УДК 621.315.592

Сверхструктурное упорядочение в твердых растворах $AI_x Ga_{1-x} As$ и $Ga_x In_{1-x} P$

© П.В. Середин[¶], Э.П. Домашевская, И.Н. Арсентьев^{*¶¶}, Д.А. Винокуров^{*}, А.Л. Станкевич^{*}, Т. Prutskij^{+¶¶¶}

Воронежский государственный университет, 394006 Воронеж, Россия * Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Privada 17 Norte, No 3417, Col San Miguel Huyeotlipan, 72050, Puebla, Pue., Mexico (Получена 11 апреля 2012 г. Принята к печати 25 апреля 2012 г.)

Изучены МОС-гидридные эпитаксиальные гетероструктуры на основе тройных твердых растворов $Al_x Ga_{1-x} As$ и $Ga_x In_{1-x} P$, полученные в области составов $x \approx 0.50$. Используя методы рентгеновской дифракции, растровой электронной микроскопии, атомно-силовой микроскопии и фотолюминесцентной спектроскопии было показано, что возможно образование сверхструктурных фаз упорядочения со стехиометрией $A_{1-\eta}B_{1+\eta}C_2$. Следствием этого является не только изменение кристаллической симметрии нового соединения с кубической на тетрагональную, но и изменение оптических свойств по отношению к неупорядоченному твердому раствору аналогичного состава.

1. Введение

Хорошо известно, что актуальность проблемы упорядочения напрямую связана с модификацией фундаментальных свойств полупроводниковых систем, обусловленной понижением симметрии сфалеритной структуры соединений $A^{III}B^{V}$. Следствием является возможное изменение ширины запрещенной зоны, переход от непрямозонного к прямозонному полупроводнику, инверсному порядку следования зон, усложнению оптических спектров сверхструктурных фаз в результате снятия вырождения с состояний, соответствующих потолку валентной зоны и дну зоны проводимости.

Обзор современной литературы [1-5] дает большое количество разрозненных сообщений о наблюдении спонтанного упорядочения и образования наноразмерных неоднородностей в твердых растворах на основе соединений III-V и возможностях создания фотоэлектрических и оптоэлектроных устройств на основе управляемой самоорганизации и сверхструктурирования в эпитаксиальных твердых растворах полупроводников А^{ШВV}. Однако хорошо развитые теоретические представления [1,2] в этих работах зачастую не подкреплены экспериментально, и потому явление возникновения упорядочения в системах твердых растворов для достаточно хорошо согласованных с монокристаллическими подложками GaAs(100) по параметрам решетки твердых растворов, таких как $Al_xGa_{1-x}As$, $Ga_xIn_{1-x}P$, $Ga_x In_{1-x} As_y P_{1-y}$, является высоко актуальным и практически важным.

Что же особого в этих упорядоченных трехмерных конфигурациях? Оказывается, что некоторые из них имеют уникальное топологическое свойство — они обладают достаточными степенями свободы в своей структуре, чтобы подстроиться под любую (в частности, "идеальную") длину связи и угол связи. Причина этого состоит в том [1,2], что определенные упорядоченные трехмерные (3D) атомные конфигурации минимизируют энергию механических напряжений, возникающих из-за несоответствия параметров решеток между составляющими твердый раствор соединениями, тогда как случайное расположение атомов не дает такой минимизации. Очевидно, ключ к разгадке состоит в том, что в напряженных системах различные атомные конфигурации могут иметь совсем разные энтальпии при одном и том же атомном составе. Упорядоченное расположение атомов соответствует термодинамически стабильной структуре для нескольких атомных слоев, расположенных вблизи поверхности. А далее, при продвижении в глубь пленки, термодинамически стабильная структура возвращается либо к двухфазной системе с разделением фаз [3] (если пленка некогерентная), или к упорядоченной структуре халькопирита [4] (если в пленке имеется когерентность). Таким образом, для того чтобы упорядоченная структура, стабильная на поверхности, могла распространяться глубоко в толщу пленки (преимущественным образом по отношению к распаду твердого раствора на отдельные фазы или к упорядочению по типу халькопирита), необходимо допустить, что если пленку покрыть несколькими монослоями попадающих на нее атомов, то упорядоченная структура как бы "вмерзает" в пленку. Таким образом, если причина упорядочения атомов вблизи поверхности имеет термодинамическую природу,

[¶] E-mail: paul@phys.vsu.ru

[¶] E-mail: arsentyev@mail.ioffe.ru

^{¶¶¶} E-mail: prutskiy@yahoo.com

Рис. 1. Кристаллоструктурные формы упорядоченных изовалентных полупроводниковых твердых растворов: тип InGaAs₂ (слева) и тип CuPt-B (справа).

