03,13

Новый метод получения объемных кристаллов AIN, GaN и AIGaN с использованием гибридных подложек SiC/Si

© С.А. Кукушкин¹, Ш.Ш. Шарофидинов²

¹ Институт проблем машиноведения РАН, Санкт-Петербург, Россия ² Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: sergey.a.kukushkin@gmail.com

Поступила в Редакцию 16 июля 2019 г. В окончательной редакции 16 июля 2019 г. Принята к публикации 25 июля 2019 г.

Представлены основные положения нового метода выращивания объемных, толщиной от 100 μ m и более, монокристаллических пленок AlN, AlGaN и GaN на кремниевых подложках с буферным слоем карбида кремния с последующим их отделением от подложки Si. Суть данного метода заключается в сочетании метода хлорид-гидридной эпитаксии, обеспечивающего высокие скорости роста слоев III-нитридов, с использованием в качестве подложки для роста подложку Si с буферным слоем наномасштабной пленки SiC, выращенной методом замещения атомов. Подложка Si со слоем SiC, выращенным методом замещения, обладает рядом структурных, физических и химических особенностей по сравнению со слоями SiC, выращенными на Si стандартными методами. Показано, что именно эта особенность и позволяет выращивать на ее поверхности толстые, без трещин слои AlN, AlGaN и GaN с последующим и достаточно простым их отделением от подложки. В работе были выращены монокристаллические без трещин слои: AlN толщиной до $300 \,\mu$ m; AlGaN толщиной до $400 \,\mu$ m; GaN толщиной до $200 \,\mu$ m; GaN полуполярной (1124) ориентации толщиной до $35 \,\mu$ m.

Ключевые слова: объемный нитрид алюминия, объемный AlGaN, объемный нитрид галлия, карбид кремния на кремнии, эпитаксия, широкозонные полупроводники, тонкие пленки.

DOI: 10.21883/FTT.2019.12.48549.51ks

1. Введение

Материалы на основе широкозонных полупроводников группы A³B⁵ (GaN, AlN, InN) и их твердых растворов (AlGaN, InGaN) в настоящее время получили широкое распространение и уже достаточно широко используются при производстве оптоэлектронных приборов и устройств. Особое место среди этих приборов занимают приборы работающие как источники и приемники УФ-света. Эти приборы широко используются в медицине, в биотехнологии и банковской сфере. Ключевым звеном в производстве оптоэлектронных приборов занимает технология получения бездефектных и низкодислокационных слоев нитрида галлия (GaN), нитрида алюминия (AlN) и нитрида индия (InN). Из-за отсутствия родных подложек слои GaN, AlN и InN в основном выращиваются на подложках сапфира (Al₂O₃) и карбида кремния (SiC). Серьезным препятствием для широкого использования этих подложек является высокая стоимость подложек SiC и низкая проводимость подложек сапфира. В настоящее время, в сегменте производства электроники особое место принадлежит кремнию (Si), где он занимает почти 80% сегмента рынка электроники и оптоэлектроники. Поскольку Si очень широко распространенный материал, который обладает хорошей проводимостью и имеет низкую стоимость,

