06

Влияние науглероживания вольфрама на активацию газа при синтезе алмазных структур

© А.А. Емельянов, М.Ю. Плотников, И.Б. Юдин

Институт теплофизики им. С.С. Кутателадзе СО РАН, 630090 Новосибирск, Россия e-mail: plotnikov@itp.nsc.ru

Поступило в Редакцию 22 марта 2018 г. В окончательной редакции 17 апреля 2019 г. Принято к публикации 7 июня 2019 г.

> С целью развития газоструйного метода осаждения алмазных структур исследовано течение смеси водорода с метаном через коаксиальные нагретые вольфрамовые цилиндрические каналы со встроенной в них вольфрамовой спиралью. Основное внимание уделено исследованию науглероживания вольфрамовых поверхностей при газоструйном осаждении и влиянию науглероживания на скорость осаждения и морфологию осаждаемых покрытий. Проведена серия экспериментов по исследованию науглероживания вольфрамовых поверхностей при разных условиях подачи смеси водорода и метана. Проведено прямое статистическое моделирование течения смеси. Определены возможные пути попадания метана и его фрагментов на поверхность спирали.

Ключевые слова: газоструйный метод, алмаз, науглероживание вольфрама.

DOI: 10.21883/JTF.2019.12.48488.127-18

Введение

Метод газофазного осаждения с использованием термической активации (Hot-Wire Chemical Vapor Deposition (HWCVD)) газов-предшественников широко применяется для синтеза алмазных структур [1–4]. Этот метод основан на использовании смесей водорода и углеродсодержащих газов, активированных на горячих металлических поверхностях и взаимодействующих с относительно холодной поверхностью подложки. Процесс осаждения алмазоподобных структур газофазным методом представляет собой многопараметрическую задачу [1–4]. При заданных условиях на подложке он определяется соотношением концентраций сталкивающихся с поверхностью подложки атомарного водорода и фрагментов развала исходных углеродсодержащих газов (в нашем случае — метана).

В настоящей работе рассматривается газоструйная модификация этого метода, заключающаяся в активации смеси водорода с метаном при взаимодействии с горячими вольфрамовыми поверхностями цилиндрических каналов и спирали [5–11]. При таком подходе многократные столкновения молекул с поверхностями обеспечивают более высокую степень диссоциации водорода [10,12,13]. Другой отличительной особенностью этого подхода по сравнению с классическим методом HWCVD, где активные компоненты транспортируются к подложке диффузией, является использование высокоскоростной струи для доставки активных компонентов к подложке, что обеспечивает повышенную скорость доставки и возможность их "заморозки".

Вольфрам широко используется при осаждении алмазоподобных структур из смесей углеродсодержащих газов с водородом как в качестве нагревательного элемента, так и в качестве катализатора для диссоциации водорода. Одна из проблем, которую приходится решать при термической активации, является науглероживание вольфрама при взаимодействии с углеродсодержащими газами, что существенно влияет как на электрические, так и на каталитические свойства вольфрама [14–18].

В настоящей работе численно и экспериментально исследуется науглероживание вольфрамовой поверхности спирали при газоструйном осаждении, а также влияние науглероживания на скорость осаждения и морфологию алмазных структур.

Методика эксперимента

На рис. 1 представлена схема реактора для активации и транспортировки газов к подложке. Реактор расположен в вакуумной камере объемом около 0.5 m³. Кольцевой канал 1 диаметром 13 mm и трубка 5 диаметром 3 mm выполнены из двуслойной вольфрамовой фольги толщиной 30 µm. Внутри канала 1 коаксиально расположена цилиндрическая спираль 2 и трубка 5. Спираль выполнена из вольфрамовой проволочки диаметром 1 mm. Она имеет пять витков в горячей зоне с диаметром намотки 8 mm. Тепловой экран 6 диаметром 17 mm выполнен из двуслойной молибденовой фольги толщиной 50 µm. Длина горячей части реактора составляла 22 mm, расстояние до подложки — 10 mm. Подложка 3 диаметром 20 mm выполнена из молибденовой фольги толщиной 250 µm. Перед началом эксперимента камера откачивалась до давления 26.7 Ра, а затем во время эксперимента давление поддерживалось на уровне 2666 Ра. В трубку 5 подавалась смесь H₂ + CH₄, в

Рис. 1. Схема транспортировки газов к подложке: *1* — кольцевой канал, *2* — вольфрамовая спираль, *3* — молибденовая подложка, *4* — трубка для подачи смеси H₂ + CH₄, *5* — горячая часть трубки, *6* — тепловой экран.

