13

Влияние электронного строения примеси на физические свойства, дефектную структуру и особенности технологии легирования кристаллов ниобата лития

© О.В. Макарова, М.Н. Палатников, И.В. Бирюкова, Н.В. Сидоров

Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева — обособленное подразделение Федерального исследовательского центра "Кольский научный центр РАН", 184209 Апатиты, Россия

e-mail: makarova@chemy.kolasc.net.ru

Поступило в Редакцию 9 июня 2018 г. В окончательной редакции 25 декабря 2018 г. Принято к публикации 10 апреля 2019 г.

Исследованы макро- и микроструктура легированных кристаллов LiNbO₃, изучены спектры пропускания и определены эффективные коэффициенты распределения примеси. Анализ литературных данных по диаграммам состояния тройных систем Li₂O–Nb₂O₅-оксид примеси и электронным конфигурациям легирующих элементов дал возможность прогнозирования технологических условий выращивания и качества легированных кристаллов ниобата лития. При этом *p*-элементы (бор) позволяет выращивать без вхождения примеси в кристалл структурно и композиционно однородные кристаллы LiNbO₃. Металлы — *s*- и *d*-элементы (магний и цинк) сходно влияют на расплав и свойства кристаллов LiNbO₃, формируя при этом непериодические доменные структуры и схожие типы точечных дефектов. Металлы *f*-элементов (церий) благодаря своему электронному строению организуют структуру расплава таким образом, что это делает возможным формирование ростовой регулярной доменной структуры в кристаллах LiNbO₃.

Ключевые слова: кристаллы, ниобат лития, легирование, электронное строение примеси, дефектная структура, технология кристаллов.

DOI: 10.21883/JTF.2019.12.48498.230-18

Введение

Кристаллы ниобата лития (LiNbO₃) широко используются в сотовой связи, интегральной оптике, для сверхбыстрого Интернета. Они имеют целый ряд чисто оптических (генерация оптических гармоник, лазерная генерация, параметрическая генерация, электрооптика) и акустоэлектронных (полосовые фильтры и линии задержки на ПАВ) применений. Функционирование аппаратуры, на которой базируются современные оптоэлектронные и телекоммуникационные технологии, также во многом связано с кристаллами ниобата лития. Для этих приложений требуются кристаллы LiNbO₃ чрезвычайно высокой оптической однородности, что делает актуальным исследование их дефектной структуры в зависимости от условий получения.

Ранее в работах [1-4] было показано, что структура расплава ниобата лития (LiNbO₃), как следствие его химического состава, существенным образом влияет на структуру кристалла LiNbO₃ и его физические характеристики. Влияние типа легирующего элемента начинает проявляться уже на стадии синтеза исходной легированной шихты, что приводит к необходимости разработки специального технологического регламента для каждой примеси, как это было при синтезе гомогенно легированной цинком и магнием шихты ниобата лития, несмотря на одинаковое валентное состояние этих примесей [5]. Тонкие особенности дефектной структуры выращенных кристаллов LiNbO₃: Mg и LiNbO₃: Zn также имеют существенные отличия, обнаруженные при исследовании спектров ИК-поглощения в области валентных колебаний ОН-групп [6]. Как правило, кристаллы ниобата лития с целью повышения оптической стойкости легируют металлическими примесями (Zn, Mg, Sc и т. п.) [4]. В то же время в работах [1–3] уделено особое внимание влиянию неметаллических примесей на процессы кристаллов LiNbO₃, причем при легировании неметаллами существенное изменение свойств кристаллов LiNbO₃ происходит при концентрациях легирующей добавки на порядки меньшей, чем при легировании металлическими примесями [1–3].

Необходимость систематизации разрозненных экспериментальных данных по легированию LiNbO₃ металлическими и неметаллическими примесями сделало актуальным исследование влияния электронного строения примеси на процессы кристаллизации, дефектную структуру и свойства кристаллов. В качестве модельных были выбраны элементы с различной электронной конфигурацией: Mg (*s*-элемент), Zn (*d*-элемент), B (*p*-элемент, неметалл) и Ce (*f*-элемент). В работе исследованы макро- и микроструктура легированных кристаллов LiNbO₃, изучены спектры пропускания и определены эффективные коэффициенты распределения примеси. При обсуждении результатов исследования проведен анализ литературных данных по диаграммам состояния трой-

ных систем Li₂O–Nb₂O₅–оксид примеси и электронным конфигурациям легирующих элементов [7].