внимание многих исследовательских групп сосредоточено на кремнии в качестве подложечного материала для роста III-нитридных полупроводников. Однако значительная разница в параметрах решетки Si и GaN (16%) и в коэффициентах термического расширения (1.5 раза) является проблемой при решении поставленной задачи. Исследователи предлагают следующие варианты решения этой проблемы. Так, использование тонкого буферного слоя AlN, промежуточных слоев AlGaN/AlN и положки SiC/Si позволили получить слои GaN до 10 µm без трещин и хорошего кристаллического качества [1-5]. Эти исследования внушают оптимизм и позволяют надеется, что в дальнейшем на основе этих структур возможно будет получать приборные структуры. Безусловно, наличие объемных подложек GaN и AlN высокого кристаллического качества создало бы предпосылки для широкого их распространения и позволило бы осуществлять гомоэпитаксиальный рост на подложках AlN, GaN и AlGaN. Это значительно облегчило бы задачу получения приборных структур. Поэтому работы в этом направлении в настоящее время ведутся ускоренными темпами. Так, значительный прогресс был достигнут авторами работы [6], которые получили УФ-светодиод с длиной волны 210 nm на подложке AlN. В работах [7,8] были созданы и исследованы лазерные диоды, которые были получены на объемных подложках AlN и AlGaN с низкой плотностью дислокации. В работе [9] был получен вертикальный УФ лазерный диод с длиной волны $\lambda = 350$ nm на объемной подложке GaN(0001). Методом металло-органической газофазной эпитаксии (МОГФЭ) в [10] была выращена гетероструктура AlGaN с MQW с гладкой поверхностью на полуполярной подложке AlN (2021). Максимум возбуждения на этой структуре наблюдался при длине волны $\lambda = 237$ nm.

Несмотря на огромное с преимущество объемных слоев AlN, GaN и AlGaN, до настоящего времени проблема их получения, окончательно не решена. Объемные слои AlN и GaN в основном получают методом MOCVD, методом сублимационного роста (Physical Vapor Transport) PVT, методом хлорид-гидридной газовой эпитаксии HVPE и другими способами. Например, при температуре 2300°С методом РVТ были выращены объемные слои AlN с диаметром 0.5 mm и длиной 10-12 mm с использованием тигля, изготовленного из тантала (Ta) [11]. В работе [12] методом НVРЕ был выращен объемный GaN (0001) диаметром 52 mm и толщиной 5.8 mm. В качестве подложки использовался темплейт GaN/Al₂O₃ толщиной 3 µm, полученный методом MOCVD. Плотность дислокации составила для N-грани $5 \cdot 10^6 \text{ cm}^{-2}$ и $1.2 \cdot 10^6 \text{ cm}^{-2}$ для Ga-грани, что говорит о хорошем кристаллическом качестве слоев GaN. Для получения объемных GaN с низкой плотностью дислокации также широко используется аммонотермальный способ роста, который хорошо сочетается с методом HVPE. В работах [13,14] авторами подробно описывается механизм роста объемных GaN толщиной более 2 mm. В качестве подложки они использовали выращенный аммонотермальным методом GaN, толщиной $600\,\mu\text{m}$ и размером 1 \times 1 ст. Затем в течение 9 часов была осуществлена гомоэпитаксия GaN методом HVPE. Полученные слои были хорошего кристаллического качества. В поверхностном слое имелись некоторые неровности (бугорки), которые были удалены химикомеханической полировкой, а затем поверхность была отполирована до уровня 0.1 nm. Полуширина кривой качания образцов составила $FWHM_{\omega-\theta} = 16$ arcsec, а плотность дислокации была $\geq 10^5 \, {\rm cm}^{-2}$.

Таким образом, разработка новых методов получения объемных слоев III-нитридов создает огромный простор для реализации задач по созданию оптоэлектронных приборов. В связи с этим целью настоящей работы являлась разработка нового метода получения толстых, толщиной 100 μ m и более, объемных слоев AlN, AlGaN и GaN. Основная идея решения этой, отнюдь не тривиальной, проблемы заключалась в следующем. В качестве исходной положки мы предлагали использовать наиболее дешевый слой карбида кремния, выращенный на кремнии новым методом замещения атомов. Данный метод был разработан и запатентован относительно недавно [15–19]. С момента разработки данного метода были проведены многочисленные эксперименты, подтверждающие возможность выращивания эпитаксиальных слоев

ІІІ-нитридов на данных подложках приемлемого для приложений в микроэлектронике качества. И, наконец, самое главное, — пленки SiC, выращенные методом замещения на Si, отличаются рядом свойств как от монокристаллов SiC, так и от пленок SiC, выращиваемых на Si по стандартным методикам [20,21]. Суть этих отличий состоит в следующем.