ее продвижение внутрь, в толщу пленки управляется кинетикой роста упорядоченной структуры [5].

S. Laref с соавт. [6] впервые на основе метода линеаризованных присоединенных плоских волн рассчитал свойства твердого раствора Al_xGa_{1-x}As в виде сверхструктурной фазы AlGaAs₂. Расчет выполнен для твердого раствора Al_xGa_{1-x}As в виде упорядоченной сверхструктуры CuAu-I, которая имеет такое же расположение анионов в элементарной ячейке, как и структура сфалерита, но отличается от нее упорядоченным расположением катионов, что, как и в случае сверхструктуры типа InGaAs₂ (layered tetragonal) (рис. 1), делает ее тетрагональной по оси *с*. Авторами [6] показано, что параметр решетки в плоскости роста для сверхструктуры AlGaAs₂ с CuAu-I упорядочением равен $a^{\parallel} = 5.6399$ Å, а в направлении роста $a^{\perp} = 5.6413$ Å.

Электронные свойства твердых растворов Al_xGa_{1-x}As с упорядочением по типу CuAu-I были теоретически изучены авторами работ [6,7]. Для расчета электронных свойств использовали метод самосогласованного общего потенциала в приближении линейно присоединенных плоских волн (ЛППВ) и метод функционала плотности (LDA). На основе представленной в [7] теории изменений электронных свойств упорядоченных полупроводниковых твердых растворов удалось показать, что для таких систем серьезные изменения претерпевают ширины запрещенных зон, величины спин-орбитальных взаимодействий и электронная плотность. Так, для сверхрешетки $Al_xGa_{1-x}As$, упорядоченной по CuAu-I типу в направлении (100), сдвиг уровня проводимости должен составлять 0.15 эВ. Теоретическое исследование электронной и позитронной зонной структуры тетрагонального соединения AlGaAs₂ кристаллизующегося в подобную структуру CuAu-I, также было выполнено в работе [6] при расчете, основанном на использовании полного кристаллического потенциала методом линеаризованных присоединенных плоских волн (FPLAPW) и методом функционала плотности. Было показано, что тетрагональный твердый раствор Al_xGa_{1-x}As должен быть непрямозонным при малых значениях концентрации и прямозонным при больших значениях концентрации (x > 0.45). Это связано с изгибом зон и эффектами зонного перемешивания в упорядоченных слоях, состоящих по сути из бинарных соединений GaAs (прямозонного полупроводника) и AlAs (непрямозонного полупроводника). Расчеты в работе [6] показали, что AlGaAs₂ является псевдопрямозонным. Псевдопрямозонный полупроводник в данном случае означает, что переход в запрещенной зоне прямой, но номинально соответствует слабому, почти запрещенному оптическому переходу для структуры CuAu-I.

Возникновение явления упорядочения в твердых растворах $Ga_x In_{1-x} P$ при $x \approx 0.50$ является более изученным фактом в отличие от $Al_x Ga_{1-x} As$. В работе [8] сообщается о влиянии упорядочения на оптоэлектронные свойства этих материалов, уменьшении энергии запрещенной зоны, двойном лучепреломлении, анизотропной подвижности носителей заряда и увеличении времени жизни носителей на примере готовых устройств. Возникающее в этом случае упорядочение Ga_xIn_{1-x}P может быть описано решеткой типа CuPt-B (рис. 1) и имеет кинетическое происхождение, а металлорганическое химическое осаждение паров (MOCVD) не только порождает сильное упорядочение CuPt-B, но также обеспечивает хорошую однородность пленки и ее пропускной способности. Показано, что упорядоченный твердый раствор GaInP на подложке GaAs(111) должен иметь широкое распределение доменов различных размеров на своей поверхности. Антифазные границы упорядоченной фазы часто ориентированы в противоположном направлении к плоскости роста по сравнению с GaInP. Данное явление было связано с поверхностной скоростью диффузии и перераспределением плотности.