Методика эксперимента

Легированные кристаллы LiNbO₃ диаметром 40 mm и длиной цилиндрической части 30 mm выращивались из платиновых тиглей диаметром 75 mm в воздушной атмосфере методом Чохральского на установке "Кристалл-2", снабженной системой автоматического контроля диаметра кристалла. При этом скорость перемещения составляла 1.1 mm/h и скорость вращения — 14 грт. Величина осевого градиента составляла ~ 1 degree/mm. Процессы синтеза шихты, выращивания и монодоменизации легированных кристаллов LiNbO₃ более подробно описаны в работе [4]. Кристаллы LiNbO₃ : В выращивались из шихты конгруэнтного состава, полученной методом твердофазного синтеза смеси пентаоксида ниобия, карбоната лития и борной кислоты.

Макро- и микроструктура легированных кристаллов LiNbO₃ исследованы методами оптической микроскопии с помощью анализатора изображений "Тиксомет", включающего оптический микроскоп Axio Observer.D1m фирмы "Carl Zeiss", состыкованный через цифровую видеокамеру PixeLink PL-B774U с компьютером, оснащенным программой "ThixometPRO". Исследования проводили в режимах светлого поля и дифференциально-интерференционного контраста (ДИК). Образцы для исследований имели форму тонких полированных плоскопараллельных пластин Z-ориентации. Кристаллические пластины предварительно травили при комнатной температуре в течение 18 h в смеси минеральных кислот HF : HNO₃ = 1 : 3.

Спектры оптического пропускания кристаллов ниобата лития различного состава изучали с использованием спектрофотометра СФ-256 УВИ. Образцы для оптических исследований имели форму плоскопараллельных круглых пластин толщиной ~ 1 mm (*Z*-ориентации). Плоскости пластин тщательно полировались.

Результаты и обсуждение

Ранее [8] нами было показано, что структура расплава очень чувствительна к концентрации бора в исходной шихте и его содержание не должно превышать 0.18 wt.%. В противном случае на поверхности расплава будет образовываться вязкая пленка, препятствующая затравливанию, а кристалл LiNbO₃ : В вырастет с множеством неустранимых методами послеростовой обработки макродефектов. Выращивание кристаллов LiNbO₃ : В из боросодержащих расплавов потребовало новых решений для адаптации обычно используемой технологии роста кристаллов LiNbO₃, что затронуло не только технологические параметры роста и внутреннюю оснастку ростовой камеры, но и методы синтеза исходной шихты [3,8,9]. В работах [3,8] при выращивании кристаллов LiNbO₃ : В, кроме существенных отличий в параметрах ростового процесса от процесса выращивания номинально чистых и легированных металлическими примесями кристаллов LiNbO₃ были обнаружены и подробно описаны макродефекты, присущие только кристаллам LiNbO3 : В, такие как "каналы" и девиация оптической плотности. Первые представляют собой полые каналы внутри кристаллической були LiNbO3 : В сечением $\sim 1-200\,\mu\text{m}^2$ и средней плотностью дефектов $\sim 0-7 \,\mathrm{mm^{-2}}$ (рис. 1, *a*, *e*). Второй характерный тип макроструктурных дефектов был обнаружен при исследовании полированных пластин LiNbO3 : В методом оптической микроскопии в режиме ДИК. Дефекты представляют собой условно цветные пятна различных размеров, как результат интерференции поляризованного светового луча на структурных объектах с различной оптической плотностью (рис. 1, *a*). Важной особенностью бора является то, что, изменяя структуру расплава и соответственно структуру и свойства кристаллов LiNbO₃ : В, он практически не входит в кристалл и его эффективный коэффициент распределения (K_d) составляет всего $3 \cdot 10^{-5}$ [3,8,9] (см. таблицу). Согласно квазитройной диаграмме состояния системы $Li_2O-Nb_2O_5-B_2O_3$ [10], бор и не должен входить в кристалл LiNbO₃ : В, поскольку фаза LiNbO₃ не имеет области растворимости бора в твердом состоянии [10], что и объясняет столь низкое значение K_d (рис. 2). Незначительное количество бора, которое содержится в кристалле LiNbO3 : В, по-видимому, механически захвачено динамическим процессом роста. Квазидвойные диаграммы являются политермическими сечениями общей квазитройной диаграммы состояния систем $Li_2O-Nb_2O_5-B_2O_3$: LiNbO₃-LiBO₂ и LiNbO₃-Li₂B₄O₇. Данные сечения имеют простой вид, поскольку содержат лишь по одному двухфазному эвтектическому превращению и не имеют областей растворимости (рис. 2). Такой тип фазовой диаграммы является благоприятным для качества растущего кристалла LiNbO3 : В, так как кристаллизация идет из двухфазной области и единственной кристаллизующейся фазой является LiNbO3 конгруэнтного состава. Если опираться только на диаграмму состояния и не учитывать радикального изменения структуры расплава при легировании бором, то кристалл, выращенный из такого расплава, должен химически и структурно соответствовать кристаллу, выращенному из нелегированного расплава. В то же время кристалл LiNbO₃ : В, выращенный из боросодержащего расплава, по количеству антиструктурных дефектов NbLi ближе к кристаллу LiNbO3 стехиометрического состава и отличается более высоким структурным упорядочением, чем кристалл LiNbO₃ конгрузнтного состава [9]. Причиной этого, по-видимому, является электронное строение бора, являющегося сильным комплексообразователем за счет одного электрона на р-подуровне, что обеспечивает высокие энергии ионизации и значения электроотрицательности при малом ионном радиусе, что, в свою очередь, приводит к существенному изменению структуры боросодержащего расплава.

