01,05,11

Структурные, магнитные и тепловые свойства соединения Tb_{0.8}Sm_{0.2}Fe₂ со структурой фаз Лавеса

© Т.А. Алероева^{1,2}, И.С. Терешина¹, Т.П. Каминская¹, З.С. Умхаева^{2,3}, А.В. Филимонов⁴, П.Ю. Ванина⁴, О.А. Алексеева⁴, А.С. Илюшин^{1,3}

 ¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия
² Чеченский государственный университет, Грозный, Россия
³ Комплексный научно-исследовательский институт им. Х.И. Ибрагимова, Грозный, Россия
⁴ Санкт-Петербурский политехнический университет Петра Великого, Санкт-Петербург, Россия

E-mail: irina tereshina@mail.ru

Поступила в Редакцию 9 июля 2019 г. В окончательной редакции 9 июля 2019 г. Принята к публикации 15 июля 2019 г.

Выполнено комплексное исследование структуры, фазового состава, особенностей топологии поверхности, магнитострикционных и тепловых свойств соединения $Tb_{0.8}Sm_{0.2}Fe_2$. Установлены особенности структуры на микро- и наноуровне, получена информация о магнитной доменной структуре при комнатной температуре. Представлены результаты рентгеноструктурных исследований в широкой области температур 90–760 К, включая температуру Кюри. Получены и проанализированы экспериментальные данные по тепловому расширению и магнитострикции в магнитных полях до 12 kOe. Обнаружена аномалия на кривых теплового расширения $\Delta l/l(T)$ и магнитострикционного эффекта сохраняется практически неизменной в широкой области температур 100–300 К в полях до 3.5 kOe.

Ключевые слова: интерметаллид, структура, тепловое расширение, магнитострикция.

DOI: 10.21883/FTT.2019.12.48603.551

1. Введение

Соединения редкоземельных металлов (РЗМ) с 3d-переходными металлами (Fe, Co, Ni и др.) образуют важный в практическом отношении класс магнитных материалов, демонстрирующих высокие значения как спонтанной магнитострикции, так и магнитострикции, индуцированной внешним полем в широкой области температур, включая комнатную [1-10]. Наиболее известные среди них соединения TbFe2 и SmFe2 со структурой фаз Лавеса с гигантской магнитострикцией в области комнатных температур +1.7 · 10⁻³ и -1.5 · 10⁻³, соответственно [11-16]. Сплавы имеют близкие по абсолютной величине значения магнитострикции, которые отличаются по знаку. Данный факт позволяет вести поиск многокомпонентных сплавов на основе тербия, самария и других РЗМ с возможностью управлять такими параметрами, как магнитострикция, спонтанная и индуцированная, так и магнитокристаллическая анизотропия. Минимизация магнитокристаллической анизотропией в области комнатных температур реализована в Tb_{0.3}Dy_{0.7}Fe₂ (Терфенол-Д, получивший широкое применение в технике), а также в сплавах подобного состава [2,17-19]. Минимизацию магнитострикционных деформаций можно ожидать в системе

 $(Tb_{1-x}Sm_x)Fe_2$. Данная система детально исследовалась в работе Илюшина и соавторами [20]. В работе была получена магнитная спин-переориентационная фазовая диаграмма. Установлено, что в псевдобинарной системе $(Tb_{1-x}Sm_x)$ Fe₂ в температурном интервале от 5 до 300 К на фазовой диаграмме можно выделить три области, а именно: область сплавов с ромбоэдрической структурой и ориентацией магнитного момента М соединения вдоль оси (111), область сплавов с ромбической структурой и ориентацией вектора M вдоль оси (110) и область, в которой структура сплава имеет сложные искажения, другими словами область угловых магнитных фаз. К последней области относятся сплавы с большим содержанием самария. Эти сплавы достаточно хорошо изучены в литературе (включая двойной сплав SmFe₂), в то время как сплавы с высоким содержанием тербия и низким содержанием самария изучались фрагментарно, в отсутствие комплексного подхода, включающего в себя одновременное исследования структурных и магнитных характеристик. В целом однофазные сплавы системы $(Tb_{1-x}Sm_x)Fe_2$ получить достаточно трудно, поскольку самарий относится к легким редкоземельным металлам и является летучим элементом. В работе Илюшина и соавторов [20] для получения сплавов $(Tb_{1-x}Sm_x)Fe_2$ был применен метод технологии синтеза, протекающего в экстремальных условиях (при высоких температурах и высоких давлениях).

