03

Геометрическая оптика твист-ориентированного нематического жидкого кристалла с анизотропным поглощением

© А.О. Овакимян, А.Э. Айвазян, Л.С. Асланян

Ереванский государственный университет, физический факультет, 0025 Ереван, Республика Армения e-mail: harutyun.hovakimyan@ysu.am

Поступила в редакцию 08.04.2019 г. В окончательной редакции 08.04.2019 г. Принята к публикации 11.06.2019 г.

> Проанализирована пространственная динамика поляризованного света в плавнонеоднородной анизотропной среде с примесью анизотропно поглощающего красителя. В качестве такой среды рассматривался твист-ориентированный нематический жидкий кристалл с плеохроичным красителем. В геометрооптическом приближении получена система связанных укороченных уравнений относительно декартовых компонент электрической составляющей световой волны. Аналитически решена система связанных комплексных уравнений и проанализировано поведение линейно поляризованной волны в такой среде в случае как поглощения, так и усиления. Обнаружено асимметричное влияние этих двух процессов на пространственную динамику распространения света в среде.

Ключевые слова: плеохроизм, переход Фредерикса, тензор диэлетрической проницаемости, вектор Джонса.

DOI: 10.21883/OS.2019.11.48516.129-19

Введение

Распространение света в анизотропных средах в настоящее время является хорошо исследованным разделом оптики [1–3]. Ситуация усложняется, если среда обладает также и анизотропным поглощением. В однородных кристаллах взаимное расположение главных осей тензора диэлектрической проницаемости и поглощения являются произвольными, и анализ распространения световой волны является сложной задачей. Решение, однако, существенно упрощается в случае совпадения направления главных осей этих двух тензоров [3].

Появление сред с управляемой ориентацией оптической оси намного усложнило задачу [4] но, с другой стороны, существенно расширило круг исследуемых явлений. В отличие от однородных неоднородные анизотропные среды способны управляемо изменять характеристики световых полей, что и приводит к их широкому применению в различных устройствах управления параметрами излучения [5–7]. К числу таких сред относятся жидкие кристаллы (ЖК), в которых ориентацию оптической оси возможно плавно регулировать с помощью внешних воздействий. Если в такой неоднородно анизотропной среде присутствуют анизотропно поглощающие молекулы (плеохроичные красители), то в такой комбинированной плавнонеоднородной анизотропной среде с поглощением аналитическое решение возможно, если только деформации тензора диэлектрической проницаемости и поглощения не нарушают совпадение их главных осей.

В анизотропной плавнонеоднородной среде нормальные волны подчиняются связанным уравнениям. В результате параметры света меняются вдоль направления распространения, и задача сводится к выявлению характера этих изменений в зависимости от свойств среды. Хотя аналитическое решение системы связанных уравнений в таких средах связано с определенными трудностями даже при возможности применения приближенных методов, анализ пространственной динамики волновых характеристик света в плавнонеоднородной анизотропной среде с поглощением представляет определенный интерес не только в оптике, но и в квантовой механике, в физике плазмы и др. [8–10].

Исследованию распространения света в неоднородно анизотропной среде посвящено большое количество работ [11,12]. В более ранних работах нами была показана возможность решения системы связанных уравнений в твист-ориентированном нематическом жидком кристалле (НЖК) путем перехода во вращающуюся систему координат [13–15].

Целью настоящей работы является систематический анализ пространственной динамики света в плавнонеоднородной анизотропной среде с анизотропным поглощением. В качестве такой среды рассматривается твист-ориентированный НЖК с примесью плеохроичных молекул. Отметим, что интерес к такой смеси повысился в связи с обнаружением явления понижения порога перехода Фредерикса и усиления ориентационной оптической нелинейности в НЖК [16,17]. В НЖК явление анизотропии поглощения также интересно тем, что можно осуществлять переключение между двумя состояниями с различными спектрами пропускания, подавая на ЖК внешнее управляющее напряжение, т.е. наблюдая переход Фредерикса. На этом принципе работают

Рис. 1. Геометрия задачи.

многие цветные устройства отображения информации на ЖК.

Описание базисной модели

Пусть плоская монохроматическая волна распространяется в среде, которая может обладать неоднородной анизотропией. Примем, что оси лабораторной системы координат x, y совпадают с направлениями необыкновенной и обыкновенной волн на входе, а z — координата направлена вдоль распространения волны (рис. 1).