Таким образом, можно утверждать, что атомное упорядочение характерно для трехкомпонентных полупроводниковых составов III-V с составом $x \approx 0.50$ и дает новые оптические и электрические характеристики по сравнению с неупорядоченными твердыми растворами. Получение упорядоченных твердых растворов на основе соединений $A^{III}B^V$ представляет большой практический интерес, поскольку они могут стать базой для создания приборов опто- и наноэлектроники нового поколения. Поэтому наша статья, продолжающая цикл работ по исследованию упорядочения в эпитаксиальных тройных твердых растворах $Al_x Ga_{1-x} As$ и $Ga_x In_{1-x} P$, посвящена экспериментальному изучению свойств сверхструктурных фаз упорядочения.

2. Объекты и методы исследования

Твердые растворы $Al_x Ga_{1-x} As$ с толщиной ~ 1 мкм (образцы ЕМ1017 и ЕМ135) были получены методом МОС-гидридной эпитаксии с концентрацией атомов в металлической подрешетке $x \approx 0.50$. Эпитаксиальные пленки осаждали на подложках GaAs(100), легированных оловом. Сами слои специально не легировались, но фоновая концентрация в них составляла ~ $2 \cdot 10^{16}$ см⁻³. Толщина подложки стандартная ~ 400 мкм. Температура эпитаксии 650°С. Скорость роста около 3 мкм/мин.

Образец ЕМ806 представлял собой твердый раствор Ga_xIn_{1-x}P, выращенный в области составов с $x \approx 0.50$ методом МОС-гидридной эпитаксии на монокристаллической подложке GaAs(100) марки АГЧО с $n = 10^{18}$ см⁻³. Поток фосфина 450 мл/с, температура роста 600°С.

Структурное качество гетероструктур и определение параметров решеток твердых растворов проводили с использованием рентгеновской дифракции на дифрактометрах ДРОН 4-07 и ARL'XTRA. Инфракрасные (ИК) спектры отражения от гетероструктур были получены с использованием ИК фурье-спектрометра Vertex-70 Bruker. Изучение морфологии поверхности было проведено методом атомно-силовой микроскопии с использованием микроскопа NTEGRA Therma (NT MDT). Концентрации элементов в твердом растворе были уточнены методом рентгеновского микроанализа с использованием приставки Oxford Instruments к электронному микроскопу JEOL.

Спектры фотолюминесценции были получены от поверхности образцов по стандартной методике на основе монохроматора TRIAX550 и охлаждаемого жидким азотом детектора ССD. Возбуждение спектров фотолюминесценции производили аргоновым лазером с длиной волны 514.5 нм. Для фокусировки на поверхности использовался 10× объектив.

3. Результаты исследований и их обсуждение

3.1. $AI_x Ga_{1-x} As$

Выполненные в наших предыдущих работах [9,10] экспериментальные исследования методами рентгеновской дифракции показали, что рост эпитаксиальных твердых растворов $Al_xGa_{1-x}As$ на подложках GaAs(100)в области "нестабильности" $x \approx 0.50$ сопровождается возникновением нано- и микроразмерных неоднородностей в твердом растворе. Основная фаза в обоих образцах — неупорядоченный твердый раствор $Al_xGa_{1-x}As$ с $x \approx 0.50$, а вторая фаза, обнаруженная в образце ЕМ135, — это химическое соединение AlGaAs₂, представляющее собой сверхструктуру к решетке сфалерита, с решеткой типа InGaAs₂ (Layered Tetragonal) [9] и [100]-направлением упорядочения по типу CuAu-I. Энергии эмиссионных пиков фотолюминесценции гетероструктур Al_{0.50}Ga_{0.50}As/GaAs(100)

Образец	Экспериментальные пики, эВ	Дополнительные эмиссионные полосы, эВ	
EM1017	2.04		
EM135	2.00; 2.04; 2.08	2.12	2.17

Фаза упорядочения AlGaAs₂ имеет параметры решетки $a^{\parallel} = 5.6532$ Å, $c^{\perp} = 2a^{\perp} = 11.292$ Å.

Как уже было отмечено ранее, теоретический расчет параметров решетки упорядоченного твердого раствора Al_xGa_{1-x}As в виде упорядоченной сверхструктуры CuAu-I, выполненный в работе [6], показал, что параметр решетки для сверхструктуры AlGaAs₂ равен $a \approx 5.640$ Å, что очень близко к значению, полученному нами. Таким образом, нам впервые экспериментально удалось показать правильность теоретических представлений о структуре упорядоченных соединений на основе Al_xGa_{1-x}As.

