03,06

Effect of gamma irradiation on conductivity of $Cd_{1-x}Fe_xTe$

© M.A. Mehrabova¹, H.R. Nuriyev², H.S. Orujov^{2,3}, N.H. Hasanov⁴, T.I. Kerimova¹, A.A. Abdullayeva³, A.I. Kazimova⁵

¹ Institute of Radiation Problems of ANAS Baku, Baku, Azerbaijan
² Institute of Physics of ANAS named after academician G.M. Abdullayev, Baku, Azerbaijan
³ Azerbaijan Technical University, Baku, Azerbaijan
⁴ Baku State University, Baku, Azerbaijan
⁵ Ganja State University, Baku Azerbaijan
⁵ Ganja State University, Baku Azerbaijan
⁵ Ganja State University, Baku Azerbaijan
⁵ E-mail: m.mehrabova@science.az

Received: June 30, 2019 Revised: June 30, 2019 Accepted: July 1, 2019

The effect of γ -irradiation at the dose $D_{\gamma} = 605.6 \text{ kGy}$ on the temperature dependences of conductivity and dielectric permittivity of $\text{Cd}_{1-x}\text{Fe}_x\text{Te}$ semimagnetic semiconductors were investigated. The character of the $\varepsilon'(T)$ dependences of the irradiated $\text{Cd}_{1-x}\text{Fe}_x\text{Te}$ changes: there is a drop in the curves in the temperature range of $300 \div 400 \text{ K}$ at measurement frequencies 25 Hz-1 MHz, and ε' increases by 20 times. In the $\sigma(T)$ dependence, at all measurement frequencies a maximum appears at a temperature of 400 K and conductivity increases by 40 times. We assume that the character of the temperature dependences of dielectric permittivity and conductivity corresponds to the ionic conductivity.

Keywords: Semimagnetic semiconductors, dielectric permittivity, conductivity, measurement frequencies, γ -irradiation