Существует большое число веществ, для которых поглощение света зависит от направления распространения и состояния поляризации. Явление изменения оптического пропускания вещества в зависимости от направления распространения и состояния поляризации излучения, падающего на это вещество, получило название плеохроизма. Плеохроизм обусловлен анизотропией поглощения излучения, падающего на вещество.

Рассмотрим случай, когда в среде, кроме неоднородности анизотропии, может присутствовать также неоднородное анизотропное поглощение. Согласно [11,18], представим тензор диэлектрической проницаемости такой среды в виде суммы двух эрмитово сопряженных тензоров:

$$\tilde{\varepsilon}_{ij}(z) = \varepsilon_{ij}(z) + i\tau_{ij}(z).$$
 (1)

Тензор $\varepsilon_{ij}(z)$ характеризует диэлектрические свойства среды (НЖК), а $\tau_{ij}(z)$ — поглощение (краситель). В свою очередь, $\varepsilon_{ij}(z)$ и $\tau_{ij}(z)$ бывает удобнее представить в виде суммы симметричных и антисимметричных составляющих:

$$\varepsilon_{ij} = \varepsilon_{ij,s} + i\varepsilon_{ij,a}, \quad \tau_{ij} = \tau_{ij,s} + i\tau_{ij,a},$$
 (1a)

где

$$\varepsilon_{ij,s} = rac{\varepsilon_{ij} + \varepsilon_{ji}}{2}, \quad \varepsilon_{ij,a} = rac{\varepsilon_{ij} - \varepsilon_{ji}}{2i},$$

$$\tau_{ij,s} = \frac{\tau_{ij} + \tau_{ji}}{2}, \quad \tau_{ij,a} = \frac{\tau_{ij} - \tau_{ji}}{2i}.$$
 (1b)

Симметричность $\varepsilon_{ij,s}$ и $\tau_{ij,s}$, а также антисимметричность $\varepsilon_{ij,a}$ и $\tau_{ij,a}$ вытекают из эрмитовости тензоров $\varepsilon_{ij}(z)$ и $\tau_{ij}(z)$. Тогда двумерный тензор диэлектрической проницаемости рассматриваемой среды представляется в виде

$$\tilde{\varepsilon}_{ij} = (\varepsilon_{ij,s} - \tau_{ij,a}) + i(\varepsilon_{ij,a} + \tau_{ij,s}).$$
(2)

В случае нормального падения на такую среду одну из составляющих поля можно исключить с помощью уравнения div $\mathbf{D} = 0$ и представить двумерное волновое уравнение в следующем виде [13–15]:

$$\frac{d^2 \mathbf{E}(z)}{dz^2} + \frac{\omega^2}{c^2} \,\hat{\tilde{\varepsilon}}(z) \mathbf{E}(z) = \mathbf{0}, \quad i, j = x, y. \tag{3}$$

Здесь $\mathbf{E} = (E_x E_y)^T$ — двумерный вектор Джонса, $\hat{\varepsilon}(z)$ — комплексная диэлектрическая проницаемость (2) такой среды. Допустим, что среда является слабо неоднородной, т. е. изменения $\varepsilon_{ij}(z)$ и $\tau_{ij}(z)$ на длине волны малы. В рассматриваемой задаче это условие выполняется практически всегда. Кратко обсудим вывод укороченных уравнений в такой среде (подробности можно найти в [14]). Чтобы разделить быстрые и медленные изменения поля, решение (3) следует искать в следующем виде:

$$\mathbf{E}(z) = \mathbf{E}_0(z) \exp\{i\phi(z)\}.$$
 (4)

В (4) **E**₀(*z*) — медленно меняющаяся комплексная амплитуда, а фаза

$$\phi(z) = \frac{\omega}{c} \int \sqrt{\frac{\varepsilon_{xx,s} + \varepsilon_{yy,s}}{2}} \, dz.$$
 (4a)

Подставив (4) в основное уравнение (3) и учитывая медленность изменения $\mathbf{E}_0(z)$, в геометрооптическом приближении (т. е. пренебрегая слагаемым $d^2\mathbf{E}_0(z)/dz^2$), получим следующее векторное уравнение:

$$\frac{d\mathbf{J}(z)}{dz} = \frac{i}{2}\hat{H}(z)\mathbf{J}(z),$$
(5a)

где для сокращения записи введены обозначения

$$\hat{H}(z) = \frac{1}{\phi'} \left\{ \frac{\omega^2}{c^2} \hat{\tilde{\varepsilon}}(z) - (\phi')^2 \hat{I} \right\}, \quad \mathbf{J}(z) = \sqrt{\phi'} \mathbf{E}_0(z).$$
(5b)

