\delta+\mu^2}}\right) \leq \frac{\mu}{\sqrt{4\delta-\mu^2}} \\ &\times \left(2\pi - \arctan\frac{\sqrt{4\delta-\mu^2}}{\mu+\sqrt{4\delta+\mu^2}}\right), \end{split}$$

Журнал технической физики, 2020, том 90, вып. 1

т.е. при $\frac{1}{4} < \frac{\delta}{\mu^2} < 88.81$, решение уравнения (6) имеет вид (рис. 1, *b*)

$$e_{+}(\theta \leq 0) = 1 - \exp(\lambda_{1}^{+}\theta) \geq 0,$$

$$e_{-}(\theta \geq 0) = -1 + \frac{2\mu - \sqrt{\mu^{2} + 4\delta}}{\sqrt{|\mu^{2} - 4\delta|}} \exp\left(-\frac{\mu\theta}{2\delta}\right)$$

$$\times \sin\left(\frac{\sqrt{|\mu^{2} - 4\delta|}}{2\delta}\theta\right) + \exp\left(-\frac{\mu\theta}{2\delta}\right)$$

$$\times \cos\left(\frac{\sqrt{|\mu^{2} - 4\delta|}}{2\delta}\theta\right) \leq 0.$$
(8)

Здесь отрицательная часть волны $e = e(\theta)$ содержит затухающие колебания с частотой $p = \sqrt{|\mu^2 - 4\delta|}/2\delta$.

При $\mu^2 = 4\delta$ решение (8) имеет вид

$$e_+(heta \le 0) = 1 - \exp\left(rac{2(\sqrt{2}-1) heta}{\mu}
ight) \ge 0,$$

 $e_-(heta \ge 0) = -1 + \left(1 + rac{2(2-\sqrt{2}) heta}{\mu}
ight) \exp\left(-rac{2 heta}{\mu}
ight) \le 0.$
(9)

Форма такой волны подобна изображенной на рис. 1, а.

Из-за неаналитичности разномодульной нелинейности уравнения (5), его решения для стационарных волн получились также неаналитическими: положительная и отрицательная части волны $e = e(\theta)$ описываются разными функциями $e_{\pm}(\theta)$, при этом в точке $\theta_0 = 0$ терпит разрыв третья производная $d^3e_{\pm}(\theta_0)/d\theta^3$. Здесь, как и в среде с квадратичной упругой нелинейностью [14,16], устойчивость стационарных волн (7)–(9) обеспечивается балансом эффектов нелинейности, диссипации и дисперсии: разномодульная нелинейность увеличивает крутизну фронта, а диссипация и дисперсия стремятся ее уменьшить.

3. Самоподобные периодические волны и импульсные возмущения

Для нахождения автомодельных (или самоподобных) решений [7–10,16] уравнения (5) воспользуемся методом разделения переменных, полагая, что

$$e(z, \theta) = Z(z)\Psi(\theta), \quad Z(z=0) = 1, \quad Z(z) > 0.$$
 (10)

Решение (10) описывает затухающую самоподобную волну, не меняющую своей формы $\Psi = \Psi(\theta)$ при распространении [7–10]. Примерами самоподобных волн являются рассмотренные выше стационарные волны и солитоны [14–16] в средах с квадратичной нелинейностью, линейной диссипацией и дисперсией соответственно и гармонические волны в линейных средах.

Подставляя (10) в (5), получаем

$$\frac{1}{Z(z)} \frac{dZ(z)}{dz} = \frac{1}{\Psi(\theta)} \left(\delta \frac{d^3 \Psi(\theta)}{d\theta^3} + \mu \frac{d^2 \Psi(\theta)}{d\theta^2} - \frac{d|\Psi(\theta)|}{d\theta} \right) = -m, \quad (11)$$

где m = const. Из физических соображений — волна не должна быть нарастающей по координате z > 0, следует, что $m \ge 0$, при этом $Z(z) = \exp(-mz)$. Значение параметра зависит от δ и μ и определяется граничным условием для излучаемой самоподобной волны $e(z = 0, \theta) = \Psi(\theta)$, удовлетворяющей линейным уравнениям для положительной $\Psi_+(\theta) \ge 0$ и отрицательной $\Psi_-(\theta) \le 0$ частям функции $\Psi(\theta)$:

$$\delta \frac{d^3 \Psi_{\pm}(\theta)}{d\theta^3} + \mu \frac{d^2 \Psi_{\pm}(\theta)}{d\theta^2} \mp \frac{d \Psi_{\pm}(\theta)}{d\theta} + m \Psi_{\pm}(\theta) = 0.$$
(12)