Атомно-силовая микроскопия показала (рис. 2, *a*), что в отличие от статистически однородного по составу твердого раствора $Al_{0.50}Ga_{0.50}As$ образца EM1017 поверхность эпитаксиальной гетероструктуры EM135 со сверхструктурной фазой AlGaAs₂ содержит области наноструктурированного рельефа с периодом ~ 115 нм, кратным параметру *c* = 11.292 Å слоистой тетрагональной фазы AlGaAs₂ (рис. 2, *a*). Как видно из результатов РЭМ (рис. 2, *b*) нанообласти, образованные фазой упорядочения AlGaAs₂ в свою очередь формируют микрорельеф с периодом 1 мкм.

Как уже было отмечено, возникновение упорядоченного твердого раствора ведет к модификации фундаментальных свойств полупроводниковой системы, в том числе и оптических. На рис. 3 приведены экспериментальные спектры фотолюминесценции гетероструктур ЕМ1017 и ЕМ135 в области 550–640 нм, характерной для люминесценции твердого раствора Al_{0.50}Ga_{0.50}As. Разложение на компоненты экспериментальных спектров фотолюминесценции этих образцов проводили с применением программного комплекса PeakFit v4.12. При разложении учитывались положение и полуширина экспериментальных пиков. Рассчитанные энергии эмиссионных пиков фотолюминесценции приведены в таблице.

Как видно из полученных результатов, в спектре образца ЕМ1017 присутствует полоса с энергией 2.04 эВ, соответствующая эмиссии от твердого раствора Al_{0.50}Ga_{0.50}As и совпадающая по своему значению с литературными данными [11]. Это согласуется с данными рентгеноструктурного анализа, свидетельствующими об однородности эпитаксиальной пленки образца EM1017. В то же время спектр образца EM135 с фазой упорядочения имеет сложную форму. Результаты разложения спектра фотолюминесценции образца

Рис. 2. Морфология поверхности МОС-гидридной эпитаксиальной гетероструктуры EM135 Al_xGa_{1-x}As/GaAs (100) с x = 0.50: a - ACM изображение микроучастка образца; b - PЭM изображение микроучастка образца.

Рис. 3. Спектры фотолюминесценции гетероструктур Al_{0.50}Ga_{0.50}As/GaAs(100).

ЕМ135 показывают, что спектр является суммой пяти эмиссионных полос (см. таблицу), одна из которых соответствует составу $x \approx 0.50$ и совпадает с аналогичной полосой для неупорядоченного твердого раствора образца ЕМ1017. Сложная структура фотолюминесценции образца ЕМ135 со сверхструктурной фазой в области 590–640 нм может быть объяснена частичным расслоением твердого раствора вблизи x = 0.50 в результате спинодального распада на два близких состава с x = 0.49 и x = 0.51. О такой возможности свидетельствовала большая полуширина линий $K_{\alpha_{1,2}}$ -дублета твердого раствора в этом образце, превосходящая в 1.5 раза полуширину дублетов от подложки и новой фазы AlGaAs₂.

Однако в спектре фотолюминесценции гетероструктуры EM135 присутствуют две дополнительные эмиссионные полосы с энергиями 2.11 и 2.17 эВ, причем вторая из них имеет интенсивность, сравнимую с интенсивностью максимума с энергией 2.04 эВ, соотносимого с эмиссией от Al_{0.50}Ga_{0.50}As. Расчеты, приведенные в теоретической работе [7], показывают, что рассчитанная для сверхструктуры AlGaAs₂ ширина запрещенной зоны для низких температур ($T = 77 \,$ K) составляет $E_g \approx 2.2 \,$ эВ, что согласуется с полученным нами результатом (см. таблицу) и впервые экспериментально подтверждает теоретические исследования.

3.2. $Ga_x In_{1-x} P$

Проблема неустойчивости твердых растворов $Ga_x In_{1-x}P$, особенно в области составов $x \approx 0.50$, является одной из наиболее остро стоящих в физике тонких пленок и на сегодняшний момент изучалась как теоретически, так и экспериментально [8,12–14]. Показано, что возникновение упорядоченных структур в

Рис. 4. Изображения участков поверхности гетероструктуры EM806 Ga_xIn_{1-x}P/GaAs(100), полученные при помощи сканирующего электронного микроскопа, а также области, для которых был выполнен микроанализ: слева — от неупорядоченного твердого раствора, справа — для домена на поверхности.