Здесь

$$\hat{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

— единичная матрица, а штрих означает дифференцирование по продольной координате *z*. Подставляя выражение (2) в (5b), получим

$$\hat{H}(z) = \begin{pmatrix} \Omega_1 + i(T_0 + T_1) & \Omega_2 + i\Omega_3 + i(T_2 + iT_3) \\ \Omega_2 - i\Omega_3 + i(T_2 - iT_3) & -\Omega_1 + i(T_0 - T_1) \end{pmatrix}.$$
(6)

Оптика и спектроскопия, 2019, том 127, вып. 5

Здесь

 T_0

$$\Omega_{1} = \frac{\omega^{2}}{c^{2}} \frac{\varepsilon_{xx,s} - \varepsilon_{yy,s}}{2\phi'}, \quad \Omega_{2} = \frac{\omega^{2}}{c^{2}} \frac{\varepsilon_{xy,s}}{\phi'},$$
$$\Omega_{3} = \frac{\omega^{2}}{c^{2}} \frac{\varepsilon_{xy,a}}{\phi'}.$$
(6a)

$$= \frac{\omega^2}{c^2} \frac{\sigma_{xx,s} + \sigma_{yy,s}}{2\phi'}, \quad T_1 = \frac{\omega^2}{c^2} \frac{\sigma_{xx,s} - \sigma_{yy,s}}{2\phi'},$$
$$T_2 = \frac{\omega^2}{c^2} \frac{\sigma_{xy,s}}{\phi'}, \quad T_3 = \frac{\omega^2}{c^2} \frac{\sigma_{xy,a}}{\phi'}.$$
(6b)

Это наиболее общая система связанных уравнений, которая позволяет анализировать распространение световой волны в неоднородно анизотропных и поглощающих средах в приближении геометрической оптики.

Методика решения

Запишем систему уравнений (5) в явном виде

$$\begin{cases} \frac{dJ_x(z)}{dz} = \frac{i}{2} \left\{ (\Omega_1 + iT_1)J_x(z) + T_0J_x(z) + (\Omega_2 + iT_2)J_y(z) \right\},\\ \frac{dJ_y(z)}{dz} = \frac{i}{2} \left\{ (\Omega_2 + iT_2)J_x(z) + T_0J_y(z) - (\Omega_1 + iT_1)J_y(z) \right\}. \end{cases}$$
(7)

Путем элементарной подстановки

$$J_{x,y}(z) = f_{x,y}(z) \exp\left(i\frac{T_0}{2}z\right)$$
(7a)

можно исключить слагаемые, содержащие *T*₀. В результате имеем

$$\begin{cases} \frac{df_x(z)}{dz} = \frac{i}{2} \left\{ (\Omega_1 + iT_1) f_x(z) + + (\Omega_2 + iT_2) f_y(z) \right\}, \\ \frac{df_y(z)}{dz} = \frac{i}{2} \left\{ (\Omega_2 + iT_2) f_x(z) - (\Omega_1 + iT_1) f_y(z) \right\}. \end{cases}$$
(8)

Применим полученную систему уравнений для анализа распространения линейно поляризованного света в средах с различными оптическими характеристиками. Как известно [4,19], если в НЖК ("хозяин") растворен плеохроичный краситель ("гость"), молекулы которого обладают анизотропией поглощения, то при ориентации НЖК молекулы красителя тоже будут ориентированы. С учетом сказанного тензор диэлектрической проницаемости комбинированной среды можно представить в следующем виде:

$$\hat{\varepsilon}(z) = \begin{pmatrix} \varepsilon_{\perp} + \varepsilon_a \cos^2 \psi(z) & \varepsilon_a \sin \psi(z) \cos \psi(z) \\ \varepsilon_a \sin \psi(z) \cos \psi(z) & \varepsilon_{\perp} + \varepsilon_a \sin^2 \psi(z) \end{pmatrix},$$
$$\hat{\tau}(z) = \begin{pmatrix} \tau_{\perp} + \tau_a \cos^2 \psi(z) & \tau_a \sin \psi(z) \cos \psi(z) \\ \tau_a \sin \psi(z) \cos \psi(z) & \tau_{\perp} + \tau_a \sin^2 \psi(z) \end{pmatrix}.$$
(9)