Микроструктура кристаллов LiNbO₃ : В существенно отлична от типичной для кристаллов LiNbO₃ картины

Рис. 1. Макро- и микродоменная структуры кристаллов LiNbO₃, легированных бором — *p*-элемент (*a*,*e*), магнием — *s*-элемент (*b*,*f*), цинком — *d*-элемент (*c*,*g*), церием — *f*-элемент (*d*,*h*). Изображения получены с помощью оптической микроскопии в режимах ДИК и светлого поля.

Рис. 2. Политермические разрезы диаграммы состояния квазитройной системы $Li_2O-Nb_2O_5-B_2O_3$: LiNbO₃-LiBO₂ (*a*), LiNbO₃-Li₂B₄O₇ (*b*) [10].

доменной структуры. В то же время спектр пропускания кристаллов $LiNbO_3$: В практически не отличается от спектров пропускания кристаллов $LiNbO_3$: Mg и $LiNbO_3$: Zn как по коэффициенту пропускания, так и по величине края поглощения (рис. 3).

Легирование кристаллов LiNbO₃ магнием и цинком, имеющими одинаковое валентное состояние, но разную конфигурацию электронной оболочки, дает схожие картины доменной структуры (рис. 1, *b*, *c*, *f*, *g*). В обоих случаях наблюдается нерегулярность размеров и топологии доменов. Отличие состоит в существенно более сложной структуре доменных границ (развитости доменных стенок) у кристаллов LiNbO₃ : Zn по сравнению с кристаллами LiNbO₃ : Mg. Набор основных типов макро- и микродефектов в кристаллах LiNbO₃ : Zn и LiNbO₃ : Mg сходен и подробно описан в работах [11,12]. Коэффициент пропускания кристалла LiNbO₃ : Mg лишь на 1-2%

выше, чем у кристалла LiNbO₃: Zn, а край поглощения сдвинут в коротковолновую область на 8 nm, что свидетельствует о незначительных различиях в дефектной структуре электронной подсистемы кристалла (рис. 3).

детальное сравнение квазитройных Провести диаграмм состояния систем Li2O-Nb2O5-MgO и Li₂O-Nb₂O₅-ZnO не удалось по причине малого количества работ, посвященных этим системам. Так, система Li₂O-Nb₂O₅-ZnO очень фрагментарно исследовалась только в работах [13,14]. Системе Li₂O-Nb₂O₅-MgO было уделено несколько больше внимание: наиболее подробные исследования приведены в работах [15,16]. К сожалению, упомянутые работы не содержат полного объема информации о фазовых диаграммах тройных систем, но позволяют провести некоторые сравнения. Так, диаграмма состояния системы Li₂O-Nb₂O₅-MgO менее сложна по сравнению с диаграммой системы

Рис. 3. Оптические спектры пропускания монокристаллов LiNbO₃, легированных бором (1), магнием (2), цинком (3), церием (4).