твердых растворах $Ga_x In_{1-x} P$ не нарушает однородности (планарность роста) пленки и ее пропускной способности. Упорядоченный твердый раствор GaInP на подложке GaAs обычно имеет широкое распределение доменов различных размеров на своей поверхности. При этом фазы упорядочения должны иметь стехиометрию вида $Ga_{1-\eta}In_{1+\eta}P_2$ или $Ga_{1+\eta}In_{1-\eta}P_2$, где η параметр упорядочения, который приобретает значения $\eta = 0 - 1$ [12]. Упорядочение атомов в металлической подрешетке $Ga_x In_{1-x} P$ происходит в направлении (111), что приводит к тетрагональной дисторсии. Вероятно, по этой причине упорядочение в Ga_xIn_{1-x}P было обнаружено лишь при росте эпитаксиальной пленки на подложках InP и GaAs с ориентацией (111), что с учетом типа упорядочения CuPt-В упрощало возникновение сверхструктурных фаз за счет ориентации подложки.

Однако в нашей предыдущей работе [10] методами рентгеноструктурного анализа было показано, что выращенный на GaAs(100) твердый раствор Ga_xIn_{1-x}P при $x \approx 0.50$ может испытывать распад с образованием двухфазной системы, причем, исходя из полученных данных, первая фаза являлась неупорядоченным твердым раствором с составом, соответствующим заданному. Вторая фаза имела параметр кристаллической решетки в направлении роста, близкий к GaAs.

Исследования этой гетероструктуры (образец ЕМ806) на сканирующем электронном микроскопе показывают, что на ее поверхности наблюдается рельеф в виде статистического распределения неоднородностей — "микродоменов", размером около 10 мкм и ориентированных вдоль одного направления. Эти микродомены могут быть представлены в виде прямоугольных параллелепипедов размером $a \times b \times c$, где a — длина параллелепипеда, b — ширина, c — высота, при этом эти величины

Физика и техника полупроводников, 2013, том 47, вып. 1

находятся между собой в следующем соотношении: b = a/3 и c = a/2 (рис. 4, *a*).

Используя приставку рентгеновского микроанализа к сканирующему электронному микроскопу, мы смогли определить концентрации атомов в твердых растворах $Ga_x In_{1-x}P$, а также в доменах, образовавшихся на поверхности твердого раствора образца ЕМ806 (см. рис. 4, b). Анализ показывает, что состав неупорядоченного твердого раствора Ga_xIn_{1-x}P исследуемой гетероструктуры EM806 лежит в пределах $x \approx 0.54$, что совпадает с результатами рентгеноструктурного анализа, проведенного нами в предыдущей работе [10]. Однако домены, возникающие на поверхности образца EM806, имеют состав Ga_{0.66}In_{0.34}P. Следует отметить, что рассчитанный в соответствии с теорией упругости [15] параметр кристаллической решетки доменов $a = 5.6455 \,\text{\AA}$ и параметр решетки твердого раствора $Ga_{0.54}In_{0.46}P \ a = 5.6451 \text{ Å},$ который является матрицей для роста доменной сетки, по нашим данным, практически совпадают, что подтверждает утверждение о хорошей однородности (планарности) эпитаксиальных пленок [8] в нашем случае [10]. Таким образом, как следует из полученных нами экспериментальных данных, происходит распад эпитаксиального твердого раствора Ga_xIn_{1-x}P с образованием периодического распределения на поверхности доменов, представляющих собой фазу упорядочения Ga_{2/3}In_{1/3}P с решеткой типа CuPt-B.

Следует отметить, что распад эпитаксиального твердого раствора происходит при пониженной температуре роста, в то время как изменение потока фосфина (источника фосфора) влияет лишь на изменение состава твердого раствора.

4. Заключение

Таким образом, на основании полученных в работе данных можно говорить о том, что в тройных твердых растворах на основе $A^{III}B^V$ при концентрациях в металлической подрешетке $x \approx 0.50$ возможно образование сверхструктурных фаз упорядочения со стехиометрией $A_{1-\eta}B_{1+\eta}C_2$. Следствием этого является не только изменение кристаллической симметрии нового соединения с кубической на тетрагональную, но и изменение оптических свойств по отношению к неупорядоченному твердому раствору аналогичного состава.

