06,11

Протонпроводящие композиционные материалы на основе соединения $Cs_6H(HSO_4)_3(H_2PO_4)_4$

© В.А. Коморников, В.В. Гребенев, И.С. Тимаков, О.Б. Зайнуллин

¹ Институт кристаллографии им. А.В. Шубникова РАН, Федеральный научно-исследовательский центр "Кристаллография и фотоника" РАН, Москва, Россия

E-mail: v.a.kom@mail.ru

Поступила в Редакцию 16 июля 2019 г. В окончательной редакции 16 июля 2019 г. Принята к публикации 25 июля 2019 г.

Получены композиционные протонпроводящие материалы $xCs_6H(HSO_4)_3(H_2PO_4)_4 + (1 - x)AlPO_4$ в интервале составов ($x = 0.9 \div 0.7$). Методами рентгенофазового анализа, импедансной спектроскопии, электронной сканирующей микроскопии изучены их физико-химические и транспортные свойства.

Ключевые слова: Кристаллы-суперпротоники, фазовые переходы, композитные материалы.

DOI: 10.21883/FTT.2019.12.48557.16ks

1. Введение

Перспективными для использования в качестве материалов для водородно- воздушных топливных элементов являются соединения семейства с общей формулой $M_m H_n (XO_4)_{(m+n)/2} \cdot y H_2 O$ (M = K, Rb, Cs, NH₄, $XO_4 = SO_4$, SeO₄, HPO₄). Одним из уникальных свойств кристаллов этого семейства, названного суперпротониками, является аномально высокая протонная проводимость при относительно невысокой температуре.

О перспективности использования материалов на основе кристаллов-суперпротоников топливных элементов на водороде упоминалось в ведущих научных журналах "Nature" [1], "Physics Today" [2].

В то же время ограничивает применение соединений этого семейства как раз необходимость получения функциональных материалов в виде тонких мембран с низкой газопроницаемостью. Очевидным решением данной проблемы является использование композитных материалов.

Таким образом, данная работа является логическим продолжением ранее полученных результатов и посвящена получению функциональных протонпроводящих материалов, а именно определению условий синтеза композиционных материалов переменного состава xCs₆H(HSO₄)₃(H₂PO₄)₄ + (1 - x)AlPO₄ (полиалюмофосфат) в интервале составов $x = 0.9 \div 0.7$; анализу физико-химических свойств этих материалов.

2. Экспериментальная часть

В работе для получения монокристаллов $Cs_6H(HSO_4)_3(H_2PO_4)_4$ использовали гидросульфат цезия (CsHSO4) марки "ч", ТУ 6-09-04-198-83 и дигидроортофосфат цезия (CsH_2PO_4) марки "хч",

TV 6-09-04-201-82 без дополнительной очистки и кислота фосфорная 85% Н₃РО₄ "ЧДА", ГОСТ 6552-80. Для получения композиционных материалов использовали: алюмоаммонийные квасцы "осч 7-4" $Al(NH_4)(SO_4)_2 \cdot 12H_2O_4$ ΤУ 6-09-3717-76; раствор особой 25-5" аммиака водного чистоты "осч. $(NH_3 \cdot H_2O)$, ГОСТ 24147-80 и ранее упомянутая фосфорная кислота.

Рентгенофазовый анализ (РФА) размолотых в порошок образцов материалов выполнен при комнатной температуре на настольном рентгеновском дифрактометре Rigaku Miniflex 600 (Япония) (рентгеновская трубка с медным анодом, непрерывный режим съемки — 2 grad/min, величина шага 0.02° в интервале углов 20 5–75°, без вращения образца) в обычной атмосфере.

Диэлектрические свойства композиционных материалов изучали методом импедансной спектроскопии двухконтактным методом. Для осуществления измерений образцы спрессовали в таблетки при давлении $100-120 \text{ kg/cm}^2$. В качестве электродов нанесли Ag и подклеили медные проволоки. Измерения проводились на воздухе в диапазоне температур 25–160°С и частотном диапазоне $10^{-1}-1.4 \cdot 10^7$ Hz (оптический столик Linkam ETS420 с анализатором импеданса Alpha-AN (Novocontrol, Germany). Обработка полученных данных (подбор эквивалентной схемы) выполнялась при помощи программы Zview.

Изучение объемного распределения фаз в композитных материалах, определение степени однородности и оценку крупности частиц проводили с использованием растрового сканирующего электронного микроскопа Quanta 200 3D (FEI, США).