 $Li_2O-Nb_2O_5-ZnO$ [14,15]. В диаграмме системы Li₂O-Nb₂O₅-ZnO наблюдается большее количество фаз и они менее стабильны, а концентрационные области существования разных фаз и смесей фаз менее протяженные [14]. Такие физико-химические особенности системы Li2O-Nb2O5-ZnO объясняют наличие большего количества концентрационных порогов при легировании ниобата лития цинком, чем при легировании магнием, а так же приводят к большей склонности кристаллов LiNbO3 : Zn к трещинообразованию и выделению в процессе кристаллизации примесных фаз [11]. Следствием этого является также наличие фазовых напряжений в кристаллах LiNbO3 : Zn, что требует использования особых режимов после ростовой термической обработки и монодоменизации кристаллов для избавления от такого напряженного состояния [11,12].

Для оценки системы расплав-кристалл обычно используют эффективные коэффициенты распределения К_d, представляющие собой отношение концентрации примеси в кристалле в начальный момент роста и концентрации примеси в расплаве, а также параметр ΔC , характеризующий композиционную однородность кристалла, который определяется как разница концентраций легирующего элемента между конусом и торцом кристалла. Подробно значимость и технологический смысл этих параметров применительно к системам Li₂O-Nb₂O₅-MgO и Li₂O-Nb₂O₅-ZnO обсуждались в работах [4,11,17]. В таблице приведены величины эффективных коэффициентов распределения K_d и параметров композиционной однородности ΔC для конкретных концентраций примеси в расплаве. В работах [4, 11, 17, 18] установлено, что в широком диапазоне концентраций примеси в расплаве Ка для системы Li2O-Nb2O5-MgO находится в пределах 0.89-1.15, а для системы Li₂O-Nb₂O₅-ZnO — в пределах 0.66-0.87. При этом параметр ΔC также существенно отличается: ~ 0.01 для первой системы и ~ 0.1 для второй (см. таблицу). Приведенные данные показывают,

что в определенном диапазоне концентраций примеси в расплаве $Li_2O-Nb_2O_5-MgO$ коэффициент распределения K_d может быть равен единице. Поэтому в целом физико-химические условия для выращивания кристаллов LiNbO₃ : Mg более благоприятны, чем кристаллов LiNbO₃ : Zn, что сильно упрощает технологический процесс их получения.

Электронные строения атомов магния и цинка имеют сходство не только в строении внешнего электронного s-уровня, но также и в заполнении внутренних электронных подуровней (см. таблицу). Вероятно, этим обусловлено формированием сходных для кристаллов LiNbO3: Mg и LiNbO3: Zn дефектов в электронной подсистеме кристалла, что проявляется, например, в подобии спектров пропускания (рис. 3). Различие таких параметров, как энергия ионизации, ионный радиус, электроотрицательность позволяет сделать предположение, что ионные комплексы в расплаве, образованные магнием, менее прочны, но более подвижны, чем ионные комплексы, образованные с участием цинка. Как следствие, это влияет на строение ионных комплексов, их диффузионную подвижность и время их жизни, и в итоге на физические свойства, макро- и микроструктуру выращенных кристаллов $LiNbO_3$: Mg и $LiNbO_3$: Zn.

Диаграмма состояния системы Li2O-Nb2O5-CeO2 в литературе не обнаружена, но если судить по величине $K_d \approx 0.32$, то растворимость оксида церия в LiNbO3 в субсолидусной области не велика. Легирование церием приводит к формированию в кристалле LiNbO₃: Се регулярной доменной структуры (РДС) с высокой степенью периодичности и сравнительно малой величиной периода $\sim 7.5 \,\mu m$ (рис. 1, *d*, *h*). По-видимому, это связано с электронным строением редкоземельных элементов (РЗЭ), поскольку, как правило, при легировании всеми редкоземельными f-элементами в легированных кристаллах LiNbO₃ формируются РДС [19–22]. Как известно, у всех РЗЭ электроны f-уровня почти не принимают участия в образовании химических связей, поскольку они экранированы электронами внешних оболочек. При этом они увеличивают ионный радиус, из-за чего энергия ионизации РЗЭ довольно низкая. Образованные с участием РЗЭ ионные комплексы в расплаве и по размерам, и по термодинамическим свойствам отличаются от основных комплексов, составляющих расплав ниобата лития. По-видимому, конкуренция между ними в процессе кристаллизации и приводит к формированию РДС. Фундаментальный край поглощения кристалла LiNbO3 : Се на несколько десятков нанометров сдвинут в длинноволновую область относительно спектров кристаллов LiNbO₃, легированных В, Mg и Zn (см. таблицу и рис. 3). В диапазоне длин волн <~ 550 nm коэффициент пропускания кристалла составляет менее 50%. Это обусловлено образованием при легировании кристалла LiNbO3 церием центров окраски, вносящих вклад как в окрашивание кристалла, так и в его оптическое поглощение.