кольцевой канал — только водород (1500 sccm). Расход водорода, подаваемого через трубку I, также составлял 1500 sccm, а расход метана в смеси варьировался от 2 до 16 sccm.

Температуры трубок 1,4 и 6 измерялись с помощью вольфрам-рениевых термопар с диаметром электродов 100 µm и молибденовой подложки 3 с помощью хромель-алюмелевой термопары с диаметром электродов 200 µm. Королек термопар закладывался в стенках каждой трубки между слоями фольги. Температура спирали оценивалась по методике [19]. Температура поверхности кольцевого канала во время экспериментов была около 2100 К. Перед началом эксперимента подбиралась мощность, обеспечивающая при подаче заданного расхода водорода температуру 2400 К для трубки 1. Эта мощность использовалась в ходе эксперимента по осаждению алмазных структур. В этих условиях температура спирали оценочно имела значение около 2500 К. Подложка нагревалась тепловым потоком от реактора, ее температура регистрировалась термопарой, приваренной к подложке с тыльной стороны. В ходе эксперимента измерялись сила тока и напряжение на спирали. Стандартное время осаждения составляло 3 h.

Науглероживание вольфрама и его влияние на процесс осаждения алмазных структур методом HWCVD

Атомарный водород играет одну из ключевых ролей в газофазном осаждении алмазных структур. Он необходим для строительства алмазной решетки на поверхности подложки. Исследования показали незначительный вклад в разложение метана гетерогенных реакций [3,20], поэтому вторая важная функция атомарного водорода — участие в разложении в газовой фазе метана на фрагменты.

Диссоциация молекулярного водорода на чистой поверхности вольфрама начинается при температуре поверхности > 1600 К и ее скорость увеличивается с ростом температуры [21]. Ограничением сверху по температуре при использовании HWCVD для осаждения алмаза является начало активного испарения вольфрама. При взаимодействии вольфрама с углеродсодержащими газами происходит его науглероживание, что приводит к росту электросопротивления и снижению каталитической активности. Все это влияет на стабильность проведения эксперимента и скорость осаждения. Поэтому большое внимание было уделено изучению науглероживания вольфрама применительно к использованию HWCVD для осаждения алмаза [14–18]. Исследователи использовали разные методики с разной точностью. Поэтому частично выводы не совпадают.

Процесс науглероживания вольфрама включает в себя два основных тесно взаимосвязанных процесса: образование углерода на поверхности металла вследствие разложения газа и диффузию атомов углерода вовнутрь с образованием карбидных форм W2C и WC и твердого раствора. В работе [14] исследованы кинетика и механизм взаимодействия вольфрама с метаном в области температур 1573-2823 К и давлений метана 266-8000 Ра. При этом могут реализовываться два качественно различных режима роста диффузионных слоев — кинетический и диффузионный [14]. С помощью металлографического и рентгенофазового анализов на первой стадии обнаружена только одна карбидная фаза W₂C. На второй стадии диффузионная зона становится двуслойной (наряду с W₂C появляется фаза WC), и в дальнейшем происходит рост обоих карбидных слоев. Толщина внешнего слоя WC всегда значительно меньше толщины внутреннего слоя W₂C. Установлено, что при давлении 1333 Ра во всем исследуемом диапазоне температур образование свободного углерода на поверхности не наблюдалось. Хроматографическим анализом установлено постоянство состава газообразных продуктов пиролиза — в основном это водород, а при *T* > 2273 K наблюдались следы ацетилена в количестве < 2% от количества разложения метана. Отмечено увеличение скорости разложения метана с ростом температуры.