Система $(Tb_x Sm_{1-x})Fe_2$ является крайне интересной для исследования структурных и магнитных свойств. Магнитные моменты ионов самария упорядочивается параллельно подрешетке железа. Тербий относится к тяжелым редкоземельным металлам и его магнитные моменты упорядочиваются антипараллельно подрешеткам и железа и самария. Таким образом, в зависимости от концентраций ионов тербия и самария в соединениях преобладают либо ферро-, либо ферримагнитные взаимодействия. Целью данной работы явилось комплексное изучение структурных, магнитных и тепловых характеристик сплава с высоким содержанием тербия $Tb_{0.8}Sm_{0.2}Fe_2$, а, следовательно, с преобладающими ферримагнитными взаимодействиями.

Получение образцов и методика эксперимента

С интез сплава Tb_{0.8}Sm_{0.2}Fe₂ производился на основе высокочистых P3M и Fe в дуговой печи с нерасходуемым вольфрамовым электродом на медном водоохлаждаемом поду специальной конструкции в атмосфере очищенного инертного газа (аргона) при нормальном давлении. Затем образец подвергались гомогенизирующему отжигу в течение 2 недель.

Рентгеновский спектр при комнатной температуре снимался на дифрактометре Panalytical Emryren с использованием медного анода, в геометрии Брэгга–Брентано с шагом 0.026° , в диапазоне углов от 50 до 140° , с использованием двухкоординатного детектора Pixel3D, системы варьируемых щелей, никелевого фильтра (дифрактограмма содержит Cu $K_{\alpha 1}$ и Cu $K_{\alpha 2}$ излучение). Параметры элементарной ячейки определялись по отражениям в области углов $2\theta = 15-105^{\circ}$. Фазовый состав образца исследовался с помощью Ритвельд-анализа в программе Powred Cell 2.4.

Температурные измерение рентгеновских спектров были получены с использованием фильтрованного Мо K_{α} -излучения на рентгеновском дифрактометре SuperNova (Agilent) в диапазоне температур 90–760 К. Температуру образца контролировали путем контакта с потоком газообразного азота определенной температуры, значение которой задавалось системой Oxford Cryosystems (Cobra Plus).

Исследования поверхности образцов $Tb_{0.8}Sm_{0.2}Fe_2$ были выполнены на растровом электронном микроскопе QUANTA 3D 200i (США) в режиме высокого вакуума при ускоряющем напряжении электронного луча 30 kV и увеличении в 3000 раз. Для получения изображения использовался детектор Эверхарта—Торнли (ЭТД) сцинциляторного типа с фотоумножителем, воспринимающий вторичные (SE) и обратно-рассеянные электроны (BSE), возбуждаемые первичным пучком при его взаимодействии с образцом (Научно-исследовательского центра

коллективного пользования "Нанотехнологии и наноматериалы" ГГНТУ им. акад. М.Д. Миллионщикова).

Поверхность образцов $Tb_{0.8}Sm_{0.2}Fe_2$ исследовалась на шлифах методом атомно-силовой микроскопии (ACM), с использованием сканирующего зондового микроскопа Smena-A (платформа Solver, ЗАО НТ-МДТ, Россия), в контактной (методом латеральных сил) моде, при комнатной температуре, с применением стандартных кремниевых кантилеверов HA_NC Etalon с частотами 135-250 kHz. Для выявления особенностей поверхности в наномасштабе образцы-шлифы подвергались травлению в 5%-м растворе азотной кислоты в спирте. Для исследования доменной структуры сплава методом магнитно- силовой микроскопии (МСМ) проводились исследования на полностью размагниченных образцахшлифах с помощью магнитных кантилеверов MFM01 с покрытием CrCo, с резонансной частотой 70 kHz и силовой константой 1-5 N/m.

