03

Особенности формирования электронной структуры при синтезе соединений Ti_2AIC , Ti_2AIN , Ti_2SiC и Ti_2SiN

© В.Г. Заводинский¹, О.А. Горкуша²

¹ Институт материаловедения Хабаровского научного центра ДВО РАН, Хабаровск, Россия ² Институт прикладной математики (Хабаровское отделение) ДВО РАН, Хабаровск, Россия E-mail: vzavod@mail.ru

Поступила в Редакцию 8 июля 2017 г. В окончательной редакции 8 июля 2017 г. Принята к публикации 16 июля 2019 г.

Методами теории функционала плотности и псевдопотенциалов исследована электронная структура и полная энергия соединений Ti₂AlC, Ti₂AlN, Ti₂SiC и Ti₂SiN. Построены кривые плотности электронных состояний для кристаллических систем и для систем, отличающихся по степени упорядоченности. Показано, что даже в полностью неупорядоченных системах наблюдается качественное сходство электронной структуры с электронной структурой соответствующих кристаллических соединений. По мере упорядочения это сходство еще более усиливается. Полная энергия изученных систем растет с увеличением разупорядоченности примерно одинаковым образом для всех изученных систем, за исключением Ti₂SiC. В последнем случае она оказывается гораздо более чувствительна к степени разупорядочения, что, по-видимому, объясняется большей ролью ковалентной составляющей межатомных связей.

Ключевые слова: электронная структура, теория функционала плотности, тройные соединения, разупорядочение.

DOI: 10.21883/FTT.2019.12.48583.547

1. Введение

Соединения типа МАХ (М — переходной металл, А — *p*-элемент, принадлежащий к IIIA или IVA группе Периодической системы, Х — углерод либо азот) являются перспективными материалами, поскольку они обладают уникальной комбинацией металлических и керамических свойств, таких как простота обработки, низкая плотность, высокие уровни электро- и теплопроводности, прекрасная термостойкость и коррозионная устойчивость [1–14].

Кристаллическая структура таких соединений имеет слоистый характер и представляет собой чередование гексагонально упакованных слоев М, А и Х атомов [14,15].

Синтез МАХ-соединений проводится, как правило, методами порошковой металлургии [8,16], электроискрового спекания [17] и магнетронным напылением с последующим отжигом [18]. Как отмечается в обзоре [19] к настоящему моменту опубликовано большое число теоретических работ по расчетам электронной структуры МАХ-соединений, результаты которых хорошо согласуются со спектроскопическими данными и качественно объясняют стабильность этих кристаллов. Однако практически все они ограничены рассмотрением идеальных кристаллов (за исключением нескольких публикаций, посвященных влиянию точечных дефектов [20,21]).

Очевидно, что методы, используемые для синтеза МАХ-фаз, не в состоянии обеспечить совершенства

структуры данных соединений, в получаемых материалах неизбежно присутствует большая доля неупорядоченных фаз, что должно сказываться как на характере электронных состояний, так и на энергетике системы, которая в свою очередь проявляет себя в механических и химических свойствах. Целью данной работы является изучение изменения электронной структуры и энергии соединений Ti_2AIC , Ti_2AIN , Ti_2SiC и Ti_2SiN в процессе изменения их атомной структуры — от полностью неупорядоченной (хаотичной) к монокристаллической. Выбор данных соединений обусловлен желанием увидеть отличие влияния металлических и ковалентных атомов (Al и Si) на электронную структуру в сходных карбидных и нитридных окружениях.

2. Методика исследования

Как было сказано выше, кристаллическая структура соединений Ti_2AlC , Ti_2AlN , Ti_2SiC и Ti_2SiN обладает гексагональной симметрией. Общий вид расположения атомов в ячейке представлен на рис. 1, а теоретические величины решеточных параметров представлены в табл. 1. Эти величины близки к опубликованным теоретическим и экспериментальным данным [19,22–25].

Неупорядоченные (хаотические) структуры формировались путем помещения атомов Ti, Al, Si, C и N в количестве, обеспечивающем стехиометрию, случайным

Рис. 1. Расположение атомов в кристаллических решетках МАХ-соединений. Большие серые шары — атомы типа М (в нашем случае Ті), средние темно-серые шары — атомы типа А (Al, Si), малые темно-серые шары — атомы типа Х (C, N).