В работах [11,17] приводилось подробное обоснование целесообразности использования эмпирического эффективного коэффициента распределения *K*_d и параметра

Элемент	В, 0.12 wt.% в расплаве	Мg 0.93 wt.% в расплаве	Zn 3.04 wt.% в расплаве	Се 1.1 wt.% в расплаве
Электронная конфигурация	[He] $2s^2 \underline{2p^1}$	[Ne] $3s^2$	$[\mathrm{Ar}] \; \underline{3d^{10}} 4s^2$	$[Xe] \underline{4f^2}6s^2$
Радиус иона, рт	23 (+3e)	66 (+2e)	74 (+2e)	103.4 (+3e)
Электро- отрицательность	2.01	1.2	1.60	1.2
Первый потенциал ионизации, eV	8.29	7.64	9.39	5.65
K_d	$3 \cdot 10^{-5}$	0.9	0.77	0.32
ΔC , wt.%	$2.2\cdot 10^{-6}$	0.01	0.095	0
Край поглощения, nm	317	304	312	381
Характерные особенности дефектной структуры	Девиации оптической плотности; дефекты в виде "каналов"	Макродомены; микродомены треугольной и гексагональной формы	Высокая чувствительность дефектной структуры к концентрации цинка в расплаве; склонность к трещино- образованию и формированию второй фазы; макродомены треугольной и гексагональной форм	Образование РДС

Концентрационные характеристики и особенности дефектной структуры кристаллов LiNbO3 с примесями разной электронной конфигурации

композиционной однородности кристаллов ΔC для важной в технологии кристаллов оценки системы расплавкристалл. Если коэффициент распределения Ка для исследованной серии легированных кристаллов LiNbO3 явно является функцией электронного строения легирующего элемента, то для параметра ΔC ситуация не столь однозначна (см. таблицу). Параметр ΔC для всех исследованных кристаллов, кроме кристалла LiNbO3 : Zn, имеет весьма малую величину, сопоставимую с погрешностью метода определения концентрации примеси (см. таблицу). Это показывает высокую концентрационную однородность распределения примеси вдоль оси роста кристалла при отличном от 1 коэффициенте распределения *K*_d. Объяснение этого факта может быть следующим. При введении легирующего элемента исходный состав шихты ниобата лития перестает быть конгруэнтным (см., например, рис. 2, 4). Это, в частности, означает, что спектр вариаций ионных комплексов в расплаве по структуре и компонентам сильно увеличивается. Захват расплава происходит в ограниченной зоне вблизи фронта кристаллизации, имеющей постоянную температуру. Следовательно, кристаллизоваться будут те ионные комплексы, для которых эта температура является солидусной (T_{c1}) , естественно с учетом некоторого переохлаждения. По мере расходования части объема расплава в оставшемся расплаве соотношение концентраций различных ионных комплексов изменится. Доля комплексов, для которых солидусной температурой является температура Т_{с1}, изменится, она станет меньше. Так будет продолжаться до тех пор пока система не достигнет некоторого критического состояния, при котором концентрация комплексов с солидусной температурой T_{c1} будет недостаточной для роста кристалла с постоянной концентрацией примеси. Это ограничивает долю расплава, которую можно кристаллизовать с получением композиционно однородного кристалла. По достижении описанного критического состояния дальнейшее поведение системы может быть различным: от существенного изменения концентрации примеси в кристалле вдоль оси роста до таких дефектов,

Рис. 4. Система Li₂O-Nb₂O₅-MgO: политермическое сечение, соответствующее постоянному соотношению Li/Nb, равному 48.6/54.2 [14].