Быстрое протекание фазовых переходов в условиях эпитаксиального роста способствует появлению случайных неоднородностей концентрации частиц, вследствие чего оказывается возможным появление модулированных релаксационных структур (нано- и микродоменов и рельефа) на основе сверхструктурных фаз, а температура роста эпитаксиальных твердых растворов при возникновении неоднородностей — это решающий фактор, поскольку упорядочение — процесс, связанный с поверхностью и происходящий во время эпитаксиального роста.

Важно отметить, что появление фаз упорядочения не нарушает хорошую однородность пленки и обеспечивает минимальные внутренние напряжения кристаллических решеток.

Работа выполнена при поддержке гранта президента Российской Федерации МК-736.2011.2, гранта РФФИ 12-02-90700-моб_ст и ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009—2013 годы, проект 2010-1.3.1-121-018-030.

Список литературы

- [1] J.L. Martins, A. Zunger. Phys. Rev. Lett., 56, 1400 (1986).
- [2] G.P. Srivastava, J.L. Martins, A. Zunger. Phys. Rev. B, 31, 2561 (1985).
- [3] S.-H. Wei, L.G. Ferreira, A. Zunger. Phys. Rev. B, **41**, 8240 (1990).
- [4] R.G. Dandrea, J.E. Bernard, S.-H. Wei, A. Zunger. Phys. Rev. Lett. 64, 36 (1990).
- [5] A. Zunger. MRS-IRS bulletin / July 1997. http://www.sst.nrel.gov/images/mrs97
- [6] S. Laref, S. Mec-abih, B. Abbar, B. Bouhafs, A. Laref. Physica B, 396 169 (2007).
- [7] Su-Huai Wei, A. Zunger. Phys. Rev. B, **39** (5), 700 (1989).
- [8] S.P. Ahrenkiel, K.M. Jones, R.J. Matson, M.M. Al-Jassim, Y. Zhang, A. Mascarenhas, D.J. Friedman, D.J. Arent, J.M. Olson, M.C. Hanna. Mater. Res. Soc. (Fall Meeting Boston, Massachusetts. Nov. 29–Dec. 3, 1999).
- [9] E.P. Domashevskaya, P.V. Seredin, A.N. Lukin, L.A. Bityutskaya, M.V. Grechkina, I.N. Arsent'ev, D.A. Vinokurov, I.S. Tarasov. Surface and Interface Analysis, 8 (4), 828 (2006).
- [10] П.В. Середин, Э.П. Домашевская, Вал. Е. Руднева, В.Е. Руднева, Н.Н. Гордиенко, А.В. Глотов, И.Н. Арсентьев, Д.А. Винокуров, А.Л. Станкевич, И.С. Тарасов. ФТП, 43 (9), 1261 (2009).

- [11] Yu.A. Goldberg. Handbook Series on Semiconductor Parameters, ed. by M. Levinshtein, S. Rumyantsev and M. Shur (World Scientific, London, 1999) v. 2, p. 1.
- [12] Su-Huai Wei, A. Zunger. Phys. Rev. B, 49, 14337 (1994).
- [13] P. Ernst, C. Geng, F. Scholz, H. Schweizer, Yong Zhang et al. Appl. Phys. Lett., 67, 2347 (1995).
- [14] P. Ernst, C. Geng, F. Scholz, H. Schweizer. Phys. Status Solidi B, **193** (1), 213 (1996).
- [15] П.В. Середин, А.В. Глотов, В.Е. Терновая, Э.П. Домашевская, И.Н. Арсентьев, Л.С. Вавилова, И.С. Тарасов. ФТП, 45 (11), 1489 (2011).

Редактор Т.А. Полянская

Superstructure ordering in $AI_xGa_{1-x}As$ and $Ga_xIn_{1-x}P$ solid solutions

P.V. Seredin, E.P. Domashevskaya, I.N. Arsentyev*, D.A. Vinokurov*, A.L. Stankevich*, T. Prutskij⁺

Voronezh State University, 394893 Voronezh, Russia * loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia + Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Privada 17 Norte, No 3417, Col San Miguel Huyeotlipan, 72050 Puebla, Mexico

Abstract We studied the MOCVD heterostructures based on ternary solid solutions $Al_xGa_{1-x}As$ and $Ga_xIn_{1-x}P$ with $x \approx 0.50$. Using the methods XRD, SEM, AFM and photoluminescence has been shown that the possible formation of the superlattice ordering phases with the stoichiometry of $A_{1-\eta}B_{1+\eta}C_2$. The result is not only a change of crystal symmetry of new compound from a cubic to tetragonal but the change in optical properties.