Из уравнений (12) получаем характеристическое уравнение

$$\delta(\lambda^{\pm})^3 + \mu(\lambda^{\pm})^2 \mp (\lambda^{\pm}) + m = 0, \qquad (13)$$

.,

где характеристические числа λ^{\pm} соответствуют положительным $\Psi_+(\theta) \ge 0$ и отрицательным $\Psi_-(\theta) \le 0$ частям функции $\Psi(\theta)$.

Корни $\lambda_{1,2,3}^{\pm}$ кубического уравнения (13) определяются формулой Кардано [17]:

$$\lambda_{1}^{\pm} = A_{\pm} + B_{\pm} - \frac{\mu}{3\delta},$$
$$\lambda_{2,3}^{\pm} = -\frac{A_{\pm} + B_{\pm}}{2} \pm i \frac{\sqrt{3}(A_{\pm} - B_{\pm})}{2} - \frac{\mu}{3\delta}$$

где

1

$$egin{aligned} A_{\pm} &= \left(-rac{q_{\pm}}{2} + \sqrt{\mathcal{Q}_{\pm}}
ight)^{1/3}, \ B_{\pm} &= \left(-rac{q_{\pm}}{2} - \sqrt{\mathcal{Q}_{\pm}}
ight)^{1/3}, \ \mathcal{Q}_{\pm} &= \left(rac{p_{\pm}}{3}
ight)^3 + \left(rac{p_{\pm}}{2}
ight)^2, \end{aligned}$$

$$p_{\pm} = -\frac{1}{3} \left(\frac{\mu}{\delta}\right)^2 \mp \frac{1}{\delta}, \ q_{\pm} = 2 \left(\frac{\mu}{3\delta}\right)^3 \pm \frac{\mu}{3\delta^2} + \frac{m}{\delta}.$$
 (14)

В зависимости от параметров δ, μ и *m*, возможны различные варианты решений (14). В первом варианте: λ_1^+ — действительное число, а $\lambda_{1,2}^+$ — комплексносопряженные числа, и втором: все $\lambda_{1,2,3}^+$ — действительные числа. Такие же варианты имеют место и для корней $\lambda_{1,2,3}^-$. Таким образом, здесь возможны различные решения уравнения (12) как в виде периодических волн, так и импульсных возмущений. Эти решения определяются следующими выражениями:

$$\Psi_+(\theta) = A_1^+ \exp(\lambda_1^+ \theta) + A_2^+ \exp(\lambda_2^+ \theta) + A_3^+ \exp(\lambda_3^+ \theta) + c.c.,$$

$$\Psi_{-}(\theta) = A_1^{-} \exp(\lambda_1^{-}\theta) + A_2^{-} \exp(\lambda_2^{-}\theta) + A_3^{-} \exp(\lambda_3^{-}\theta) + c.c.,$$
(15)

где коэффициенты $A_{1,2,3}^{\pm}$ и параметр *m* зависят от вида волны (периодической или импульсной); они находятся из условий непрерывности функций $\Psi_{+}(\theta) \ge 0$, $\Psi_{-}(\theta) \le 0$ и их производных $d\Psi_{\pm}(\theta)/d\theta$, $d^{2}\Psi_{\pm}(\theta)/d\theta^{2}$ в точках $\theta = \theta_{n}$, в которых $\Psi_{\pm}(\theta_{n}) = 0$:

$$\begin{split} \Psi_{+}[n(\theta_{1}+\theta_{2})] &= \Psi_{-}[n(\theta_{1}+\theta_{2})] = \mathbf{0}, \\ \Psi_{+}[n(\theta_{1}+\theta_{2})+\theta_{2}] &= \Psi_{-}[n(\theta_{1}+\theta_{2})+\theta_{2}] = \mathbf{0}, \\ \frac{d\Psi_{+}[n(\theta_{1}+\theta_{2})]}{d\theta} &= \frac{d\Psi_{-}[n(\theta_{1}+\theta_{2})]}{d\theta}, \\ \frac{d\Psi_{+}[n(\theta_{1}+\theta_{2})+\theta_{2}]}{d\theta} &= \frac{d\Psi_{-}[n(\theta_{1}+\theta_{2})+\theta_{2}]}{d\theta}, \\ \frac{d^{2}\Psi_{+}[n(\theta_{1}+\theta_{2})]}{d\theta^{2}} &= \frac{d^{2}\Psi_{-}[n(\theta_{1}+\theta_{2})]}{d\theta^{2}}, \\ \frac{d^{2}\Psi_{+}[n(\theta_{1}+\theta_{2})+\theta_{2}]}{d\theta^{2}} &= \frac{d^{2}\Psi_{-}[n(\theta_{1}+\theta_{2})+\theta_{2}]}{d\theta^{2}}, \end{split}$$
(16)

где $\theta_{1,2}$ — длительности функций $\Psi_{\pm}(\theta)$, $\theta_1 + \theta_2$ — период функции $\Psi(\theta)$, $n = 0, \pm 1, \pm 2, \ldots$. Уравнения (16) представляют собой систему из восьми уравнений с восемью неизвестными (один из коэффициентов $A_{1,2,3}^{\pm}$ для определенности, например A_1^+ , можно положить равным единице), так что коэффициенты $A_{2,3}^+$, $A_{1,2,3}^-$, $\theta_{1,2}$ и параметр m (при заданных δ и μ) определяются однозначно. В общем виде, однако, получить аналитические выражения для $A_{2,3}^+$, $A_{1,2,3}^-$, $\theta_{1,2}$ и m довольно сложно, поэтому далее мы рассмотрим несколько характерных частных случаев.

Если λ_1^{\pm} — действительные числа, а $\lambda_{2,3}^{\pm}$ — комплексно-сопряженные, то получим периодическую волну, при этом из (15) получаем выражения для $\Psi_{\pm}(\theta)$ в более удобном виде (для одного периода волны):

$$\Psi_{+}(\theta) = -\exp(\lambda_{1}^{+}\theta)\sin\theta^{+} + \exp(\operatorname{Re}\lambda_{2}^{+}\theta)$$

$$\times \sin(\operatorname{Im}\lambda_{2}^{+}\theta + \theta^{+}) \ge 0,$$

$$\Psi_{-}(\theta) = -C^{-}\exp(\lambda_{1}^{-}\theta)\sin\theta^{-} + C^{-}\exp(\operatorname{Re}\lambda_{2}^{-}\theta)$$

$$\times \sin(\operatorname{Im}\lambda_{2}^{-}\theta + \theta^{-}) \le 0,$$
(17)

где C^- , θ^+ , θ^- и *m* определяются из условий (16).

3

Puc. 2. Форма самоподобной периодической волны при $\delta = 0.005$, $\mu = 0.1$, m = 4.168, $\lambda_1^+ = -28.155$, $\lambda_{2,3}^+ = 4.078 \pm 3.603i$, $\lambda_1^- = -8.024$, $\lambda_{2,3}^- = -5.988 \pm 8.249i$, $C^- = -1.327$, $\eta^+ = 0.244$, $\eta^- = 3.425$, $\eta_1 = 0.804$, $\eta_2 = 0.533$ (*a*); при $\delta = 0.01$, $\mu = 0.1$, m = 2.831, $\lambda_1^+ = -16.906$, $\lambda_{2,3}^+ = 3.453 \pm 2.197i$, $\lambda_1^- = -3.691$, $\lambda_{2,3}^- = -3.154 \pm 8.171i$, $C^- = -2.611$, $\eta^+ = 0.952$, $\eta^- = 3.789$, $\eta_1 = 0.996$, $\eta_2 = 0.582$ (*b*); при $\delta = 0.02$, $\mu = 0.1$, m = 1.627, $\lambda_1^+ = -10.5$, $\lambda_{2,3}^+ = 2.75 \pm 0.431i$, $\lambda_1^- = -1.841$, $\lambda_{2,3}^- = -1.579 \pm 6.457i$, $C^- = -1.328$, $\theta^+ = 2.574$, $\theta^- = 3.846$, $\theta_1 = 1.316$, $\theta_2 = 0.736$ (*c*).

На рис. 2 приведены некоторые характерные формы самоподобных периодических волн, построенных при различных параметрах δ и μ .

