11,13

Термодинамическая модель зародышеобразования кристаллов *n*-терфенила с анизотропией поверхностной энергии на межфазной границе жидкость—воздух

© В.А. Постников¹, А.А. Кулишов¹, А.А. Островская^{1,2}, А.С. Степко³, П.В. Лебедев-Степанов³

¹ Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия ² МИРЭА — Российский технологический университет (МИТХТ), Москва, Россия ³ Центр фотохимии ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия E-mail: postva@yandex.ru

Поступила в Редакцию 16 июля 2019 г. В окончательной редакции 16 июля 2019 г. Принята к публикации 25 июля 2019 г.

Представлен анализ изменения свободной энергии Гиббса ΔG при образовании плоского зародыша кристалла *n*-терфенила на межфазной границе жидкость—воздух с учетом анизотропии поверхностной энергии граней. Значения поверхностной энергии граней кристалла *n*-терфенила были рассчитаны методом атомного силового поля OPLS, основываясь на структурных данных. Для анализа модели были привлечены экспериментальные сведения по росту кристаллов из растворов и их поверхностным свойствам.

Ключевые слова: зародышеобразование кристаллов, поверхностная энергия, поверхностное натяжение, межфазная граница жидкость-воздух, смачивание, свободная энергии Гиббса.

DOI: 10.21883/FTT.2019.12.48572.45ks

1. Введение

Исследования по росту из растворов органических кристаллов выявили склонность у ряда веществ к образованию и росту на межфазной границе жидкостьвоздух тонких монокристаллических пленок и пластин [1-3]. Для кристаллизации на границе раздела жидкость-воздух метод "растворитель-антирастворитель" определен как наиболее эффективный в отношении стабильности эффекта, качества формирующихся кристаллов и скорости их роста [1-3]. В условиях данного метода осуществляется диффузия сольватофобного осадителя (антирастворителя) из паровой фазы в раствор, за счет чего максимум пересыщения имеет место на границе раздела фаз. Образование и флотация более плотных, чем раствор, кристаллов на поверхности жидкой фазы обеспечивается влиянием сил поверхностного натяжения, однако до сих пор нет ясного понимания механизма этого явления. Ранее в работах [2-3] был предложен термодинамический анализ образования плоских зародышей кристаллов в соответствующих условиях, однако анизотропия поверхностной энергии различных граней практически не была учтена. В данной работе на примере кристаллов *n*-терфенила проведен анализ изменения свободной энергии Гиббса с учетом анизотропии поверхностной энергии граней, значения которой были рассчитаны в приближении метода атомного силового поля. Также в данной работе проанализирован случай неполного смачивания раствором граней кристалла, по всей видимости, имеющий место в условиях метода

"растворитель–антирастворитель" из-за наличия сольватофобного осадителя.

2. Экспериментальная часть

2.1. Рост кристаллов

Исследования по росту и структуре кристаллов *n*-терфенила ранее нами представлены в работе [3]. В качестве растворителя использовали толуол (ОСЧ), а в качестве осадителя — этанол, изопропанол и бутанол-1 (ЧДА).

2.2. Поверхностные свойства растворов и кристалла

Исследования поверхностного натяжения растворов и краевого угла смачивания проведены на оптическом приборе OCA 15EC при 22–24°C. Поверхностное натяжение насыщенного раствора *п*-терфенила в толуоле определяли по методу висячей капли. Во избежание испарения капля раствора выдавливалась внутрь небольшой герметичной кварцевой кюветы с прозрачными стенками. Поверхностное натяжение капли насыщенного раствора было также определено в условиях атмосферы насыщенной парами изопропилового спирта, который предварительно наливали на дно кварцевой кюветы. Определение поверхностной энергии σ_{001}^V было проведено на ряде кристаллов только для наиболее развитой грани (001) с помощью модифицированного

уравнения Юнга, используя экспериментально измеренные значения краевого угла смачивания θ_{001} дистиллированной водой [4]: $\cos \theta_{001} = -1 + 2(\sigma_{001}^V \cdot \sigma_W^d)^{1/2}/\sigma_W$, где $\sigma_W = 72.8 \text{ mJ/m}^2$ и $\sigma_W^d = 21.8 \text{ mJ/m}^2$ [5] — поверхностное натяжение воды и вклад дисперсионных сил в данную величину соответственно.

3. Методика расчета поверхностной энергии кристалла

Поверхностная энергия граней кристалла *n*-терфенила была рассчитана методом атомного силового поля OPLS. Данный тип силового поля был разработан для расчета взаимодействия молекул и молекулярных кластеров, как для твердого тела [6], так и для жидкости [7] методами молекулярной динамики. В расчетах были использованы рентгеноструктурные данные [3] о взаимном расположении молекул в кристалле, а также — о положении атомов в молекуле, на основе чего были построены параллельные молекулярные бислои, лежащие в одной из трех кристаллографических плоскостей (001), (010) или (100), содержащие по нескольку десятков молекул. Определялась полная ван-дер-ваальсова энергия ориентированного бислоя U_{hkl}. Далее аналогично вычислялась энергия идентичных монослоев, составляющих бислой, U_{1hkl}. Энергия связи бислоев равна $\Delta U_{hkl} = U_{hkl} - 2U_{1hkl}$. В модели принято, что положительно определенная энергия когезии равна — ΔU_{hkl} , а поверхностная энергия равна отношению энергии когезии к удвоенной площади монослоя: $\sigma_{hkl} = -\Delta U_{hkl} / (2 \cdot S_{1hkl}).$