В работе [15] изучалась карбидизация вольфрамовых нитей в газовой смеси CH_4-H_2 при температуре проволочек 2373 К в типичных условиях нанесения алмазного напыления. Вольфрамовая нить полностью превращалась в WC и W₂C при 2373 К через 24 h как при 0.5%, так и при 1.0% CH₄. При уменьшении времени карбидизации до 5 h внешний слой нити содержал WC и W₂C, тогда как внутренний сердечник содержал чистый вольфрам. Температура вольфрамовых нитей уменьшалась со временем, вероятно, из-за увеличения диаметра нити во время науглероживания, а также комбинации различных фаз (карбид-субкарбид и металлическая фаза), которые имеют разную электрическую проводимость и разную тепловую эффективность.

В работе [16] показан рост с течением времени сопротивления проволочки из вольфрама, помещенной в атмосферу метана. Этот рост авторы отнесли к последствиям карбидизации проволочки. При температуре 2580 К ими отмечено достаточно медленное и слабое изменение сопротивления (10% за 6 h). Отмечено, что проволочку можно обезуглероживать без какой-либо заметной потери свойств вольфрама. Это делалось много раз путем нагрева до 2800 К в вакууме или в потоке водорода при 0.13 Ра. Показано, что смешивание водорода с углеродсодержащим газом заметно увеличивает вероятность разложения метана на поверхности: так, при температуре проволочки 2610 К она увеличилась с $6.4 \cdot 10^{-3}$ (только метан) до $2.6 \cdot 10^{-2}$ (метан и водород). Этот эффект, возможно, объясняется наличием углеродных пятен на поверхности W_2 С. Эти пятна обладают низкой вероятностью разложения метана, но могут удаляться адсорбированным водородом.

В работе [17] проведен комплексный анализ влияния карбидизации проволочек из вольфрама на их свойства. Исследовались степень черноты, электрическое сопротивление, мощность, затрачиваемая на нагрев до заданной температуры, и каталитические свойства поверхности. Проволочки предварительно карбидизировались при 2173 К в смесях 1% CH₄/H₂ или 0.5% C₂H₂/H₂. Процесс карбидизации контролировался путем измерения сопротивления свернутой в спираль части проволочки. Предполагалось, что карбидизация фактически завершена при достижении устойчивого значения сопротивления. Для вольфрамовых проволочек требуемое время науглероживания составляло около 1 h и соответствовало увеличению сопротивления на 100%. Эксперименты показали, что при нагреве науглероженных проволочек выше температуры 2423 К начинается процесс обезуглероживания. Из проведенных экспериментов авторы делают вывод, что переход к травлению углерода водородом на поверхности проволочки происходит при температуре 2473 К и при 2623 К поверхность проволочки в основном очищена от углерода. О процессе обезуглероживания можно также судить по данным об уменьшении сопротивления при повышении температуры от 2473 до 2623 К. Изменения при T = 2423 К также отражаются скачками в величине мощности, необходимой для достижения заданной температуры. Когда поверхность проволочки становится чистой, каталитическая активность проволочки резко возрастает. Об этом свидетельствует ряд косвенных показателей, приведенных в [17]. В частности, в этом случае требуется больше энергии для активации газов-реагентов. Было отмечено резкое увеличение температуры подложки, что может быть обусловлено энергией, высвобождаемой в результате рекомбинации атомов водорода на поверхности подложки. Этот факт служит дополнительным, хотя и косвенным свидетельством повышенной каталитической активности проволочки. Другим косвенным показателем каталитической активности являлось изменение состава окружающего газа.