0

-2

-4

 $\Psi(\theta)$

8

4

0

-8

-12

Ψ(θ)

При условии $\Psi_{\pm}(\theta\to \mp\infty)\to \pm 0$ получим самоподобные импульсные возмущения. В этом случае, если $\lambda_{1,2,3}^{\pm}$ действительные числа и $0<\lambda_1^+<\lambda_2^+$, то из выражений (15) имеем

$$\Psi^{+}(\theta \le 0) = \exp(\lambda_{1}^{+}\theta) - \exp(\lambda_{2}^{+}\theta) \ge 0,$$

$$\Psi^{-}(\theta \ge 0) = C_{1}\exp(\lambda_{1}^{-}\theta) + C_{2}\exp(\lambda_{2}^{-}\theta)$$

$$+ C_{3}\exp(\lambda_{2}^{-}\theta) \le 0,$$
 (18)

где

$$C_{1} = \frac{(\lambda_{1}^{+} - \lambda_{2}^{+})(\lambda_{1}^{+} + \lambda_{2}^{+} - \lambda_{3}^{-} - \lambda_{2}^{-})}{(\lambda_{1}^{-} - \lambda_{2}^{-})(\lambda_{1}^{-} - \lambda_{3}^{-})},$$

$$C_{2} = \frac{(\lambda_{1}^{+} - \lambda_{2}^{+})(\lambda_{1}^{+} + \lambda_{2}^{+} - \lambda_{3}^{-} - \lambda_{1}^{-})}{(\lambda_{2}^{-} - \lambda_{1}^{-})(\lambda_{2}^{-} - \lambda_{3}^{-})},$$

$$C_{3} = \frac{(\lambda_{1}^{+} - \lambda_{2}^{+})(\lambda_{1}^{+} + \lambda_{2}^{+} - \lambda_{2}^{-} - \lambda_{1}^{-})}{(\lambda_{3}^{-} - \lambda_{1}^{-})(\lambda_{3}^{-} - \lambda_{2}^{-})}.$$

5

θ

Форма импульсов (18) приведена на рис. 3, а.

Если же $\lambda_{1,2}^+ > 0$, $\lambda_1^- < 0$ — действительные числа, а $\lambda_{2,3}^-$ — комплексно-сопряженные, $\lambda_2^+ > \lambda_1^+$,

Журнал технической физики, 2020, том 90, вып. 1

Pic. 3. Форма самоподобного импульса при $\delta = 0.05$, $\mu = 0.5$, m = 0.2, $\lambda_1^+ = 0.226$, $\lambda_2^+ = 1.507$, $\lambda_1^- = -0.225$, $\lambda_2^- = -2.421$, $\lambda_3^- = -7.355$, $C_1^- = -0.942$, $C_2^- = 1.101$, $C_3^- = -0.159$ (*a*); при $\delta = 4$, $\mu = 1$, m = 0.02, $\lambda_1^+ = 0.020$, $\lambda_2^+ = 0.377$, $\lambda_1^- = -0.020$, $\lambda_2^- = -0.115 + 0.482i$, $\lambda_3^- = -0.115 - 0.482i$, $C_1^- = -1.084$, $\theta^- = -1.029$ (*b*); при $\delta = 4$, $\mu = 0.5$, m = 0.02, $\lambda_1^+ = 0.020$, $\lambda_2^+ = 0.430$, $\lambda_1^- = -0.020$, $\lambda_2^- = -0.052 + 0.495i$, $\lambda_3^- = -0.052 - 0.495i$, $C_1^- = -1.200$, $\theta^- = -0.877$ (*c*).

 $\operatorname{Re} \lambda_2^- < \lambda_1^- < 0$, то из выражений (15) имеем

$$\Psi_+(heta \leq 0) = \exp(\lambda_1^+ heta) - \exp(\lambda_2^+ heta) \geq 0,$$

$$\begin{split} \Psi_{-}(\theta \geq 0) &= -C_{1}^{-} \exp(\lambda_{1}^{-}\theta) \sin(\theta^{-}) + C_{1}^{-} \exp(\operatorname{Re} \lambda_{2}^{-}\theta) \\ &\times \sin(\operatorname{Im} \lambda_{2}^{-}\theta + \theta^{-}) \leq 0, \end{split} \tag{19}$$

где C_1^- и θ^- также находятся из условий непрерывности функций $\Psi_+(\theta) \ge 0$ и $\Psi_-(\theta) \le 0$ и их производных $d\Psi_{\pm}(\theta)/d\theta$, $d^2\Psi_{\pm}(\theta)/d\theta^2$ в точке $\theta = 0$, в которой $\Psi_{\pm}(\theta = 0) = 0$.

