08,09

Влияние неконтролируемых примесей на спектр поглощения лазерного кристалла NaGd(WO₄)₂

© М.П. Зыкова¹, К.А. Субботин^{1,2}, С.К. Павлов¹, Д.А. Лис², Е. Чернова¹, Е.В. Жариков², И.Х. Аветисов^{1,}¶

¹ Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия ² Институт общей физики им. А.М. Прохорова РАН, Москва, Россия

[¶] E-mail: igor_avetisov@mail.ru

Поступила в Редакцию 16 июля 2019 г. В окончательной редакции 16 июля 2019 г. Принята к публикации 25 июля 2019 г.

> Методом Чохральского выращены три монокристалла $NaGd(WO_4)_2$ с использованием шихты с различной химической чистотой. Выполнен анализ примесного состава выращенных кристаллов методом массспектрометрии с индуктивно связанной плазмой. Измерены спектры оптического поглощения кристаллов и проанализировано влияние неконтролируемых примесей на оптические свойства кристаллов и их окраску. Показано, что зеленая окраска, которая иногда встречается в кристаллах $NaGd(WO_4)_2$ обусловлена наличием неконтролируемых примесей значимо влияет примесе хрома.

> Ключевые слова: примесная чистота, вольфрамат цинка, иттербий, монокристаллы, центры окраски, оптическое поглощение.

DOI: 10.21883/FTT.2019.12.48606.61ks

1. Введение

Монокристалл вольфрамата натрия-гадолиния NaGd (WO₄)₂ (NGW) является одной из перспективных лазерных матриц для легирования редкоземельными ионами (РЗИ). Лазеры на кристаллах NGW, легированных различными РЗИ, эффективно работают как в режиме синхронизации мод, так и в режиме плавной перестройки длины волны излучения в достаточно широких диапазонах [1-4]. Структура данного кристалла является производной от структуры шеелита CaWO4 и состоит из [WO₄]²⁻ — тетраэдров, при этом катионы Na⁺ и Gd³⁺, замещающие Ca²⁺, находятся внутри сильно искаженного восьмикратного кислородного окружения. Кристаллы NGW, легированные РЗИ, имеют пространственные группы $I4_1/a$, I/4, I4/m или I4, с параметрами элементарной ячейки $a \sim 5.22$ Å, $c \sim 11.35$ Å, в зависимости от конкретной легирующей примеси и ее концентрации [3,5-9]. Данные кристаллы могут быть легко получены методом Чохральского, при этом все РЗИ обладают хорошей твердофазной растворимостью в кристалле [1,3,4,6,7,9].

Будучи структурно разупорядоченными, кристаллы NGW обеспечивают широкие оптические полосы поглощения и люминесценции РЗИ. Более того, сильные искажения локального окружения легирующей примеси приводят к существенному смягчению запрета Лапорта на электродипольные f-f-переходы в РЗИ [10]. Это приводит к достаточно высоким вероятностям и удельным интенсивностям излучения на спектральных переходах РЗИ [3,4,7,10–12]. Одной из проблем этих кристаллов, впервые обсуждавшейся в работе [6], является время от времени возникающая дополнительная (не связанная с РЗИ-легированием) зеленая окраска кристаллов. Эта окраска не исчезает в процессе отжига кристаллов. Более того, предполагается, что интенсивность зеленой окраски кристаллов NGW не зависит от "внешних" условий роста (атмосферы роста, материала тигеля, скорости вытягивания и т.п.). Между тем, эта дополнительная окраска существенно ухудшает генерационные характеристики кристаллов, вплоть до полного ее подавления. В настоящей работе мы попытались выяснить причину зеленой окраски кристаллов NGW путем анализа влияния неконтролируемых примесей на оптические свойства кристаллов.

2. Экспериментальная часть

Кристаллы NGW были выращены методом Чохральского на ростовой установке "Кристалл-2" из платинородиевого тигля на воздухе. В качестве затравки использовали монокристаллический брусок NGW, вырезанный перпендикулярно главной кристаллографической оси 4-го порядка. Скорость вытягивания составляла 1 mm/h, скорость вращения составляла 6 грт. После роста кристаллы охлаждали до комнатной температуры со скоростью 10 K/h, чтобы избежать растрескивания.