Монокристаллы соединения Cs₆H(HSO₄)₃(H₂PO₄)₄ получали методом изотермического упаривания из раствора с мольным соотношением

Рис. 1. Образец композиционного материала $(1 - x)Cs_4(HSO_4)_3(H_2PO_4) + xAlPO_4$ после высушивания в форме.

CsHSO₄:CsH₂PO₄:H₃PO₄ равным 3:3:1 в условиях, описанных ранее [3]. Фазовый состав полученных монокристаллов контролировали методом РФА.

Получение материала по методике, более подробно описанной в работе [4], и включал в себя стадию гидролиза раствора аммонийалюминиевых квасцов избытком водного раствора аммиака по реакции:

$$\begin{split} NH_4Al(SO_4)_2 \cdot 12H_2O + NH_3 \cdot H_2O \\ & \longrightarrow Al(OH)_3 \downarrow + H_2O + (NH_4)_2SO_4 \end{split}$$

Сразу же после коагуляции осадка проводилось отделение $Al(OH)_3 \cdot nH_2O$ фильтрованием. После определения количества теряемой свежеосажденным гидроксидом алюминия воды проводилась нейтрализация навески $Al(OH)_3 \cdot nH_2O$ фосфорной кислотой по реакции:

$$Al(OH)_3 \cdot nH_2O + H_3PO_4 \rightarrow AlPO_4 + 2H_2O + nH_2O$$

После нейтрализации прозрачные растворы фосфата алюминия упаривали до густой сиропообразной консистенции. К полученным растворам добавлялись навески размолотого монокристалла $Cs_6H(HSO_4)_3(H_2PO_4)_4$ и полученные смеси отливались в специальные гибкие силиконовые формы. После застывания и высушивания отливки в виде тонких ($0.5 \div 1.5 \text{ mm}$) пластин извлекались из форм для проведения дальнейших исследований, рис. 1.

3. Результаты

Результаты рентгенофазового анализа представлены на рис. 2. При исследовании ряда образцов целевого композита методом рентгенофазового анализа показано, что алюмофосфатный компонент в условиях синтеза образуется в виде аморфной матрицы с некоторой долей кристалличности, что обуславливает прозрачность получаемых отливок образцов.

На рентгенограммах это проявляется в виде диффузионного гало, причем с увеличением доли алюмофосфатного компонента в материале $x Cs_6 H(HSO_4)_3 (H_2PO_4)_4$ + $(1 - x)AIPO_4$ величина гало возрастает.

Влияние способа получения и состава композитного материала на температурную зависимость проводимости на примере состава $0.9Cs6H(HSO_4)_3(H_2PO_4)_4$ + $0.1AlPO_4$ представлена на рис. 3.

Фазовый переход в образце является существенно "размытыми" по температуре в сравнении с исходным монокристаллом. Примечательно, что проводимость при температуре ниже температуры фазово-

Рис. 2. Сравнение порошковых рентгенограмм фазы $Cs_6H(HSO_4)_3(H_2PO_4)_4$, материала $xCs_6H(HSO_4)_3(H_2PO_4)_4 + (1-x)AIPO_4$ с изменением параметра x.

Рис. 3. Сравнение температурной зависимости проводимости исследованных материалов: 1 — исходный монокристалл $Cs_6H(HSO_4)_3(H_2PO_4)_4$, 2 — свежесинтезированный алюмофосфатный компонент, 3 — 0.9 $Cs_6H(HSO_4)_3(H_2PO_4)_4$ – 0.1 $AIPO_4$

Рис. 4. Электронная микроскопия образцов материала: $1 - 0.9Cs_6H(HSO_4)_3(H_2PO_4)_4 - 0.1AlPO_4; 2 - 0.8Cs_6H(HSO_4)_3(H_2PO_4)_4 - 0.2AlPO_4; 3 - -0.7Cs_6H(HSO_4)_3(H_2PO_4)_4 - 0.3AlPO_4$ (нормировочный отрезок - 10 μ m).

го перехода превышает проводимость монокристалла Cs6H(HSO₄)₃(H₂PO₄)₄. При этом проводимость материала 0.9Cs6H(HSO₄)₃(H₂PO₄)₄ + 0.1AlPO₄ сопоставима со значением проводимости для монокристалла Cs₆H(HSO₄)₃(H₂PO₄)₄ при температурах выше температуры фазового перехода.

Была измерена и проводимость чистого алюмофосфатного компонента. Фазового перехода при температурах эксперимента данная добавка не проявляет, однако порядок проводимости ($10^{-4} \div 10^{-3} \Omega^{-1} \cdot cm^{-1}$) однозначно указывает на способность алюмофосфатного компонента участвовать в процессе протонного транспорта.