Форма таких импульсов показана на рис. 3. Здесь, как и в стационарной волне, отрицательная часть $\Psi_{-}(\theta) \leq 0$

импульсных возмущений содержит затухающие колебания.

Из рис. 2 и 3 видно, что в зависимости от параметров δ , μ , и *m* формы самоподобных периодических волн и импульсных возмущений довольно разнообразны, при этом профили, амплитуды и длительности положительной и отрицательной частей для каждой такой волны различны. Отметим, что при возбуждении и распространении в разномодульной среде с диссипацией (или дисперсией) первоначально гармонической волны или одиночных разнополярных импульсов, их формы (по мере распространения) будут асимптотически приближаться

к формам описанных в настоящей работе самоподобных периодических волн и импульсных возмущений [7–10].

Заключение

Исследовано распространение продольных упругих волн в стержне с разномодульной нелинейностью, линейной диссипацией и геометрической дисперсией фазовой скорости. Показано, что волны в таком стержне описываются уравнением, аналогичным уравнению Кортевега-де Вриза-Бюргерса, для среды с квадратичной нелинейностью [14,16]. Получены точные аналитические и численные решения для профилей разнополярных стационарных волн и самоподобных периодических волн и импульсных возмущений, распространяющихся с затуханием, но без изменения формы. Результаты проведенных исследований представляют интерес для развития теории волновых процессов в средах с неаналитической нелинейностью; они также могут быть использованы и для создания нелинейных методов акустической диагностики структурно-неоднородных сред и конструкционных материалов, содержащих трещины. Основой таких методов является выявление закономерностей нелинейных процессов распространения и взаимодействия первичных гармонических волн и эффектов генерации вторичных волн на комбинационных частотах, отсутствующих в спектре первичных волн.

Финансирование работы

Работа выполнена в рамках государственного задания ИПФ РАН по теме № 0035-2019-0009.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Амбарцумян С.А. Разномодульная теория упругости. М.: Наука, 1982. 359 с.
- [2] *Николаев А.В.* // Изв. АН СССР. Физика Земли. 1979. № 1. С. 72–77.
- [3] Benveniste Y. // Intern. J. Engineer. Sci. 1980. Vol. 18. N 6. P. 815–827.
- [4] Маслов В.П., Мосолов П.П. // ПМТФ. 1985. Т. 49. № 3. С. 419–437.
- [5] Назаров В.Е., Островский Л.А. // Акуст. журн. 1990. Т. 36.
 № 1. С. 106–110.
- [6] Gavrilov S.N., Herman G.C. // J. Sound and Vibration. 2012. Vol. 331. P. 4464–4480.
- [7] Radostin A.V., Nazarov V.E., Kiyashko S.B. // Wave Motion. 2013. Vol. 50. N 2. P. 191–196.
- [8] Назаров В.Е., Кияшко С.В., Радостин А.В. // Изв. вузов. Радиофизика. 2015. Т. 58. № 2. С. 134–141.
- [9] Назаров В.Е., Кияшко С.В., Радостин А.В. // Изв. вузов. Радиофизика. 2015. Т. 58. № 10. С. 811–820.

- [10] Назаров В.Е., Кияшко С.В., Радостин А.В. // Изв. вузов. Радиофизика. 2016. Т. 59. № 3. С. 275–285.
- [11] Rudenko O.V. // Modular Solitons. Doklady Mathematics. 2016. Vol. 94. P. 708–711.
- [12] Nazarov V.E., Kiyashko S.B., Radostin A.V. // Wave Motion. 2017. Vol. 75. P. 72–76.
- [13] Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Наука, 1965. 204 с.
- [14] Наугольных К.А., Островский Л.А. Нелинейные процессы в акустике. М.: Наука, 1990. 240 с.
- [15] Порубов А.В. Локализация нелинейных волн деформации. М.: Физматлит, 2009. 208 с.
- [16] Руденко О.В., Солуян С.И. Теоретические основы нелинейной акустики. М.: Наука, 1975. 288 с.
- [17] Корн Г., Корн Т. Справочник по математике. М.: Наука, 1970. 720 с.