Измерения теплового расширения и магнитострикции проводилось тензометрическим методом. Использованные в данной работе тензодатчики были изготовлены из тензочувствительной проволоки, не обладавшей заметным гальваномагнитным эффектом. Датчики имели базу 5 mm и сопротивление 120 Ω. Коэффициент тензочувствительности составлял S = 2.15 во всем температурном интервале. При измерениях один датчик наклеивался на образец, а другой, компенсационный, наклеивался на тонкую кварцевую пластинку, которая прижималась к образцу. Оба датчика включались в противоположные плечи моста Уинстона. Сопротивление рабочего и компенсационного тензодатчиков отличались не более чем на 1%. Для градуировки схемы измерялся сигнал разбаланса моста при включении эталонного сопротивления 0.1 Ω. В качестве эталонного образца использовался поликристаллический никель. Образцы предварительно охлаждались до температуры 80 К. Далее производился нагрев образца, причем скорость изменения температуры не превышала 1 К/min. Измерения проводились в интервале температур 80-400 К. Образец в криостате помещался в зазор электромагнита, что также позволяло проводить измерения термо- и магнитострикции в интервале температур 80-320 К в магнитных полях до 12 kOe.

3. Результаты и обсуждение

В результате проведенного синтеза был получен образец $Tb_{0.8}Sm_{0.2}Fe_2$. Анализ дифракционного спектра, полученного при комнатной температуре (см. рис. 1) показал, что удалось синтезировать практически однофазный сплав, не применяя технологию синтеза в экстремальных условиях. Атомно-кристаллической структура соединения $Tb_{0.8}Sm_{0.2}Fe_2$ изотипна структуре кубической фазы Лавеса C15 (MgCu₂). Было рассчитано значение параметра решетки *a*, которое составило 7.360 Å, а также объем элементарной ячейки V = 398.7 Å³. На-

Рис. 1. Дифрактограмма сплава Tb_{0.8}Sm_{0.2}Fe₂, полученная при комнатной температуры.

ми также проводились дифрактометрические измерения образца Tb_{0.8}Sm_{0.2}Fe₂ в широком температурном диапазоне от 90 до 760 К (см. рис. 2). По результатам анализа набора дифрактограмм была построена температурная зависимость параметра псевдокубической ячейки $a_{\text{cubic}}(T)$, в том числе и в области температуры Кюри $(T_{\rm C} = 673 \,{\rm K})$ (см. рис. 2, *a*). Кроме того, нами была рассчитана температурная зависимость параметров ромбоэдрической ячейки $(a \ {\rm u} \ c)_{\rm rhombohedral}(T)$ в диапазоне 90-500 К. Установлено, что образец Tb_{0.8}Sm_{0.2}Fe₂ при нагреве постепенно аморфизируется и уже в области температуры 400 К интенсивность рефлексов заметно снижается (что уменьшает соотношение пик-фон) и существенно понижает точность определения параметра ячейки. Повторное измерение оттоженного таким образом образца (после охлаждения до комнатной температуры и хранении в течение нескольких дней при комнатной температуре) показали, что только часть кристаллической фазы восстанавливается, однако ее доля

в образце заметно ниже, чем было изначальной при первом измерении.

2473

На рис. 3 представлена топология поверхности и MCM-изображение образца $Tb_{0.8}Sm_{0.2}Fe_2$. Сравнительный анализ снимков, полученных с помощью двух методов [21,22], а именно, с помощью РЭМ (на сколе) и ACM (на шлифе после процедуры травления), показывает наличие на поверхности эллипсоидных структурных элементов с размерами порядка 30 nm (в ширину) и 80 nm (в длину), выстроенных в виде направленных вытянутых длинных нитей, что является характерным для структуры поверхности чистых редкоземельных металлов [23,24].