Результаты электронной микроскопии поверхностей образцов отливок, осушенных на воздухе, представлены на рис. 4.

Полученные результаты обусловлены применяемой методикой синтеза образцов. В материалах с x > 0.7 образуются соприкасающиеся между собой кристаллиты проводящей фазы $Cs_6H(HSO_4)_3(H_2PO_4)_4$ размерами $0.5 \div 1.5 \,\mu$ m, пустоты между которыми заполнены армирующей фазой. При дальнейшем увеличении содержания армирующей алюмофосфатной добавки меняются объемные доли фаз, что приводит к уменьшению среднего размера кристаллитов проводящей фазы, и уже при достижении значения x = 0.7 и менее кристаллиты фазы $Cs_6H(HSO_4)_3(H_2PO_4)_4$ образуются изолированными друг от друга. Это легко заметить при сравнении снимков разных по составу материалов в одинаковом масштабе.

Полученные результаты хорошо согласуются и объясняют результаты импедансной спектроскопии. При такой пространственной структуре материала (одна фаза заполняет пустоты между частицами другой фазы) межфазная граница является сплошной по объему и способна вносить существенный вклад в проводимость материала.

4. Обсуждение результатов и выводы

Полученные в процессе исследования экспериментальные результаты однозначно указывают на наличие суперпротонных фазовых переходов в материале $xCs_6H(HSO_4)_3(H_2PO_4)_4 + (1-x)AIPO_4$. Основные особенности рассматриваемого материала связаны с двумя ключевыми параметрами: способ получения материала $xCs6H(HSO_4)_3(H_2PO_4)_4 + (1-x)AIPO_4$ (отливка густого раствора в форму с образованием фаз в одном объеме), и свойствами используемого армирующего компонента (AIPO_4).

Благодаря опробованному подходу к синтезу материала $x \operatorname{Cs}_6 \operatorname{H}(\operatorname{HSO}_4)_3(\operatorname{H}_2\operatorname{PO}_4)_4 + (1-x)\operatorname{AlPO}_4$, образование протонпроводящей фазы $\operatorname{Cs}_6\operatorname{H}(\operatorname{HSO}_4)_3(\operatorname{H}_2\operatorname{PO}_4)_4$ и фазы AlPO₄ происходит в одном объеме.

Применяемый в работе подход к синтезу материала $xCs_6H(HSO_4)_3(H_2PO_4)_4 + (1 - x)AlPO_4$ положительно сказывается на однородности материала и снижении его газопроницаемости по причине отсутствия пор в образцах.

Повышенная при низких температурах проводимость $xCs_6H(HSO_4)_3(H_2PO_4)_4 + (1 - x)AIPO_4$ в сравнении с монокристаллом $Cs_6H(HSO_4)_3(H_2PO_4)_4$ указывает на дополнительный вклад в проводимость алюмофосфатной добавки наряду с проводимостью по межфазной границе. Это позволяет предполагать способность алюмофосфатной добавки участвовать в процессе протонного транспорта наряду с протонпроводящей фазой $Cs_6H(HSO_4)_3(H_2PO_4)_4$.

В значительной степени аморфное состояние фазы AlPO₄ в составе композиционного материала положительно сказывается на его механических (высокая однородность, прозрачность материала) и проводящих (за счет большей площади межфазной границы, более сильного поверхностного взаимодействия между частицами разных фаз) свойствах.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования РФ в рамках Государственного задания ФНИЦ "Кристаллография и фотоника" РАН в части синтеза композитных материалов *x*Cs₆H(HSO₄)₃(H₂PO₄)₄ + (1 − *x*)AlPO₄. Характеризация физико-химических свойств кристаллов выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-32-20050). Работа выполнена с использованием оборудования ЦКП ФНИЦ "Кристаллография и фотоника" РАН при поддержке Минобрнауки.

Конфликт интересов

Авторы подтверждают, что у них нет конфликта интересов.

Список литературы

- T. Norby, S.M. Haile, D.A. Boysen, C.R.I. Chisholm, R.V. Merle. Nature 410, 877 (2001).
- [2] R. Fitzergerald. Phys. Today. 54, 21 (2001).
- [3] В.А. Коморников, В.В. Гребенев, И.П. Макарова, Е.В. Селезнева, П.В. Андреев. Кристаллография **61**, 645 (2016).
- [4] В.А. Коморников, А.М. Гречихина, В.В. Гребенев, И.С. Тимаков, О.Б. Зайнуллин, В.Г. Зиновьев. Кристаллография 63, 806 (2018).

Редактор Т.Н. Василевская