образом (с помощью генератора случайных чисел) в произвольные места соответствующей ячейки. При этом отбрасывались случаи, когда какие-либо атомы оказывались слишком близко друг от друга (критическое расстояние было взято равным 1.5 Å). Полная энергия и электронная структура находились вначале при фиксированном (замороженном) расположении атомов, а затем — после частичной релаксации системы под действием межатомных сил (имитация низкотемпературного отжига). Для каждого соединения расчеты проводились 15 раз, с использованием различных хаотических конфигураций, результаты затем усреднялись. Кроме того, были проведены расчеты для конфигураций, которые представляли собой разупорядочение идеальных кристаллических структур с помощью слу-

Таблица 1. Использованные решеточные параметры кристаллов Ti₂AlC, Ti₂AlN, Ti₂SiC и Ti₂SiN

	Ti ₂ AlC	Ti ₂ AlN	Ti ₂ SiC	Ti ₂ SiN
a, Å	3.063	3.001	3.015	2.980
c, Å	13.542	13.648	12.572	12.820

чайных смещений атомов. В этом случае для каждого соединения исследованы три степени разупорядочения с максимальными величинами атомных смещений: 0.1, 0.25 и 0.5 Å.

Все расчеты проводились в рамках теории функционала плотности (пакет FHI96md [26]) и метода псевдопотенциалов; псевдопотенциалы генерировались с помощью пакета FHI98pp [27]. Рабочая ячейка содержала 16 атомов Ті и по 8 атомов Al(Si) и C(N). Энергия обрезания набора плоских волн составляла 40 ридберг. В качестве рабочих точек зоны Бриллюэна были взяты точки (0.75; 0.08; 0.25), (0.75; 0.47; 0.25), (0.75; 0.85; 0.25), обеспечивающие достаточно хорошее согласие результатов в сравнении с имеющимися данными по электронной структуре исследуемых соединений [19,28-31] при разумных затратах вычислительных ресурсов. Псевдопотенциалы, использованные в данной работе, ранее были апробированы ранее [32] и показали свою надежность. Плотность электронных состояний (ПЭС) находилась путем размывания каждого электронного уровня с помощью кривой Гаусса с полушириной 0.4 eV.

3. Результаты и обсуждение

На рис. 2 приведены вычисленные нами ПЭС для всех исследованных систем, а табл. 2 представлены величины полной энергии, приходящиеся на формульную группу атомов (например, (Ti₂AlC)₁, в сравнении с энергией, найденной для соответствующей кристаллической фазы. На рис. 2 в первую очередь обращает внимание большое сходство ПЭС, полученных для всех соединений при их полной, замороженной хаотичности (панели *a*). Все они характеризуются практически полным размытием энергетических уровней, расширением спектра состояний как в сторону положительных энергий, так и в сторону отрицательных, и наличием слабо выраженного минимума вблизи уровня Ферми. Имеются также слабо выраженные максимумы в области глубинных состояний: у карбидных систем — вблизи -10 eV, у нитридных вблизи -15 eV, происхождение которых связано с взаимодействием атомов титана с атомами углерода и азота, соответственно [31,33]. Релаксация хаотических систем под действием межатомных взаимодействий (панели *b* приводит к возникновению в кривых ПЭС более заметной структуры: углеродсодержащие системы демонстрируют два пика в районах -1 и +3 eV (считая от уровня Ферми), а у нитридных систем мы видим еще и третий пик при -5 eV. Глубинные пики проявляются более отчетливо, особенно в азотсодержащих системах. В целом, можно сказать, что электронная структура) систем достаточно близка к электронной структуре упорядоченных кристаллов. Важно отметить, что атомная структура хаотичных релаксированных систем Ti₂AlC, Ti₂AlN, Ti₂SiC и Ti₂SiN близка к аморфной и не имеет ничего общего со структурой кристаллических фаз кро-

Рис. 2. Электронная структура исследованных систем: *a*-(1-4) — (хаотическое расположение атомов без релаксации); *b*-(1-4) — (хаотическое расположение атомов с релаксацией); *c*-(1-4) — кристаллические структуры разупорядочены со средней амплитудой 0.5 Å; *d*-(1-4) — кристаллические структуры разупорядочены со средней амплитудой 0.25 Å; *e*-(1-4) — кристаллические структуры разупорядочены со средней амплитудой 0.1 Å; *f*-(1-4) — идеальные кристаллические структуры.