Метод магнитно-силовой микроскопии позволил выявить на поверхности образца $Tb_{0.8}Sm_{0.2}Fe_2$ доменную структуру достаточно сложной формы. Описание наблюдаемой структуры затруднено, поскольку она сильно отличается от классической (лабиринтной, полосовой, звездчатой, и т.д.). Причин такого отличия может быть очень много. Одной из основных причин является состояние поверхности, подвергнутой механической обработки (шлифованию), а также последующему травлению.

В данной работе тензометрическим методом были исследованы линейные деформации сплава $Tb_{0.8}Sm_{0.2}Fe_2$ в зависимости от температуры (тепловое расширение), а также в зависимости от величины приложенного внешнего магнитного поля (магнитострикция). На рис. 4 показано тепловое расширение образца $Tb_{0.8}Sm_{0.2}Fe_2$ (тензодатчик был приклеян вдоль вытянутых длинных нитей). Видно, что в области низких температур (при $T \approx 100 \text{ K}$) наблюдается аномалия на кривых $\Delta l/l(T)$. В отсутствие спин-переориентационного фазового перехода в этой области температур, можно предположить, что аномалия в данном трехподрешеточном магнетике связана с различных подрешеток (подрешетки

Рис. 2. Температурные зависимости параметров элементарной ячейки Tb_{0.8}Sm_{0.2}Fe₂ в интервале температур 90–760 K, полученные в рамках кубической модели (*a*) и ромбоэдрической (1b).

Рис. 3. Топология поверхности сплава $Tb_{0.8}Sm_{0.2}Fe_2$, полученная методом РЭМ (*a*), ACM ((*b*) $1 \times 1 \mu m$) и ((*c*) $40 \times 40 \mu m$) и MCM — изображение поверхности (*d*).

Fe, Tb и Sm) [25]. Данное предположение находит косвенное подтверждение при анализе температурных зависимостей магнитострикции, измеренных в различных магнитных полях до 12 kOe. Магнитострикционные деформации крайне чувствительны как к структурным, так и магнитным изменениям в образце и могут сопровождаться другими эффектами, например, магнитокалорическим эффектом [26–29].

На рис. 5, *а*, *b* показаны температурные зависимости продольной и поперечной магнитострикции сплава, соответственно. В области низких температур 90–110 К наблюдаются аномалии как на кривых $\lambda_{\parallel}(T)$ (рис. 5, *a*), так и $\lambda_{\perp}(T)$ (рис. 5, *b*) магнитострикции при всех значениях приложенного магнитного поля. Продольная магнитострикция Tb_{0.8}Sm_{0.2}Fe₂ имеет положительный знак и максимальное значение, которое наблюдается в нашем эксперименте +1.15 · 10⁻³ при T = 80 К в поле 12 kOe. При этих же условиях поперечная

Рис. 4. Температурные зависимости относительного удлинения образца соединения $Tb_{0.8}Sm_{0.2}Fe_2$ (тепловое расширение).

Рис. 5. Температурные зависимости продольной (a) и поперечной (b) магнитострикций Tb_{0.8}Sm_{0.2}Fe₂ в различных магнитных полях.

магнитострикция демонстрирует отрицательное значение — $0.76 \cdot 10^{-3}$. В области комнатных температур абсолютные величины магнитострикционых деформаций уменьшаются значительно: при $T = 300 \, \text{K}$ и поле 12 kOe продольная и поперечная магнитострикция равны $0.86 \cdot 10^{-3}$ и $-0.46 \cdot 10^{-3}$ соответственно. Таким образом, уменьшение продольной магнитострикции при изменении температуры от 80 до 300 К составляет 25%, в то время как изменение поперечной магнитострикции достигает 40%. Эффект имеет анизотропный характер. В то же самое время, в слабых магнитных полях до 3.5 kOe образец Tb_{0.8}Sm_{0.2}Fe₂ демонстрирует высокие значения магнитострикционных деформаций: продольной $+0.53 \cdot 10^{-3}$ и поперечной $-0.25 \cdot 10^{-3}$, которые меняются незначительно в широком интервале температур от 100 до 300 К $(0.47 \cdot 10^{-3} \text{ и} - 0.2 \cdot 10^{-3}).$ Эффект становится изотропным. Постоянство величины продольной и поперечной магнитострикции сплава

 $Tb_{0.8}Sm_{0.2}Fe_2$ может быть использовано в устройствах различного назначения [30,31].