Для подготовки шихты был использован оксид вольфрама (VI) из двух разных партий производства ООО "Ланкхит", Россия. Партия № 1-WO₃ имела заявлен-

Рис. 1. Концентрации примесей в используемых партиях WO₃: партия № 1-WO₃ (вверху), партия № 2-WO₃ (внизу).

ную производителем чистоту 5N по металлическим примесям; партия № 2-WO₃-4N. Другими исходными веществами были: Na₂CO₃ (X.Ч.) и Gd₂O₃ (GdO-G, OCT 48-200-81, OC.Ч.). Исходные реактивы были взвешены на аналитических весах Sartorius, тщательно перемешаны, и полученные смеси перед загрузкой в ростовой тигель прокаливались при температуре 700°C в течение 4h в муфельной печи для протекания твердофазного синтеза.

Примесные составы как WO₃ (обеих партий), так и выращенных кристаллов определяли с помощью масс-спектрометрии с индуктивно связанной плазмой (ICP-MS, NexION 300D. Perkin-Elmer, CША). Кроме того, состав кристаллов измеряли с помощью искровой масс-спектрометрии (SMS) на масс-спектрометре JMS-01-BM2 (JEOL, Япония). Спектры оптического поглощения измеряли на спектрофотометре Cary 5000 (Varian, Франция) в диапазоне длин волн 300–2000 nm.

3. Результаты и обсуждение

Анализ примесной чистоты двух партий оксида вольфрама (VI) представлен на рис. 1 (здесь и далее выявленные элементы с концентрациями, превышающими пределы определения с помощью ICP MS, представлены сплошными черными прямоугольниками; в случае остальных элементов, концентрации которых в образцах ниже пределов определения, представлены их пределы определения в виде пустых прямоугольников). Согласно результатам анализа основным отличием между используемыми партиями WO₃ является наличие 3d-элементов во второй партии (Ti, V, Cr, Mn, Fe, Ni, Cu) в концентрациях на уровне $10^{-4}-10^{-5}$ wt%. Известно, что ионы 3d-элеметов, обычно характеризующиеся электронноколебательными спектральными переходами, могут давать широкие интенсивные полосы в спектрах поглощения конденсированных сред, в которых они локализованы. Партия № 1-WO₃ была гораздо чище по этим примесям, за исключение Ni и Cu.

Что касается других элементов в партиях WO₃ (щелочные ионы, Mo, As, Re, Hg, Tl и др.), то их концентрации оказались относительно большими и сопоставимыми для обеих партий. Однако, известно, что эти примеси не участвуют в образовании дополнительного оптического поглощения в кристаллах, по крайней мере, при концентрациях $10^{-3}-10^{-4}$ wt%.

Партия № 1 WO₃ была использована для выращивания монокристаллов № 1-NGW и № 2-NGW. Кристалл

Рис. 2. Фотографии выращенных кристаллов $NaGd(WO_4)_2$ № 1-NGW, № 2-NGW, № 3-NGW.

Рис. 3. Концентрации примесей в выращенных кристаллах NaGd(WO₄)₂: кристалл № 1-NGW (*a*); кристалл № 2-NGW (*b*); кристалл № 3-NGW (*c*).

№ 1-NGW оказался бесцветным, без видимой окраски. Кристалл № 2-NGW имел бледно-зеленую окраску. Кристалл № 3-NGW был выращен с использованием партии № 2-WO₃ и имел ярко-зеленую окраску (рис. 2).

Примесные составы кристаллов № 1-NGW И № 2-NGW очень похожи (рис. 3). Источником ряда примесей (Mo, Re, Tl и др.), является, по-видимому, WO₃. Источником некоторые других примесей (прежде всего, РЗИ), очевидно, является Gd₂O₃, тогда как родий, по-видимому, был захвачен расплавом из тигля. Основным и очевидным отличием примесных составов кристаллов № 1-NGW № 2-NGW является наличие хрома во втором из них в концентрациях, превышающих пределы определения. Основное и принципиальное отличие примесного состава кристалла № 3-NGW от такового в кристаллах № 1-NGW и № 2-NGW заключается в наличии всех 3d-ионов (Ti, V, Cr, Mn, Fe, Ni, Cu), которые содержатся в партии № 3-WO₃. Единственным очевидным исключением является железо: оно присутствует в кристалле № 3-NGW в концентрации 10⁻² wt%. Аналогичный результат был получен с помощью SMS анализа. Такое большое количество железа не могло попасть в кристаллическую фазу из исходных WO₃ или Gd₂O₃, и весьма сомнительно, что оно могло попасть в кристалл из технологического оборудования во время получения кристалла. Вероятно, основная часть железа попала в кристалл из Na₂CO₃, который был не таким чистым, как нам хотелось бы.