4. Результаты

В таблице представлены расчетные значения поверхностных свойств и имеющиеся соответствующие литературные сведения, полученные методом функционала плотности [8]. Определенные нами значения поверхностной энергии граней, как видно из таблицы, оказались значительно ниже литературных. Также приведены экспериментальные сведения по поверхностному натяжению σ_{LV} насыщенного раствора толуола и величине σ_{V01}^{V01}

Поверхностные свойства растворов толуола и кристалла *n*-терфенила

$\sigma_{LV}^1,$ mJ/m ²	σ_{LV}^2 , mJ/m ²	$\sigma^V_{100}, \ \mathrm{mJ/m^2}$		$\sigma^V_{010}, \ \mathrm{mJ/m}^2$		$\sigma_{001}^V, \ \mathrm{mJ/m^2}$	
		расч.	эксп.	расч.	эксп.	расч.	эксп.
$\overline{26.2\pm0.4}$	$\overline{25.7\pm0.2}$	75/120	_	86/136	_	72/99	50 ± 8

Примечание. σ_{LV}^1 и σ_{LV}^2 — поверхностное натяжение насыщенного раствора толуола в воздухе и в атмосфере, насыщенной парами изопропанола соответственно; σ_{100}^V , σ_{010}^{V} и σ_{001}^{V} — значения поверхностной энергии различных граней кристалла, рассчитанные методом OPLS (расч.) и определенные экспериментальным способом (эксп.). Курсивом выделены литературные расчетные значения [8].

Рис. 1. Модель плоского зародыша кристалла на границе раздела жидкость (1)-воздух (2).

для плоской грани кристалла. В ходе экспериментов установлено, что на поверхности кристаллов *n*-терфенила капля насыщенного раствора толуола практически полностью растекается ($\theta_{001} \approx 0$). Как видно из таблицы, экспериментальное значение поверхностной энергии σ_{001}^V для реального кристалла оказалось заметно ниже, чем рассчитанное для идеальной кристаллической структуры.

5. Термодинамическая модель образования плоского зародыша кристалла

Рассмотрим модель плоского зародыша кристалла толщиною h, балансирующего на границе раздела фаз так, что верхняя грань (001) не контактирует, а боковые и нижняя грани находятся в контакте с раствором (рис. 1). Для упрощения рассмотрим зародыш прямоугольной формой со стороной l и c боковыми гранями (100) и (010). Тогда изменение свободной энергии Гиббса зародыша запишем в виде

$$\Delta G = \Delta G_V + \Delta G_S = -(l^2 h/\Omega) \cdot \Delta \mu + (\sigma_{001}^V + \sigma_{001}^L - \sigma_{LV})l^2 + 2(\sigma_{100}^L + \sigma_{010}^L) \cdot lh, \qquad (1)$$

где первое слагаемое в правой части — объемная составляющая ΔGV ($\Omega = M/\rho$ — молярный объем, M = 0.2303 kg/mol — молярная масса, $\rho = 1241$ kg/m³ — плотность кристаллов при 298 K [3], $\Delta \mu = RT \cdot \ln(C/C^*) = RT \cdot \ln(1 + \xi)$ — движущая сила кристаллизации, $\xi = (C - C^*)/C^*$ — относительное пересыщение раствора на границе фаз), а второе и третье — поверхностная составляющая ΔG_S , которая определяется поверхностными энергиями граней на межфазных границах кристалл — воздух (σ_{001}^V) и кристалл — раствор (σ_{001}^L , σ_{010}^L , σ_{010}^L), а также поверхностным натяжением раствора σ_{LV} (рис. 1). Из условия равновесия формы кристалла ($\Delta G_S = \min$, $l^2h = \text{const}$) следует соотношение между длиной и толщиной зародыша кристалла:

$$h/l = (\sigma_{001}^V + \sigma_{001}^L - \sigma_{LV})/(\sigma_{100}^L + \sigma_{010}^L).$$
(2)

Рис. 2. a — зависимость критических размеров зародыша от относительного пересыщения ξ при 298 К ($D_{001} = 1.36$ nm); b — зависимость функции ΔG от толщины зародыша при различных значениях относительного пересыщения в случае полного (сплошные кривые) и не полного смачивания (пунктирные кривые) при $\theta = 10^{\circ}$.