2475

4. Заключение

В заключение важно отметить, что в работе удалось получить однофазный сплав с высоким содержанием тербия Tb_{0.8}Sm_{0.2}Fe₂, не применяя технологию синтеза в условиях высоких давлений и высоких температур. Проведено исследование его кристаллической структуры в широкой области температур от 90 до 760 К, включая температуру Кюри (переход из магнитоупорядоченного в неупорядоченное состояние). Методами РЭМ и АСМ исследована морфология поверхности образцов на микро- и наноуровне. Обнаружены структурные элементы (кристаллиты) с размерами 30-80 nm. Установлено, что при высоких температурах (выше 400 К) происходит аморфизация сплава. Обнаружено, что величина магнитострикционных деформаций сохраняется практически неизменой в полях до 3.5 kOe в широкой области температур от 100 до 300 К, что может расширить область применения данного сплава.

Благодарности

Авторы выражают благодарность Н.Ю. Панкратову и Т.Ю. Киселевой за помощь в получении экспериментальных данных.

Финансирование работы

Исследование выполнено за счет гранта Российского фонда фундаментальных исследований № 19-32-50025.

Конфликт интересов

Авторы подтверждают, что у них нет конфликта интересов.

Список литературы

- A.E. Clark, Magnetostrictive RFe₂ intermetallic compounds. In: Handbook on the Physics and Chemistry of Rare Earths / Eds. K.A. Gschneidner, Jr., L. Eyring. North Holland, Amsterdam (1979) 231–258.
- [2] А.С. Илюшин. Введение в структурную физику редкоземельных интерметаллических соединений, МГУ, М. (2005). 176 с.
- [3] N.C. Koon, C.M. Williams, B.N. Das. J. Magn. Magn. Mater. 100, 173 (1991).
- [4] К.П. Белов Магнитострикционные явления и их техническое применение. Наука, М. (1987). 159 с.
- [5] S.A. Nikitin, I.S. Tereshina, V.N. Verbetsky, A.A. Salamova, K.P. Skokov, N.Yu. Pankratov, Yu.V. Skourski, N.V. Tristan, V.V. Zubenko, I.V. Telegina. J. Alloys Comp. **322**, 42 (2001).