Из анализа полученных нами результатов и литературных данных следует, что примесь железа, по-видимому, не является наиболее важным окрашивающим агентом в исследованных кристаллах NGW.

Действительно, самой сильной полосой оптического поглощения в кристаллах, вызывающей зеленую окраску, является полоса в диапазоне 600-800 nm (рис. 4). Интенсивность этой полосы составляет около $0.07\,{
m cm}^{-1}$ в кристалле № 2-NGW и около 0.3 cm⁻¹, т.е. в 5 раз больше — в кристалле № 3-NGW. Разница же в концентрации железа между кристаллами № 2-NGW и № 3-NGW, обнаруженная как с помощью ICP-MS, так и с помощью SMS-анализа, составляет, по меньшей мере, два порядка. Кроме того, полоса поглощения в диапазоне 600-800 nm — не самая типичная для железа. Известно, что самая сильная полоса поглощения ионов Fe²⁺ в оксидных кристаллах находится в районе 1 μ m [13,14], тогда как ионы Fe³⁺ имеют полосу поглощения с максимумом в ультрафиолетовой области с очень широким длинноволновым склоном, простираю-

Рис. 4. Спектры неполяризованного оптического поглощения монокристаллов NGW при 300 К.

щимся до 700-800 nm [14]. Возможно, небольшой пик в районе 900 nm, наблюдаемый в спектре поглощения кристалла № 3-NGW, является поглощением иона Fe²⁺.

Мы полагаем, что наиболее важной поглощающей примесью в исследованных кристаллах, обуславливающей данную окраску, является хром в разных степенях окисления. Действительно, содержание хрома в кристаллах № 2-NGW и № 3-NGW составляет $3.8 \cdot 10^{-5}$ и $3.3 \cdot 10^{-4}$ wt% соответственно. Тогда как содержание этой примеси в кристалле № 1-NGW ниже предела определения ($1.1 \cdot 10^{-5}$ wt%). Эти соотношения концентраций хрома близки к соотношениям интенсивностей полосы оптического поглощения в районе 600–800 nm в исследованных кристаллах.

Хром в кристаллах NGW может находиться в различных степенях окисления: ионы Cr⁴⁺ и Cr⁶⁺ могут замещать ионы W⁶⁺ в тетраэдрических позициях, а ион Cr²⁺, может занимать кальциевые позиции шеелитовой структуры (замещать ионы Na⁺, Gd³⁺). Тетраэдрически координированный четырехвалентный хром имеет две основные широкие полосы поглощения: в районе 600-800 nm (в зависимости от силы кристаллического поля), обусловленную электронно-колебательным переходом ${}^{3}A_{2} \rightarrow {}^{3}T_{1}$, и в районе 900-1100 nm (опять же, в зависимости от конкретной силы кристаллического поля), обусловленную электронно-колебательным переходом ${}^{3}A_{2} \rightarrow {}^{3}T_{2}$ [13]. Первая полоса на порядок интенсивнее второй, и она, как правило, расщеплена на три орбитальных компонента низкосимметричным кристаллическим полем.

Для шестивалентного хрома характерна одна чрезвычайно интенсивная широкая оптическая полоса поглощения в области 350–370 nm (в зависимости от силы кристаллического поля конкретной матрицы), обусловленная переходом с переносом заряда [15]. Двухвалентный хром имеет две наиболее сильные широкие полосы поглощения в районе 800 nm и около 1700–2000 nm. Первая полоса связана с переходом ${}^{5}E \rightarrow {}^{5}T_{2}$ [13], другая — по мнению [13] связана с переходом между

различными ян-теллеровскими компонентами уровня ${}^{5}E$, а в работе [16] эту полосу связывают с переходом ${}^{5}E \rightarrow {}^{3}T_{1}$. Все указанные полосы можно наблюдать на спектрах поглощения исследованных кристаллов.