Наиболее обстоятельное исследование влияния науглероживания вольфрама на его каталитические свойства было проведено авторами [18]. Масс-спектрометрия и рентгеновская фотоэлектронная спектроскопия были использованы для исследования взаимодействия CH₄ и H₂ с карбидизированными и некарбидизированным вольфрамом. Эксперименты показали значительное испарение С, С2, и С3 с поверхности карбидизированного вольфрама при температуре выше 2173 К в вакууме (при этом С больше в 4-5 раз, чем С2 и С3). Авторы [18] предполагают, что науглероживание вольфрама в типичном алмазном CVD-реакторе происходит следующим образом. Атомы водорода, десорбированные из горячей вольфрамовой поверхности, в результате реакций в газовой фазе с метаном образуют высокоактивные частицы, такие как метильные радикалы, ацетилен и этилен. Ожидается, что полученные частицы будут намного более реакционноспособными с вольфрамом или науглероженным вольфрамом по сравнению с метаном. По мнению авторов [18], науглероживание вольфрамовых проволочек в CVD-реакторах обусловлено в основном реакцией этих частиц с горячей поверхностью. Ими было обнаружено, что скорость образования атомов водорода из H₂ на чистом вольфраме существенно выше, чем на карбидизированном. На графите диссоциация водорода не наблюдалась. В [17,18] представлен большой объем данных, свидетельствующий о том, что вольфрамовая нить в CVD-реакторе науглерожена и химически инертна при температурах ниже 2173 К и меньше подвержена карбидизации, и более реакционноспособна при температурах выше 2473 К.

Метод прямого статистического моделирования

Для исследования особенностей течения смеси газов в условиях, близких к экспериментальным, использовался метод прямого статистического моделирования (ПСМ) [22,23]. В основе алгоритма ПСМ лежит моделирование движения частиц и их столкновений между собой и с окружающими поверхностями.

Рис. 2. Расчетная схема — численная плотность и линии тока метана, истекающего из трубки.

Расчетная схема показана на рис. 2, где приведено пространственное распределение плотности метана. В соответствии со схемой рис. 1 моделировалось течение смеси водорода с метаном через центральную трубку, состоящую из холодного 4 и нагреваемого 5 участков. На выходе из этой трубки течение попадало в спутный поток из кольцевого канала. Температура спирали — 2400 К. При этом горячая часть трубки 5 находилась в тесном лучистом и конвективном контакте со спиралью и также считалась нагретой до температуры 2400 К. В кольцевой канал подавался водород. Внешняя поверхность кольцевого канала имела низкую температуру (1800 К), поэтому в расчетах для нее принята полная рекомбинация атомарного водорода. Активирующими являются поверхность трубки 5 и спираль. Выбор коэффициентов диссоциации и рекомбинации водорода на трубке 5 и спирали осуществлялся на основе методики [13]. Участие метана в химических реакциях не рассматривалось. Более подробное описание используемых в расчетах параметров метода ПСМ приведено в [24]. Начальная часть трубки имеет "низкую" температуру (T = 1500 K); для проникающего в эту часть трубки атомарного водорода моделировалась полная рекомбинация на ее поверхности. Эксперименты показали, что внутренняя поверхность центральной трубки покрыта углеродом. Основываясь на результатах [14,15], мы считали внутреннюю поверхность трубки науглероженной и вследствие этого некаталитичной.

Результаты экспериментов и расчетов

В экспериментах при исследовании степени науглероживания вольфрамовых поверхностей реактора основное внимание было уделено изменению свойств вольфрамовой спирали. Контроль изменения науглероживания спирали осуществлялся измерением ее электрического сопротивления [15-18]. В процессе всего эксперимента измерялось падение напряжения на концах спирали и величина тока в цепи. На рис. 3 представлено изменение относительного электрического сопротивления с течением времени (время измеряется в часах) для различных вариантов подачи смеси при наличии подложки. Результаты получены при следующих параметрах: давление в камере 2666 Ра; температура подложки 1300 К; при совместной подаче расход смеси $H_2 + CH_4$ 1500 + 15 sccm; при раздельной осесимметричной схеме — расход водорода в кольцевом канале 1500 sccm и расход смеси H₂ + CH₄ в центральном канале 1500 + 15 sccm; при боковой подаче расход водорода в центральном канале 1500 sccm и расход смеси H₂ + CH₄ через боковую трубку 1500 + 15 sccm.