С учетом выражения (2), минимизация функции ΔG дает

$$l_c = (2\Omega/\Delta\mu)(\sigma_{100}^V + \sigma_{010}^L),$$

$$h_c = (2\Omega/\Delta\mu)(\sigma_{001}^V + \sigma_{001}^L - \sigma_{LV}).$$
 (3)

Используя уравнение Юнга, можно установить взаимосвязь между поверхностной энергией грани (001) смоченной раствором σ_{001}^L и сухой σ_{001}^V :

$$\sigma_{001}^L = \sigma_{001}^V - \sigma_{LV} \cdot \cos \theta_{001}, \qquad (4)$$

где θ_{001} — краевой угол смачивания раствором поверхности грани (001) кристалла. Тогда для l_c и h_c можно записать следующие выражения:

$$l_{c} = (2\Omega/\Delta\mu) \big(\sigma_{100}^{V} + \sigma_{010}^{V} - \sigma_{LV} \cdot (\cos\theta_{010} + \cos\theta_{100}) \big),$$
$$h_{c} = (2\Omega/\Delta\mu) \big(2\sigma_{001}^{V} - \sigma_{LV} \cdot (1 + \cos\theta_{001}) \big).$$
(5)

Как видно из уравнений (5), длина критического зародыша l_c определяется поверхностной энергией боковых граней, а толщина h_c поверхностной с энергией наиболее развитой грани (001). В случае полного смачивания нижней и боковых граней кристалла раствором ($\theta = 0$) величины l_c и h_c будут минимальны, а при добавлении сольватофобного растворителя в систему (изопропанол) смачивание будет уже не полным и значения критических размеров зародыша возрастут.

На рис. 2, *а* приведены построенные по уравнениям (6) зависимости критических размеров l_c и h_c (в единицах толщины мономолекулярного слоя $D_{001} = 1.36$ nm) зародыша кристалла *n*-терфенила от относительного пересыщения ξ раствора толуола в условиях полного смачивания нижней и боковых граней при 298 К. Нижняя пунктирная кривая на рис. 2, *a* соответствует толщине критического зародыша $h_c^{exp}(\xi)$ для найденного экспериментальным способом значения σ_{001}^{V} .

Как видно из рисунка, значение $h_c^{exp}(\xi)$ почти вдвое ниже величины h_c, определенной на основе теоретической оценки поверхностной энергии. На рис. 2, в представлен построенный по уравнению (1) график зависимости функции ΔG от толщины зародыша h для разных значений ξ . Для расчета были использованы установленные нами теоретические значения поверхностной энергии граней кристалла. Как видно из рисунка, параметры критического зародыша, размер и высота энергетического барьера, определяемые максимумом функции ΔG , существенно снижаются с ростом пересыщения. В условиях метода "растворителя — антирастворителя" имеет место не полное смачивание раствором поверхности кристалла. На рис. 2, b в виде пунктирных линий представлены зависимости $\Delta G(h)$ при соответствующих пересыщениях для значения $\theta_{001} = \theta_{010} = \theta_{100} = 10^{\circ}$. Как видно из рисунка, в данном случае энергетический барьер образования зародыша выше на 4-5%, чем в условиях полного смачивания.

6. Заключение

В рассмотренной модели через использование уравнения Юнга для параметров зародышеобразования на границе раздела жидкость-воздух учтена зависимость от краевого угла смачивания граней кристалла. В условиях роста по методу "растворитель-антирастворитель", когда имеет место рост контактного угла смачивания по мере увеличения концентрации осадителя (изопропанол), критические размеры и энергетический барьер образования зародыша будут расти, а скорость зародышеобразование снижаться, что, возможно, объясняет более высокое качество формирующихся в данных условиях монокристаллических пленок.

2434

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН с использованием оборудования ЦКП ФНИЦ "Кристаллография и фотоника" при поддержке Минобрнауки (проект RFMEF162119X0035)

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- V.A. Postnikov, Y. Odarchenko, A.V. Iovlev, V.V. Bruevich, A.Y. Pereverzev, L.G. Kudryashova, V.V. Sobornov, L. Vidal, D. Chernyshov, Y.N. Luponosov, O.V. Borshchev, N.M. Surin, S.A. Ponomarenko, D.A. Ivanov, D.Y. Paraschuk. Cryst. Growth Des. 14, 1726 (2014).
- [2] В.А. Постников, С.В. Чертопалов. Кристаллография **60**, 651 (2015).
- [3] В.А. Постников, Н.И. Сорокина, О.А. Алексеева, А.А. Кулишов, Р.И. Сокольников, М.С. Лясникова, В.В. Гребенев, О.В. Борщев, М.С. Скоротецкий, Н.М. Сурин, Е.А. Свидченко, С.А. Пономаренко, А.Э. Волошин. Кристаллография 63, 801 (2018).
- [4] Е.Д. Щукин, А.В. Перцов, Е.А. Амелина. Коллоидная химия. Высш. шк., М. (2004). 445 с.
- [5] М. Джейкок, Д. Парфит. Химия поверхностей раздела фаз. Мир, М. (1984). 269 с.
- [6] W.L. Jorgensen, J. Tirado-Rives. J. Am. Chem. Soc. 110, 1657 (1988).
- [7] W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives. J. Am. Chem. Soc. 118, 11225 (1996).
- [8] P. Puschnig, D. Nabokand, C. Ambrosch-Draxl. Interface Controlled Organic Thin Films. Springer Proceedings in Physics 129 / Ed. H.-G. Rubahn, H. Sitter, K. Al-Shamery. Springer (2009). P. 3.

Редактор Т.Н. Василевская