Присутствие иона Cr^{3+} , имеющего характерные широкие полосы поглощения с максимумами в районе 400–500 nm и при 600–700 nm (в зависимости от силы кристаллического поля конкретной матрицы) [13], также нельзя исключить.

4. Заключение

Правомерность сделанного в статье вывода о том, что формирование зеленой окраски в кристаллах NaGd(WO₄)₂ обуславливается наличием ионов хрома в различных степенях окисления, может быть подтверждена исследованиями люминесцентных характеристик, включая измерения кинетики затухания люминесценции, а также измерения кинетики затухания люминесценции, а также измерениями ЭПР. Эти исследования будут выполнены на данных кристаллах в ближайшее время. Все остальные примеси, обнаруженные в кристаллах, играют, вероятно, незначительную роль в спектрах поглощения исследованных кристаллов NGW.

Финансирование работы

Работа выполнена при финансовой поддержке Министерства науки и высшего образования России по проекту RFMEFI57418X0186.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- E.V. Zharikov, D.A. Lis, A.V. Popov, K.A. Subbotin, S.N. Ushakov, A.V. Shestakov. I. Razdobreev. Quantum Electron. 36, 515 (2006).
- [2] J.M. Cano-Torres, M.D. Serrano, C. Zaldo, M. Rico, X. Mateos, Junhai Liu, U. Griebner, V. Petrov. J. Opt. Soc. Am. B 23, 2494 (2006).
- [3] J.M. Cano-Torres, M. Rico, X. Han, M.D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, C. Krankel. Phys. Rev. B 84, 174207 (2011).
- [4] E.V. Zharikov, C. Zaldo. F. Diaz. MRS BULLETIN 34, 271 (2009).
- [5] Е.В. Жариков, Г.М. Кузьмичева, Д.А. Лис, Ю.М. Папин, В.Б. Рыбаков, В.А. Смирнов, К.А. Субботин. Неорган. материалы **39**, 200 (2003).
- [6] G.M. Kuz'micheva, D.A. Lis, K.A. Subbotin, V.B. Rybakov, E.V. Zharikov. J. Cryst. Growth 275, e1835 (2005).
- [7] F.A. Bolschikov, G.M. Kuz'micheva, D.A. Lis, Yu.M. Papin, A.V. Popov, P.A. Ryabochkina, V.B. Rybakov, V.G. Senin, V.A. Smirnov, K.A. Subbotin, Yu.K. Voron'ko, V.V. Voronov, E.V. Zharikov. J. Cryst. Growth **311**, 4171 (2009).

- [8] Г.М. Кузьмичева, В.Б. Рыбаков, В.Л. Панютин, Е.В. Жариков, К.А. Субботин. Журн. неорган. химии 55, 1534 (2010).
- [9] J. Fan, H. Zhang, J. Wang, Z. Ling, H. Xia, X. Chen, Y. Yu, Q. Lu, M. Jiang, J. Phys. D 39, 1034 (2006).
- [10] P.A. Ryabochkina, S.A. Antoshkina, S.A. Klimin, D.A. Lis, K.A. Subbotin, S.N. Ushakov, E.V Zharikov. J. Lumin. 138, 32 (2013).
- [11] Ю.К. Воронько, Е.В. Жариков, Д.А. Лис, А.А. Соболь, К.А. Субботин, С.Н. Ушаков, В.Е. Шукшин, С. Дрёге. Неорган. материалы **39**, 1509 (2003).
- [12] A. Garcia-Cortes, C. Zaldo, C. Cascales. Opt. Mater. 31, 1096 (2009).
- [13] S. Kück. Appl. Phys. B 72, 515 (2001).
- [14] M.N. Taran, K. Langer. Phys. Chem. Miner. 28, 199 (2001).
- [15] C. Koepke, K. Wishniewski, M. Grinberg. J. Alloys Comp. 341, 19 (2002).
- [16] Y. Yamaguchi, K. Yamagishi, Y. Nobe. J. Cryst. Growth 128, 996 (1993).

Редактор Д.В. Жуманов