ме той же стехиометрии. Единственно в чем проявляет себя релаксация — это в установлении равновесных химических связей между ближайшими соседями, что естественно ведет к понижению полной энергии и к изменению электронной структуры. Для перехода из аморфного (или квазиаморфного) состояния в кристаллическое необходима температура. В эксперименте такой переход осуществляется путем высокотемпературного отжига, в теории — проведением расчетов весьма трудоемкими методами молекуляр-

Таблица 2. Относительная энергия систем с различной степенью упорядоченности (эВ на формульную группу

Тип структуры	Ti ₂ AlC	Ti ₂ AlN	Ti ₂ SiC	Ti ₂ SiN
Случайное расположение атомов (без релаксации структуры)	14.30	13.98	14.49	15.22
Релаксация случайного расположения атомов	1.30	1.56	1.15	1.68
Разупорядоченный кристалл (максимум смещения атомов 0.5 Å)	6.28	8.30	12.02	7.74
Разупорядоченный кристалл (максимум смещения атомов 0.25 Å)	1.58	1.49	5.71	1.93
Разупорядоченный кристалл (максимум смещения атомов 0.1 Å)	0.25	0.34	3.16	0.44
Идеальный кристалл	0	0	0	0

ной динамики (МД). В данной работе мы заменили использование методов МД рассмотрением конечной стадии кристаллизации: провели расчеты электронной структуры систем, расположение атомов которых приближается к их расположению в идеальном кристалле. А именно, мы изучили три случая с разными величинами средних отклонений положений атомов Δ от их кристаллических позиций: 0.5, 0.25, и 0.1 Å. Этим случаям на рис. 2 соответствуют панели, помеченные литерами *c*, *d*, и *e* соответственно; панели *f* демонстрируют результаты, полученные для идеальных кристаллов.

Мы видим, что ПЭС для систем, разупорядоченных на 0.5 Å (панели c), весьма близки к ПЭС, найденных для хаотических релаксированных систем (панели b). Примечательно, что и энергетически эти случаи весьма близки (см. табл. 2); это говорит о том, что основное влияние на их электронные состояния оказывает не кристаллическая структура, а химические связи с ближайшими соседями. Дальнейшее уменьшение разупорядочения (панели d и e) естественно приводит к приближению картин ПЭС к тем, которые соответствуют полностью упорядоченному, кристаллическому состоянию (панели f).

Энергетику изученных систем следует обсудить отдельно. Анализ табл. 2 показывает, что хаотичные (нерелаксированные) системы имеют примерно одинаковую избыточную энергию для всех исследованных соединений — 14–15 eV на формульную группу. Релаксация (то есть формирование равновесных химических связей между ближайшими соседями) резко понижает эту энергию до 1.2–1.7 eV, при этом минимальные значения энергии наблюдаются у карбидных систем, а максимальные — у нитридных.

По мере приближения структуры к кристаллической энергия систем стремится к энергии соответствующих кристаллов. Однако обращает на себя внимание тот факт, что при величине разупорядоченности кристалла 0.5 Å его энергия близка к энергии неупорядоченных систем. (Выше отмечалось, что электронная структура этих систем также имеет много общих черт.) Наибольший интерес представляет собой поведение системы Ті2SiC, энергия которой оказывается весьма чувствительной к разупорядочению кристаллической решетки даже при малых смещениях атомов. По-видимому, здесь проявляется тот факт, что в этом МАХ-соединении задействованы два типа атомов с ковалентными связями: A=Si, X=C, в то время как в остальных системах содержатся либо Si, либо C атомы, и ковалентные связи выражены слабее. Характерно, что механические параметры соединения Ti₂SiC (такие как объемный модуль упругости, модуль Юнга и твердость) оказываются выше, чем у остальных исследованных нами соединений [19]. Однако этот вопрос следует изучить отдельно, тем более, что на кривых ПЭС разупорядоченных систем Ti₂SiC мы не видим особых отличий от общей картины.