Здесь $\psi(z)$ — угол между локальной ориентацией директора и осью *x* лабораторной системы координат (рис. 1), $\varepsilon_a = \varepsilon_{\parallel} - \varepsilon_{\perp}, \ \tau_a = \tau_{\parallel} - \tau_{\perp}, \ a \ \varepsilon_{\parallel}, \ \varepsilon_{\perp}, \ \tau_{\parallel}, \ \tau_{\perp}$ — главные

значения тензора диэлектрической проницаемости и поглощения. Тогда, согласно определению (6), имеем

$$\frac{d\mathbf{f}(z)}{dz} = i\gamma \hat{H}(z)\mathbf{f}(z), \qquad (10)$$

$$\hat{H}(z) = \begin{pmatrix} \cos 2\psi(z) & \sin 2\psi(z) \\ \sin 2\psi(z) & -\cos 2\psi(z) \end{pmatrix}, \quad (10a)$$

$$\gamma = \frac{\pi(\varepsilon_a + i\tau_a)}{2\lambda n_0}, \quad n_0 = \sqrt{\frac{\varepsilon_{\parallel} + \varepsilon_{\perp}}{2}}.$$
 (10b)

Система уравнений (10) позволяет полностью исследовать эволюцию состояния поляризации света в рассматриваемой среде. Непосредственное решение системы (10) с переменными коэффициентами связано с определенными трудностями. Однако в случае линейного закона изменения $\psi(z)$ решение существенно упрощается, и удается получить аналитическое решение задачи, если перейти во вращающуюся систему координат посредством преобразования [13,14]

$$\mathbf{f}(z) = \hat{R}^{-1} \mathbf{A}(z), \quad \hat{H}(z) = \hat{R}^{-1} \hat{H}_0 \hat{R}, \quad (11)$$

где $\mathbf{A} = (A_{\xi}A_{\eta})^T$ — вектор Джонса во вращающейся системе координат, $\hat{R}(\psi)$ — матрица поворота координатных осей:

$$\hat{R}(\psi) = \begin{pmatrix} \cos\psi(z) & \sin\psi(z) \\ -\sin\psi(z) & \cos\psi(z) \end{pmatrix},$$

матрица

$$\hat{H}_0 = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$$

— характерная матрица данной среды в локальной системе координат, $\hat{R}^{-1}(\psi)$ — обратная матрица.

После несложных, но громоздких преобразований получим следующую систему связанных уравнений относительно амплитуд $A_{\xi,\eta}$:

$$\begin{cases} \frac{dA_{\xi}(z)}{dz} = i\gamma A_{\xi}(z) + \alpha A_{\eta}(z), \\ \frac{dA_{\eta}(z)}{dz} = -\alpha A_{\xi}(z) - i\gamma A_{\eta}(z). \end{cases}$$
(12)

Система (12) представляет систему уравнений с постоянными коэффициентами, решение которой хорошо известно [20]. С учетом этого решения и после обратного преобразования в лабораторную систему координат полное аналитическое решение задачи представляется в следующем виде:

$$E_{x}(z) = \frac{i}{2\Omega} \Big[C_{x}(z) e^{-i\Omega z} + D_{x}(z) e^{i\Omega z} \Big] \exp^{\left(i\frac{2\pi}{\lambda}n_{0} - \frac{T_{0}}{2}\right)z}, \\ E_{y}(z) = \frac{i}{2\Omega} \Big[C_{y}(z) e^{-i\Omega z} + D_{y}(z) e^{i\Omega z} \Big] \exp^{\left(i\frac{2\pi}{\lambda}n_{0} - \frac{T_{0}}{2}\right)z}.$$
(13)

Введенные для сокращения записи обозначения имеют следующий вид:

$$C_{x}(z) = \left[\left(\cos \psi_{0} - i \frac{\alpha}{\gamma + \Omega} \sin \psi_{0} \right) B_{0} - \left(\sin \psi_{0} + i \frac{\alpha}{\gamma + \Omega} \cos \psi_{0} \right) A_{0} \right] [\alpha \cos \psi(z) + i (\gamma + \Omega) \sin \psi(z)],$$

Рис. 2. Эволюция декартовых составляющих поляризации света в твист-нематике МББА (поглощение отсутствует). Значения параметров следующие: $\varepsilon_P = 3.24$, $\varepsilon_{\perp} = 2.434$, $\lambda = 0.53 \,\mu$ m, толщина слоя ЖК составляет 150 μ m. Азимут $\beta = 0$ (*a*), $\pi/2$ (*b*).