как ячеистый рост и кристаллизация фазы другого состава [11,17]. На условия достижения такого критического состояния, а значит, на возможные размеры кристалла с постоянной концентрацией примеси по всему объему кристаллической були, влияет множество факторов. Это состав расплава, термодинамика исходных компонентов, графическим выражением которых является диаграмма состояния, структура расплава, состоящего из ионных комплексов с различными термодинамическими и кинетическими характеристиками и даже техническое возможности (чувствительность и постоянная времени реакции) системы управления и контроля ростового процесса. Из приведенных выше рассуждений следует важный для технологии легированных кристаллов ниобата лития вывод, заключающийся в том, что из расплава методом Чохральского возможно вырастить кристаллы легированного ниобата лития с равномерным распределением примеси по объему лишь при кристаллизации определенной части расплава. Следовательно, длина и диаметр кристаллической були такого кристалла будет ограничена. В разных системах ограничительные размеры таких структурно и композиционно однородных кристаллов будут отличаться. Причем для разных систем для этого могут быть разные физико-химические причины, выражающиеся в отличии термодинамических параметров систем, т.е. в виде фазовых диаграмм. Так, для боросодержащей системы Li₂O-Nb₂O₅-B₂O₃, в которой у ниобата лития нет областей гомогенности ни с бором, ни с его соединениями, по мере роста кристалла будет происходить кристаллизация только чистой фазы LiNbO₃ (рис. 2). Но одновременно будет происходить увеличение содержания бора в расплаве и, как следствие, снижение температуры кристаллизации и достаточно радикальное увеличение вязкости расплава, ограничивающее конвективные потоки в расплаве (рис. 2, а). Здесь СО, С1 и С2 — состав расплава или концентрация бора в расплаве, *T*1 и *T*2 — температура кристаллизации, соответствующая составу расплава С1 и С2. Все это, вероятнее всего, и ограничивает максимально возможную концентрацию бора в расплаве 0.18 wt.%, поскольку увеличение содержания бора до определенной критической концентрации (> 0.18 wt.%) в расплаве приводит к ячеистому росту и другим неустранимым дефектам (например, дефектам в виде "каналов") кристалла LiNbO₃ : В [3].

Для кристаллов LiNbO₃ : Zn объем кристаллической були структурно и композиционно однородного кристалла и доля закристаллизовавшегося расплава будут гораздо меньше, чем в случае кристаллов LiNbO₃ : Mg. Это обусловлено тем, что диаграмма состояния системы Li₂O-Nb₂O₅-MgO существенно менее сложна по сравнению с диаграммой системы Li₂O-Nb₂O₅-ZnO [13–16]. В системе Li₂O-Nb₂O₅-ZnO наблюдается большее количество менее стабильных фаз, а концентрационные области существования разных фаз и смесей фаз гораздо менее протяженные [14]. Поэтому доля закристаллизовавшегося расплава при получении структурно и композиционно однородного кристалла в системе Li₂O-Nb₂O₅-ZnO $\leq 20\%$, а в системе Li₂O-Nb₂O₅-MgO $\leq 30\%$ [4,11,17].

Такая доля расплава в системе $Li_2O-Nb_2O_5-CeO_2$ должна сильно зависеть от исходной концентрации примеси в расплаве и будет существенно меньше, чем в системах с магнием и цинком. Это обусловлено существенно меньшим коэффициентом распределения K_d (см. таблицу), что приводит к быстрому увеличению концентрации примеси в расплаве и достижению критического состояния, при котором концентрация комплексов с солидусной температурой T_{c1} будет недостаточной для роста кристалла с постоянной концентрацией примеси. Косвенно это подтверждает и формирование периодических доменных структур в кристаллах LiNbO₃ : Ce (рис. 1, *d*, *h*).

Выводы

Таким образом, полученные результаты дают важную информацию для предварительного прогнозирования технологических условий выращивания и качества легированных кристаллов ниобата лития на основе анализа электронного строения этой примеси.