1. Слой SiC, выращенный методом замещения, может состоять из ряда политипов SiC, в частности, как показано в работе [22], в процессе замещения может образоваться новая, ранее неизвестная тригональная фаза SiC.

2. Слои SiC, выращенные методом замещения, содержат вакансии кремния, а углеродная подрешетка сдвинута в сторону кремниевых вакансий. В результате этого на поверхности слоя SiC образуются углеродновакансионные структуры, существенно меняющие свойства поверхности SiC и, в частности, его адсорбционные характеристики по отношению к атомам и молекулам галлия, аммиака, азота, хлорида галлия, хлорида алюминия, соединениям триметил галлия и триметил алюминия, то есть к основным прекурсорам, участвующим в реакциях образования нитридов алюминия и галлия.

3. Метод получения SiC при помощи замещения атомов приводит к образованию под слоем пленки SiC пор. При этом образовавшаяся пленка "висит" над поверхностью пор подобно мосту, висящему над рекой на сваях. Подобная структура демпфирует не только упругие напряжения, вызванные различием в параметрах решеток пленка-подложка, но и упругие напряжения, образовавшиеся в результате различия в термических коэффициентах расширения материалов Si, SiC, AlN и GaN.

4. Пленка SiC со слоем III-нитрида может быть легко отделена от подложки Si, содержащей на границе раздела SiC-Si поры [23]. Эти особенности строения слоя SiC на Si делают его уникальным подложечным материалом и позволяют, как будет показано далее, выращивать толстые монокристаллические слои, можно сказать, практически монокристаллические подложки таких широкозонных материалов как AlN, AlGaN, GaN.

2. Описание основных условий выращивания объемных слоев AIN, AIGaN и GaN

Для получения объемных слоев AlN, AlGaN и GaN мы использовали метод HVPE, позволяющий реализовать большие скорости осаждения этих материалов. Эксперимент проводился на HVPE установке горизонтального типа с диаметром кварцевой трубы 76 mm и с резистивным нагревом. Для эпитаксии использовались подложки (теплейты) со слоями SiC, выращенными методом [15–19] на поверхности подложек Si, следующих основных ориентацией: SiC/Si(111); SiC/Si(110) и SiC/Si(100). Температура в процессе осаждения AlN,

Рис. 1. РЭМ-изображение торцевого скола объемного монокристаллического слоя AlN. (*a*) до отделения от подложки SiC/Si; (*b*) после отделения от подложки SiC/Si.

AlGaN, GaN в зоне роста составляла 1050°С, а в зоне источников от 600°С до 850°С соответственно. В качестве реагентов использовались хлористый водород (HCl) и аммиак (NH₃). Транспортирующим газом служил аргон высокой чистоты (Ar). Источниками составляющих элементов, непосредственно участвующих в химической реакции, были металлические галлий (Ga) и алюминий (Al). Время роста составило от 2 до 5 h в зависимости от осаждаемого материала.

Вначале осуществлялся рост объемных слоев AlN. Скорость осаждения слоев составила порядка $V = 0.5 - 1 \,\mu$ m/min, температура $T = 1080^{\circ}$ С. Были получены серии образцов объемных AlN с толщинами от 100 до 300 µm. Затем химическим способом, с использованием специальной разработанной нами кислотной смеси на основе HF, подложки Si со слоем SiC были полностью удалены. На рис. 1 приведены РЭМ изображения образца AlN до (рис. 1, a) и после (рис. 1, b) отделения от подложки SiC/Si. На рис. 1, aхорошо виден слой SiC и поры в Si, покрытые SiC, образовавшиеся в процессе синтеза SiC. Для сравнительной оценки слоев AlN были также выращены слои AlN на подложках сапфира и монокристаллического 6H-SiC. Кристаллические качества слоев A1N оценивались методом рентгеновской дифрактометрии и рамановской спектроскопии. На рис. 2 представлены рамановские спектры для образцов AlN, которые были выращены на различных подложках. Усредненное, по площади образца, значение рентгеновской кривой качания $FWHM_{\omega-\theta}$ слоя AlN было порядка $FWHM_{\omega-\theta} \sim 30 \div 35$ arcmin.