- [6] V.Yu. Bodriakov, T.I. Ivanova, S.A. Nikitin, I.S. Tereshina. J. Alloys Comp. 259, 265 (1997).
- [7] R. Grössinger, R.S. Turtelli, N. Mehmood. IOP Conf. Ser.: Mater. Sci. Eng. 60, 012002 (2014).
- [8] W.J. Ren, Z.D. Zhang. Chin. Phys. B 22, 077507 (2013).
- [9] I.S. Tereshina, J. Ćwik, E.A. Tereshina, G. Politova, G. Burkhanov, V. Chzhan, A.S. Ilyushin, M. Miller, A. Zaleski, K. Nenkov, L. Schultz. IEEE Trans. Mag. 50, 2504604 (2014).
- [10] V.B. Chzhan, I.S. Tereshina, A.Yu. Karpenkov, E.A. Tereshina-Chitrova. Acta Mater. 154, 303 (2018).
- [11] V.S. Gaviko, A.V. Korolyov, N.V. Mushnikov. J. Magn. Magn. Mater. 157/158, 659 (1996).
- [12] Y.J. Tang, H.L. Luo, N.F. Gao, Y.Y. Liu, S.M. Pan. Appl. Phys. Lett. 66, 388 (1995).
- [13] Y.M. Tang, L.Y. Chen, L. Zhang, H.F. Huang, W.B. Xia, S.Y. Zhang, J. Wei, S.L. Tang, Y.W. Du. J. Appl. Phys. 115, 173902 (2014).
- [14] X. Liu, K. Lin, Q. Gao, H. Zhu, Q. Li, Y. Cao, Zh. Liu, L. You, J. Chen, Y. Ren, R. Huang, S.H. Lapidus, X. Xing. Inorgan. Chem. 57, 689 (2018).
- [15] H. Samata, N. Fujiwara, Y. Nagata, T. Uchida, M.D. Lan. J. Magn. Magn. Mater. 195, 376 (1999).
- [16] Г.А. Политова, А.Ю. Карпенков, Т.П. Каминская, М.А. Ганин, Рави Кумар, А.В. Филимонов. Науч.-техн. ведомости СПбГБУ 12 (1), 28 (2019).
- [17] N.J. Wang, Y. Liu, H.W. Zhang, X. Chen, Y.X. Li. Chin Foundry 13 (2), 75 (2016).
- [18] И.С. Терёшина, Т.П. Каминская, В.Б. Чжан, Ю.А. Овченкова, А.С. Трушева, А.А. Вирюс. ФТТ 61, 1229 (2019).
- [19] Y. Wang, T. Ma, Ch. Wu, M. Yan, Ch. Zhang, X. Chen, G. Sun, S. Yang, Y. Wang, T. Chang, Ch. Zhou, X. Liao, X. Zheng. AIP Advances 7 (7), 075311 (2017).
- [20] А.С. Илюшин, Е.В. Солодов, З.С. Умхаева. Перспективные материалы 11, 42 (2013).
- [21] Растровая электронная микроскопия для нанотехнологий. Методы и применение / Под ред. У. Жу, Ж.Л. Уанга / Пер. с англ. под ред. Т.П. Каминской. БИНОМ. Лаборатория знаний, М. (2013). 582 с.
- [22] И.В. Яминский. Основы атомно-силовой микроскопии / Под ред. И.В. Яминский, Д.В. Багров. НОУДПО Институт информационных технологий "АйТи", М. (2011). 128 с.
- [23] G.S. Burkhanov, N.B. Kolchugina, E.A. Tereshina, I.S. Tereshina, G.A. Politova, V.B. Chzhan, D. Badurski, O.D. Chistyakov, M. Paukov, H. Drulis, L. Havela. Appl. Phys. Lett. 104, 242402 (2014).
- [24] E.A. Tereshina, S. Khmelevskyi, G. Politova, T. Kaminskaya, H. Drulis, I.S. Tereshina. Sci. Rep. 6, 22553 (2016).
- [25] A.V. Andreev. Thermal expansion anomalies and spontaneous magnetostriction in rare-earth intermetallics with cobalt and iron. In: Handbook of Magnetic Materials / Ed. K.H.J. Buschow 8 (2), 59 (1995).
- [26] I. Tereshina, G. Politova, E. Tereshina, J. Cwik, S. Nikitin, O. Chistyakov, A. Karpenkov, D. Karpenkov, T. Palewski. J. Phys.: Conf. Ser. 303, 012024 (2011).
- [27] I. Tereshina, G. Politova, E. Tereshina, S. Nikitin, G. Burkhanov, O. Chistyakov, A. Karpenkov. J. Phys.: Conf. Ser. 200, 092012 (2010).
- [28] I.S. Tereshina, V.B. Chzhan, E.A. Tereshina, S. Khmelevskyi, G.S. Burkhanov, A.S. Ilyushin, M.A. Paukov, L. Havela, A.Yu. Karpenkov, J. Cwik, Yu.S. Koshkid'ko, M. Miller, K. Nenkov, L. Schultz. J. Appl. Phys. **120**, 01390 (2016).

- [29] I. Tereshina, G. Politova, E. Tereshina, G. Burkhanov, O. Chistyakov, S. Nikitin. J. Phys.: Conf. Ser. 266, 012077 (2011).
- [30] A. del Moral. Handbook of Magnetostriction and Magnetostrictive Materials. Del Moral Publ., University of Zaragoza, Spain (2008). 148 p.
- [31] Z.Q. Chu, M. PourhosseiniAsl, S.X. Dong. J. Phys. D 51, 243001 (2018).
- Редактор Т.Н. Василевская