4. Заключение

Проведенное нами исследование с использованием теории функционала плотности показало, что самые общие черты электронной структуры систем Ti₂AlC, Ti_2AIN , Ti_2SiC u Ti_2SiN (ширина валентной зоны и зоны проводимости, а также металлический характер состояний на уровне Ферми) в неупорядоченных системах близки к таковым, характерным для соответствующих кристаллических соединений. По мере упорядочения ПЭС данных систем еще более приближаются к ПЭС кристаллов. Однако изменение полной энергии не всегда явно коррелирует с изменением электронной структуры. В частности, энергия системы Ti₂SiC оказывается весьма чувствительна к малому разупорядочению кристаллической решетки, в то время как электронная структура при этом изменяется слабо. По-видимому, в этом соединении проявляется большая доля ковалентных связей, чем в остальных.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Y.C. Zhou, Z.M. Sun. Phys. Rev. B 61, 12570 (2000).
- [2] J.Y. Wang, Y.C. Zhou, Z.J. Lin, F.L. Meng, F. Li. Appl. Phys. Lett. 86, 101902 (2005).
- [3] J.E. Spanier, S. Gupta, M. Amer, M.W. Barsoum. Phys. Rev. B 71, 012103 (2005).
- [4] Y. Khoptiar, I. Gotman. Mater. Lett. 57, 72 (2002).
- [5] X.H. Wang, Y.C. Zhou. Z Metall. 93, 66 (2002).
- [6] Y.C. Zhou, X.H. Wang. Mater. Res. Innovat. 5, 87 (2001)
- [7] X.H. Wang, Y.C. Zhou. Oxid. Met. 59, 303 (2003).
- [8] M.W. Barsoum, M. Ali, T. El-Raghy. Met. Mater. Trans. A 31, 1857 (2000).
- [9] J.M. Guo, K.X. Chen, Z.B. Ge, H.P. Zho, X.S. Ning. Acta Met. Sinca 39, 315 (2003).
- [10] X.L. Hong, B.C. Mei, J.Q. Zhu, W.B. Zhou. J. Mater. Sci. 39, 1589 (2004).
- [11] O. Wilhelmsson, J.P. Palmquist, T. Nyberg, U. Jansson. Appl. Phys. Lett. 85, 1066 (2004).
- [12] J.Y. Wang, Y.C. Zhou. Phys. Rev. B 69, 214111 (2004).
- [13] M.W. Barsoum. MAX phases: properties of machinable ternary carbides and nitrides. 1st ed. Wiley-VCH Verlag GmbH & Co. KGa A, N.Y. (2013).
- [14] A. Rahman, Z. Rahaman. Amer. J. Modern Phys. 4, 2, 70 (2015).
- [15] Z.J. Lin, M.J. Zhuo, Y.C. Zhou, M.S. Li, J.Y.Wang. Acta Mater. 54, 1009 (2006).
- [16] М.А. Теслина, Т.Б. Ершова, Н.М. Власова, И.А. Астапов. Перспективные материалы **3**, 75 (2016).
- [17] W.B. Zhou, B.C. Mei, J.Q. Zhu, X.L. Hong. Mater. Lett. 5, 131 (2005).
- [18] O. Wilhelmsson, J.-P. Palmquist, T. Nyberg, U. Jansson. Appl. Phys. Lett. 85, 1066 (2004).
- [19] M. Magnuson, M. Mattesini. Thin Solid Films 621, 108 (2017).

- [20] Jingyang Wang, Yanchun Zhou, Ting Liao, Jie Zhang, Zhijun Lin. Scripta Mater. 58, 227 (2008).
- [21] Hui Wang, Han Han, Gen Yin, Chang-Ying Wang, Yu-Yang Hou, Jun Tang, Jian-Xing Dai, Cui-LanRen, Wei Zhang, Ping Huai. Materials 10, 103 (2017).
- [22] Y.P. Gan, X.K. Qian, X.D. He, Y.X. Chen, S.N. Yun, Y. Zhou. Phys. B Condens. Matter 406, 3847 (2011),
- [23] Y. Mo, P. Rulis, W.Y. Ching. Phys. Rev. B 86, 165122 (2012).
- [24] G. Hug. Phys. Rev. B 74, 184113 (2006).
- [25] H. Li, Z. Wang, G. Sun, P. Yu, W. Zhang. Solid State Commun. 237–238, 24 (2016).
- [26] M. Beckstedte, A. Kley, J. Neugebauer, M. Scheffler. Comput. Phys. Commun. 107, 187 (1997).
- [27] M. Fuchs, M. Scheffler. Comput. Phys. Commun. 119, 67 (1999).
- [28] Wenxia Feng, Shouxin Cui. Can. J. Phys. 92, 1652 (2014).
- [29] Qing-He Gao, An Du, Ze-Jin Yang. Mod. Phys. Lett. B 31, 3, 1750016 (2017).
- [30] Y.P. Gan, X.K. Qian, X.D. He, Y.X. Chen, S.N. Yun, Y. Zhou. Physica B 406, 3847 (2011).
- [31] G. Hug, E. Fries. Phys. Rev. B 65, 113104 (2002).
- [32] В.Г. Заводинский. Компьютерное моделирование наночастиц и наносистем. Физматлит, М. (2013), 176 с.
- [33] Du Yu-Lei. Chin. Phys. Lett. 26, 11, 117102 (2009).

Редактор Т.Н. Василевская