При этом *р*-элементы (неметаллы), имеющие более высокую химическую активность за счет большего, чем у металлов количества валентных электронов, делают расплав более гомогенным на уровне ионных комплексов. Это позволяет выращивать без вхождения примеси в кристалл из конгруэнтного расплава структурно и композиционно однородные кристаллы ниобата лития, имеющие дефектную структуру, близкую к дефектной структуре стехиометрического кристалла.

Металлы — s- и d-элементы, сходно влияют на расплав и свойства кристаллов LiNbO₃, формируя при этом непериодические доменные структуры и схожие типы точечных дефектов. Тем не менее различие в электронном строении оказывает влияние как на структуру расплава, так и на физические свойства кристалла и технологические условия роста. Так, при легировании цинком кристаллы LiNbO3 : Zn обладают повышенной склонностью к неоднородному вхождению примеси и образованию трещин в результате фазовых напряжений, а также характеризуются дополнительными требованиями к условиям выращивания и послеростовой электротермической обработки кристаллических буль.

Металлы *f*-элементов благодаря своему электронному строению формируют структуру расплава таким образом, что для получения композиционно однородного кристалла LiNbO₃ : Се можно кристаллизовать лишь сравнительно малую долю расплава. В то же время такая структура расплава делает возможным формирование ростовой регулярной доменной структуры в кристаллах LiNbO₃, легированных *f*-элементами.

Финансирование работы

Работа была поддержана Министерством науки и высшего образования Российской Федерации (научная тема № 0226-ІС-2018-0004, регистрационный номер #АААА-А18-118022190125-2) и РФФИ (грант No 18-03-00231-a).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Палатников М.Н., Бирюкова И.В., Кравчен-С.М., 0.Э., Маслобоева Макарова O.B., ко Ефремов В.В. // ЖНХ. 2016. Т. 61. № 1. С. 20-25. DOI: 10.7868/S0044457X16010189 [Palatnikov M.N.Biryukova I.V., Kravchenko O.E., Masloboeva S.M., Makarova O.V., Efremov V.V. // Rus. J. Inorganic Chem. 2016. Vol. 61. N 1. P. 18–23. DOI: 10.1134/S0036023616010186
- [2] Палатников М.Н., Бирюкова И.В., Макарова О.В., Сидоров Н.В., Теплякова Н.А., Маслобоева С.М., Ефремов В.В. // Перспективные материалы. 2016. № 1. С. 5-13.
- [3] Макарова О.В., Палатников М.Н., Бирюкова И.В., Теплякова H.A., Сидоров *H.B*. // Неорган. C. материалы. 2018. T. 54. N₂ 1. 53-58. DOI: 10.7868/S0002337X18010104 [Makarova O.V., Palatnikov M.N., Biryukova I.V., Teplyakov N.A., Sidorov N.V. // Inorganic Materials. 2018. Vol. 54. N 1. P. 49–54. DOI: 10.1134/S0020168518010089
- [4] Palatnikov M.N., Biryukova I.V., Masloboeva S.M., Makarova O.V., Manukovskaya D.V., Sidorov N.V. // J. Cryst. Growth. 2014. Vol. 386. P. 113-118. DOI: 10.1016/j.jcrysgro.2013.09.038
- [5] Маслобоева С.М., Палатников М.Н., Арутюнян Л.Г., Иваненко Д.В. // Известия СПбГТУ (ТУ) // 2017. Т. 64. № 38. C. 34–43.
- [6] Сидоров Н.В., Палатников М.Н., Бобрева Л.А., Новикова Н.Н. // Неорган. материалы. 2017. Т. 53. № 7. C. 727-731. DOI: 10.7868/S0002337X17070107 Sidorov N.V.Palatnikov *M.N.*, Bobreva L.A., Novikova N.N. // Inorganic Materials. 2017. Vol. 53. N 7. P. 713–717. DOI: 10.1134/S0020168517070172]

- - [20] Palatnikov M., Sidorov N., Bormanis K., Smith P.G.R. // J. Phys. Conf. Ser. 2007. Vol. 93. P. 12-15.
 - DOI: 10.1088/1742-6596/93/1/012015 [21] Палатников М.Н., Щербина О.Б., Казаков А.А. // Неорг. материал. 2008. Т. 44. № 3. С. 360-365. [Palatnikov M.N.,
 - Shcherbina O.B., Kazakov A.A. // Inorganic Materials. 2008. Vol. 44. N 3. P. 305–310. DOI: 10.1007/s10789-008-3017-z] [22] Palatnikov M., Shcherbina O., Biryukova I., Sidorov N. //
 - Ferroelectrics. 2008. Vol. 374. P. 41-49. DOI: 10.1080/00150190802424868