Puc. 3. Эволюция декартовых составляющих поляризации света в твист-нематике MEEA (поглощение отсутствует). Значения параметров следующие: $\varepsilon_P = 3.24$, $\varepsilon_{\perp} = 2.434$, $\lambda = 0.53 \,\mu$ m, толщина слоя ЖК составляет 150 μ m, азимут $\beta = \pi/6$: (*a*) поглощение отсутствует, (*b*) в присутствии изотропного поглощения, $\tau_{\parallel} = \tau_{\perp} = 2.5 \cdot 10^{-3}$, (*c*) в присутствии анизотропного поглощения, $\tau_{\parallel} = 3.5 \cdot 10^{-3}$, $\tau_{\perp} = 1.5 \cdot 10^{-3}$.

$$D_{x}(z) = \left[\left(\alpha \sin\psi_{0} - i(\gamma + \Omega) \cos\psi_{0} \right) A_{0} - \left(\alpha \cos\psi_{0} + i(\gamma + \Omega) \sin\psi_{0} \right) B_{0} \right] \left[\cos\psi(z) - i\frac{\alpha}{\gamma + \Omega} \sin\psi(z) \right],$$

$$C_{y}(z) = \left[\left(\cos\psi_{0} - i\frac{\alpha}{\gamma + \Omega} \sin\psi_{0} \right) B_{0} - \left(\sin\psi_{0} + i\frac{\alpha}{\gamma + \Omega} \cos\psi_{0} \right) A_{0} \right] \left[\alpha \sin\psi(z) - i(\gamma + \Omega) \cos\psi(z) \right],$$

$$D_{y}(z) = \left[\left(\alpha \sin\psi_{0} - i(\gamma + \Omega) \cos\psi_{0} \right) A_{0} \right]$$

$$-(\alpha\cos\psi_0+i(\gamma+\Omega)\cos\psi_0)A_0]\bigg[\sin\psi(z)+i\frac{\alpha}{\gamma+\Omega}\cos\psi(z)\bigg].$$

Здесь $\Omega^2 = \gamma^2 + \alpha^2$, а граничные условия имеют следующий вид:

$$A_0 = E_x(z = 0), \quad B_0 = E_y(z = 0).$$

Величины A_0 и B_0 могут быть и комплексными (для возможности анализа эллиптически поляризованной входной волны). В случае линейной поляризации $A_0 = \cos\beta$, $B_0 = \sin\beta$, где β — азимут поляризации, т.е. угол, который составляет поляризация с плоскостью xz. Нетрудно

проверить, что (13) в пределе $\alpha \to 0, \tau \to 0$ переходят в хорошо известные выражения [1].

Обсуждение результатов

С помощью системы (13) проанализируем прохождение линейно поляризованной плоской волны через слой твист-ориентированного НЖК с примесями молекул красителя.

В качестве примера рассмотрим НЖК МББА, в который добавлены молекулы красителя 2-(3-этилбензотиазолиден)-2-бутенилиден-3-окситианафтена. Параметры МББА и красителя хорошо известны [4,19]. Ограничимся случаем, когда вращение локальной ориентации директора линейно, т. е. азимутальный угол как для ЖК, так и для молекул красителя меняется согласно закону $\psi(z) = \alpha z$. Рассмотрим распространение линейно поляризованного излучения сквозь такую комбинированную среду.

Как известно, в такой среде в отсутствие поглощения наблюдается явление адиабатического отслеживания [6,14], т.е. если падающая волна на входе в среду линейно поляризована вдоль одной из нормальных волн,

Puc. 4. Эволюция декартовых составляющих поляризации света в твист-нематике MEEA (в присутствии анизотропного поглощения). Значения параметров следующие: $\varepsilon_P = 3.24$, $\varepsilon_{\perp} = 2.434$, $\lambda = 0.53 \,\mu$ m, толщина слоя ЖК составляет 150 μ m, $\tau_{\parallel} = 3.5 \cdot 10^{-3}$, $\tau_{\perp} = 1.5 \cdot 10^{-3}$. $\beta = 0$ (*a*), $\pi/2$ (*b*).