Объемные слои AlGaN на подложках SiC/Si мы выращивали при следующих условиях. Скорость роста составила порядка $V = 2 \,\mu$ m/min. Потоки по $V(\text{HCl}_{\text{Al}}) = 100 \,\text{ml/min}$ и $V(\text{HCl}_{\text{Ga}}) = 200 \,\text{ml/min}$ соответственно, а по аммиаку $V(\text{NH}_3) = 1000 - 1500 \,\text{ml/min}$. Предварительно, на начальной стадии процесса подложка подвергалась отжигу в течении 10 min в атмосфере аргона при температуре $T = 1080^{\circ}$ C. Затем

Рис. 2. Рамановская спектроскопия толстых слоев AlN, выращенных на сапфире, монокристаллической подложке SiC-6*H* и подложке SiC/Si (111).

осаждались несколько пар промежуточных буферных слоев AlN/AlGaN. Толщина промежуточных слоев варьировалась от 100 nm до 1 µm. Эти промежуточные слои представлены на рис. 3, где границы раздела слоев отчетливо видны. Самый нижний слой — это поры, которые образуются при осаждении SiC на Si. Слои AlGaN были получены толщиной до 400 µm. Потом, таким же как химическим методом, как и в случае AlN, мы удалили подложку SiC/Si. На рис. 3 приведены РЭМ-изображения скола образца объемного монокристаллического слоя AlGaN, снятые при двух различных увеличениях (рис. 3, a) и (рис. 3, b) (значение масштаба указано на рисунках), позволяющих увидеть общую толщину слоя (рис. 3, a) и структуру чередующихся переходных слоев AIN и AlGaN от подложки SiC/Si к слою AlGaN (рис. 3, b). На рис. 3, b хорошо видна подложка Si и слой SiC с порами в Si. На рис. 4 приведены

Рис. 3. РЭМ-изображения торцевого скола объемного монокристаллического слоя AlGaN, снятые при двух различных увеличениях (a) и (b) (значение масштаба указано на рисунках), позволяющих увидеть общую толщину слоя (a) и структуру чередующихся переходных слоев AlN и AlGaN от подложки SiC/Si к слою AlGaN (b).

Рис. 4. Рамановские и рентгеновские спектры объемного слоя AlGaN/SiC/Si. Рамановский спектр объемного слоя образца AlGaN/SiC/Si (с долей Ga по составу < 10%) (*a*); усредненное, по площади образца, значение рентгеновской кривой качания объемного слоя AlGaN/SiC/Si (*b*).

Рис. 5. РЭМ-изображения торцевого скола поперечного сечения отделенного толстого GaN образца с системой чередующихся переходных слоев AlN, AlGaN и GaN, снятые при двух различных увеличениях (a) и (b) (значение масштаба указано на рисунках), позволяющих увидеть общую толщину слоя (a) и структуру чередующихся переходных слоев AlN, AlGaN и GaN (b).

Рис. 6. Микрофотография (*a*) поверхности толстого полуполярного слоя GaN ($11\overline{2}4$)SiC/Si(110) и фотография общего вида этого же образца, снятая при обычном увеличении (8).

Рис. 7. Фотографии выращенных объемных слоев AlN (a), AlGaN (b) и GaN (c) полярной ориентации (0001).

рамановский спектр (с долей Ga по составу < 10%) (рис. 4, *a*) и усредненное, по площади образца, значение рентгеновской кривой качания $FWHM_{\omega-\theta}$ слоя AlGaN, которая имела значение порядка $FWHM_{\omega-\theta} \sim 0.43 \deg$ (рис. 4, 8).