- [7] Металловедение и термическая обработка стали. Справочник / Под. ред. М.Л. Бернштейна, А.Г. Рахштадта. Кн. 2. М.: Металлургия, 1991. 462 с.
- [8] Палатников М.Н., Бирюкова И.В., Макарова О.В., Ефремов В.В., Кравченко О.Э., Калинников В.Т. // Труды КНЦ PAH. 2015. № 31. C. 434-438.
- [9] Палатников М.Н., Сидоров Н.В., Титов Р.А., Теплякова Н.А., Макарова О.В. // Перспективные материалы. 2018. № 6. C. 5–15. DOI: 10.30791/1028-978X-2018-6-5-15
- [10] Can Huang, Shichao Wang, Ning Ye Key // J. Alloys and Compounds. 2010. Vol. 502. P. 211-214. DOI: 10.1016/j.jallcom.2010.04.146
- [11] Палатников М.Н., Сидоров Н.В., Макарова О.В., Бирюкова И.В. Фундаментальные аспекты технологии сильно легированных кристаллов ниобата лития // Апатиты: КНЦ PAH, 2017. 241 c.
- [12] Палатников М.Н., Сидоров Н.В., Макарова О.В., Бирюкова И.В. // Изв. РАН Сер. Физ. 2018. Т. 92. № 3. C. 360-363. DOI: 10.7868/S0367676518030213 Palatnikov *M*.*N*.. Sidorov NVMakarova OVBirjukova I.V. // Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya. 2018. Vol. 82. N 3. P. 360-363. DOI: 10.3103/S1062873818030176]
- [13] Налбандян В.Б., Медведев Б.С., Налбандян В.И., Чиненова А.В. // Изв. АН СССР. Неорган. материалы. 1988. Т. 24. № 6. C. 980–983.
- [14] Коновалова В.В. Проводящие фазы в тройных системах $Li_2O-MO-Nb_2O_5$ (M = Zn, Mg) // Дисс. на соиск. канд. хим. наук. Москва. 2009. 135 с.
- [15] Ferriol M., Dakki A., Cohen-Adad M.T., Foulon G., Brenier A., Boulon G. // J. Crystal Growth. 1997. Vol. 178. P. 529538.
- [16] Grabmaier B.C., Otto F. // J. Crystal Growth. 1986. Vol. 79. P. 682-688.
- [17] Палатников М.Н., Бирюкова И.В., Макарова О.В., Ефремов В.В., Кравченко О.Э., Скиба В.И., Сидоров Н.В., *Ефремов И.Н.* // Неорган. материалы. 2015. Т. 51. № 4. C. 428-433. [Palatnikov M.N., Biryukova I.V., Makarova O.V., Efremov V.V., Kravchenko O.E., Skiba V.I., Sidorov N.V., Efremov I.N. // Inorganic Materials. 2015. Vol. 51. N 4. P. 375–379. DOI: 10.1134/S0020168515040123]
- [18] Палатников М.Н., Бирюкова И.В., Макарова О.В., Сидоров Н.В, Кравченко О.Э., Ефремов В.В. // Неорган. Материалы. 2013. Т. 49. № 3. С. 293-300. DOI: 10.7868/S0002337X13030147 Palatnikov MNO.V., Biryukova I.V., Makarova Sidorov NVKravchenko O.E., Efremov V.V. // Inorganic Materials. 2013. Vol. 49. N 3. P. 288–295. DOI: 10.1134/S002016851303014X]
- [19] Палатников М.Н., Логинов Б.А., Сидоров Н.В., Щербина О.Б., Бирюкова И.В., Ефремов В.В., Smith P.G.R., Калинников В.Т. // Неорган. материалы. 2007. Т. 43. № 1. C. 74-79. [Palatnikov M.N., Loginov B.A., Sidorov N.V., Shcherbina O.B., Biryukova I.V., Efremov V.V., Smith P.G.R., Kalinnikov V.T. // Inorganic Materials. 2007. Vol. 43. N 1. P. 68–72. DOI: 10.1134/S0020168507010141]