то вектор поляризации световой волны отслеживает вращение главных осей при условии, что коэффициент кручения мал. Сказанное демонстрируется на рис. 2. Если азимутальный угол поляризации отличается от 0 и $\pi//2$, картина содержит множество осцилляций, но тем не менее явление отслеживания сохраняется (рис. 3, a). При добавлении молекул красителя, однако, проявляются некоторые особенности. Особо следует подчеркнуть существнную роль анизотропии поглощения. В качестве примера на рис. 3, b, c представлены зависимости x- и у-составляющих интенсивностей от продольной координаты. Сравнение этих рисунков демонстрирует роль анизотропии поглощения. Если в случае изотропного поглощения (рис. 3, b) сохраняются такие же зависимости, как и в случае отсутствия поглощения (рис. 3, a), а именно $I_v > I_x$, если $I_{0x} > I_{0y}$, то в случае анизотропного поглощения картина обратная (рис. 2, b). Следует отметить, что в случае азимутального угла $\beta > \pi/2$ такая аномалия отсутствует. Обратим внимание еще на одну особенность анизотропного поглощения. На рис. 4 представлены зависимости х- и у-составляющих интенсивностей от продольной координаты в двух предельных случаях $\beta = 0$ и $\beta = \pi/2$. Хотя толщины образцов и коэффициенты анизотропного поглощения в обоих случаях одинаковые, тем не менее в случае $\beta = \pi/2$ суммарное ослабление меньше.

Заключительные замечания

Таким образом, полученные в настоящей работе выражения позволяют количественно исследовать эволюцию состояния поляризации света в твист-ориентированном нематике с анизотропно поглощающим красителем. Сложная картина распространения и особенности поведения связаны с процессами конкуренции отслеживания и изменения коэффициента поглощения вдоль продольной координаты. Можно сделать и другой вывод. При решении системы связанных уравнений переход во вращающуюся систему координат позволяет получить полное аналитическое решение задачи, что может быть полезным и при исследовании других (и не только оптических) задач. Такой подход может быть особенно плодотворным также в средах с зависящей от времени анизотропией с целью создания поляризационных устройств с временным управлением [21].

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Yariv A., Yeh P. Optical Waves in Crystals. Wiley, 1984.
- [2] Иванов О.В. Распространение электромагнитных волн в анизотропных и бианизотропных слоистых структурах. Ульяновск: УлГТУ, 2010.
- [3] *Федоров Ф.И*. Оптика анизотропных сред. М.: Едиториал, УРСС, 2004.
- [4] Blinov L.M. Structure and Properties of Liquid Crystals. Springer, 2011.
- [5] Collett E., Schaefer B. Polarized Light for Scientists and Engineers. Polarwave Group, 2012. 802 p.
- [6] Yeh P, Gu C. Optics of Liquid Crystal Displays. Wiley, 1999. 438 p.
- [7] Scharf T. Polarized Light in Liquid Crystals and Polymers. Wiley, 2006. 400 p.
- [8] Allen L., Eberli J.H. Optical Resonance and Two-Level Atoms. NY: John Wiley and Sons, 1975.
- [9] Segre S.E. // J. Phys. D. 2003. V. 36. P. 2806-2810.
- [10] Segre S.E. // JOSA. A. 2000. V. 17. P. 95.
- [11] Kubo H., Nagata R. // JOSA. 1985. V. 73. P. 1719-1724.
- [12] Kravtsov Yu.A., Bieg B. // Centr. Eur. J. Phys. 2008. V. 6. P. 563.
- [13] Aslanyan A.L., Aslanyan L.S., Chilingaryan Yu.S. // Opt. Spectrosc. 2014. V. 116. N 3. P. 483–487.

- [14] Aslanyan A.L., Aslanyan L.S., Alaverdyan R.B., Gevorgyan G.S., Nersisyan S.Ts. // J. Contemp. Phys. (Armenian Acad. Sci.). 2015. V. 50. N 2. P. 137–143.
- [15] Aslanyan L.S. // J. Contemp. Phys. (Armenian Acad. Sci.). 2017. V. 52. N 3. P. 279–288.
- [16] Yanossy I. // Phys. Rev. E. 1994. V. 49. P. 2957-2963.
- [17] Muenster R., Jarash M., Zhuang X., Shen Y.R. // Phys. Rev. Lett. 1997. V. 78. P. 42–45.
- [18] Агранович В.М., Гинзбург В.Л. Кристаллооптика с учетом пространственной дисперсии и теория экситонов. М.: Наука, 1979.
- [19] Сонин А.С. Введение в физику жидких кристаллов. М.: Наука, 1983.
- [20] Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний. М.: Наука, 1981. 568 с.
- [21] Tudor T. // J. Phys. Soc. Japan. 2012. V. 81. P. 024006.