Затем мы выращивали объемные слои GaN. Отличие данного процесса роста от двух предыдущих процессов заключается в том, что при эпитаксии GaN возможна диффузия кремния из пористого, разрушенного слоя Si, находящегося под слоем SiC, по вакансиям V_{Si} , находящимся в SiC, в слой GaN. Для предотвращения этого механизма мы решили вначале вырастить гетероструктуру, состоящую из толстых слоев AlN и AlGaN, а затем на их поверхности вырастить толстый слой GaN. На рис. 5 приведено РЭМ-изображение скола образца объемного монокристаллического слоя GaN, снятое при двух различных увеличениях (рис. 5, a) и (рис. 5, b) (значение масштаба указано на рисунках), позволяющих увидеть общую толщину слоя (рис. 5, a) и структуру чередующихся переходных слоев AlN, AlGaN и GaN. Как и в двух предыдущих случаях, подложка SiC/Si была удалена химическим способом. Усредненное, по площади образца, значение рентгеновской кривой качания для слоя GaN было $FWHM_{\omega-\theta} = 14 \div 16$ arcmin.

Таким же способом нами был выращен толстый полуполярный слой GaN (1124) на подложке SiC/Si(110). Основной поток составил по $V(\text{HCl}_{\text{Ga}}) = 200 \text{ ml/min}$, температура роста $T = 1050^{\circ}$ С. Максимальная без трещин и питов толщина была порядка $35 \,\mu$ m. Усредненное, по площади образца, значение рентгеновской кривой качания для полуполярного слоя GaN было порядка $FWHM_{\omega-\theta} \sim 20 \div 25$ агсmin Микрофотография морфологии поверхности этого образца (рис. 6, *a*) и фотография его общего вида (рис. 6, *b*) при обычном увеличении приведены на рис. 6.

2343

На рис. 7 приведены фотографии общего вида выращенных объемных слоев AlN, AlGaN и GaN полярной ориентации (0001).

3. Заключение

Таким образом, в работе был разработан новый метод получения объемных монокристаллических слоев AlN, AlGaN и GaN. На основе данного метода были выращены без трещин и питов

- 1. объемные слои AlN толщиной от 100 до $300 \,\mu$ m;
- 2. объемные слои AlGaN толщиной до $400\,\mu\text{m}$;
- 3. объемные слои GaN толщиной до $200\,\mu m$;

4. объемные слои GaN полуполярной (11 $\overline{2}4$) ориентации толщиной до 35 μ m.

Полуширины кривых рентгеновской кривой качания $FWHM_{\omega-\theta}$ составляли: для слоев AlN ~ 30 ÷ 35 arcmin; для слоев AlGaN ~ 0.43 deg; для слоев GaN 14 ÷ 16 arcmin. Полуполярные слои GaN, ориентации (1124), выращенные на SiC/Si(110), имели полуширину кривых рентгеновской кривой качания $FWHM_{\omega-\theta} \sim 20 \div 25$ arcmin.

Благодарности

В заключение авторы выражают глубокую признательность А.В. Редькову за помощь при снятии и обработке рамановских спектров, И.П. Сошникову за помощь при снятии РЭМ-изображений сколов поверхностей образцов и М.П. Щеглову за помощь в анализе рентгеновских спектров.

Финансирование работы

выполнена при финансовой Работа поддержке программы Президиума РАН "НАНОСТРУКТУРЫ: ФИЗИКА, ХИМИЯ, БИОЛОГИЯ, ОСНОВЫ ТЕХНОЛОГИЙ". Регистрационный НИОКТР N⁰ АААА-А19-119012490107-5. Экспериментальные исследования выполнялись с использованием уникальной научной установки "Физика, химия, и механика кристаллов и тонких пленок" (ИПМаш РАН, Санкт-Петербург).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- H. Ishikawa, G.-Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, M. Umeno. Jpn. J. Appl. Phys. 38, L492, (1999).
- [2] Ш.Ш. Шарофидинов, А.А. Головатенко, И.П. Никитина, Н.В. Середова, М.Г. Мынбаева, В.Е. Бугров, М.А. Одноблюдов, С.И. Степанов, В.И. Николаев. МРМ 22, 53 (2015).
- [3] D. Marcon, Y.N. Saripalli, S. Decoutere. IEDM Dig. Tech. Papers 16.2.1–16.2.4, (2015).

- [4] Sh.Sh. Sharofidinov, A.V. Redkov, A.V. Osipov, S.A. Kukushkin. J. Phys.: Conf. Ser. 917, 032028 (2017).
- [5] S.A. Kukushkin, A.M. Mizerov, A.V. Osipov, A.V. Redkov. S.N. Timoshnev. Thin Solid Films 646, 158 (2018).
- [6] Y. Taniyasu, M. Kasu, T. Makimoto. Nature 441, 325 (2006).
- [7] M. Kneissl, Zh. Yang, M. Teepe, C. Knollenberg, O. Schmidt, P. Kiesel, N.M. Johnson, S. Schujman, L.J. Schowalter. J. Appl. Phys. 101, 123103 (2007).
- [8] M. Amirhoseinya, G. Alahyarizadeh. Vacuum 141, 139 (2017).
- [9] Y. Aoki, M. Kuwabara, Y. Yamashita, Y. Takagi, A. Sugiyama, H. Yoshida. Appl. Phys. Lett. 107, 151103 (2015).
- [10] Th. Wunderer, Z. Yang, M. Feneberg, M. Batres, M. Teepe, N. Johnson. Appl. Phys. Lett. 111, 111101 (2017).
- [11] E.N. Mokhov, O.V. Avdeev, I.S. Barash, T.Yu. Chemekov, A.D. Roenkov, A.S. Segal, A.A. Wolfson, Yu.N. Makarov, M.G. Ramm, H. Helav. J. Cryst. Growth 281, 93 (2005).
- [12] K. Fujito, Sh. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, S. Nagao. J. Cryst. Growth **311**, 30011 (2009).
- [13] A.E.F. de Jong, V. Vonkc, M. Ruat, M. Boćkowski, G. Kamler, I. Grzegory, V. Honkimäki, E. Vlieg. J. Crystal Growth 448, 70 (2016).
- [14] J.A. Freitas, J.C. Culbertsona, N.A. Mahadika, T. Sochackib, M. Iwinskab, M.S. Bockowski. J. Cryst. Growth 456, 113 (2016).
- [15] С.А. Кукушкин, А.В. Осипов, Н.А. Феоктистов. Способ изготовления изделия, содержащего кремниевую подложку с пленкой из карбида кремния на ее поверхности. Патент РФ № 2363067 от 22.01. (2008).
- [16] С.А. Кукушкин, А.В. Осипов. ФТТ 50, 1188 (2008).
- [17] С.А. Кукушкин, А.В. Осипов. ДАН 444, 266 (2012).
- [18] С.А. Кукушкин, А.В. Осипов, Н.А. Феоктистов. ФТТ 56, 1457 (2014).
- [19] S.A. Kukushkin, A.V. Osipov. J. Phys. D: 47, 313001 (2014).
- [20] A.A. Lebedev. Semiconductor Sci. Technol. 21, R17 (2006).
- [21] G. Ferro. Solid State Mater. Sci. 40, 56 (2015).
- [22] Ю.Э. Китаев, С.А. Кукушкин, А.В. Осипов, А.В. Редьков. ФТТ 60, 2030 (2018).
- [23] С.А. Кукушкин, А.В. Осипов, А.В. Редьков. ФТП 51, 414 (2017).

Редактор Ю.Э. Китаев