На первом этапе разработки газоструйного метода осуществлялась совместная подача метана с водородом (отсутствовала центральная трубка 4) [5,6]. Наблюдалось быстрое повышение сопротивления спирали вследствие ее науглероживания (кривая 1). И как результат — формирование на поверхности подложки композитного

Рис. 3. Изменение относительного сопротивления спирали: *I* — совместная подача метана и водорода в канал со спиралью, *2* — подача метана в середину канала со спиралью, *3* раздельная подача, *4* — боковая подача метана.

Рис. 4. Относительное сопротивление спирали в течение эксперимента с одним (1), двумя (2) и тремя (3) хомутиками.

покрытия с малым содержанием алмазных структур. Размер грани кристалла не удалось получить более 4 µm [5,6]. Науглероживание спирали удалось радикально снизить применением боковой подачи метана: в канал со спиралью подавался только водород, а газовая смесь H₂ + CH₄ подавалась через боковой цилиндрический канал под углом к оси реактора 45° в пространство между спиралью и подложкой [7]. В экспериментах с боковой подачей наблюдалось слабое изменение сопротивления спирали (кривая 4), что можно объяснить формированием лишь незначительного потока фрагментов метана из камеры в область нахождения спирали. В этом случае удалось получить крупные кристаллы алмаза с размером граней до 60 µm [7]. Основным недостатком такого подхода была сложность систематического повторения результатов эксперимента вследствие чувствительности

Рис. 5. Микрофотографии алмазных кристаллов в экспериментах с одним, двумя и тремя хомутиками.

процесса формирования алмазных структур к малейшим колебаниям положения и размеров боковой трубки. Идея раздельной подачи активированной метановой смеси в область осаждения получила развитие в аксиальносимметричной постановке, позволяющей получать более предсказуемые условия смешения активированных газовых потоков перед подложкой [6,8-11]. В этом случае решено использовать центральный канал для подачи смеси метана с водородом (рис. 1, трубка 4, 5), а в кольцевой канал со спиралью подавать только водород. Смешение активированных газовых потоков из обоих каналов осуществлялось в области между срезами трубок и подложкой. К преимуществам этой схемы, кроме защиты спирали, можно отнести возможность управления параметрами режима разложения метана выбором температуры и давления в канале подачи [6,11]. Использование такой схемы позволило существенно снизить рост электрического сопротивления спирали (кривая 3) и получить в отдельных экспериментах кристаллы с размерами граней 15-20 µm. Чтобы оценить степень влияния раздельной подачи на эффективность защиты спирали от науглероживания, был проведен тестовый эксперимент с подачей смеси через укороченную трубку 5 (рис. 1) в середину кольцевого канала. Измерение электрического сопротивления показало заметное снижение его роста в ходе эксперимента по отношению к совместной подаче (кривая 2), но рост происходил значительно быстрее, чем в схеме с боковой подачей. Полученные кристаллы имели размер граней 4-5 µm. Проведенный анализ изменения сопротивления в процессе синтеза алмазных структур показал, что при большом его росте отмечается существенное ухудшение получаемого покрытия при прочих равных условиях

проведения эксперимента. Также было замечено, что в ряде экспериментов при прочих равных условиях наблюдается существенное различие в изменении сопротивления, не поддающееся объяснению. Причина была найдена после обнаружения двух независимых каналов поступления метана к спирали: просачивания метана и его фрагментов в кольцевой канал через стенки трубки 5 (рис. 1) и заброс из камеры вследствие диффузии и отражения от подложки.

Стенки центрального канала 5 (рис. 1) выполнены из двух плотных слоев вольфрамовой фольги. При подаче смеси метана и водорода в такую трубку возможно просачивание метана и его фрагментов в кольцевой канал через межслоевой зазор. Количество проходящего газа из центрального канала в кольцевой канал в этом случае зависит от разности давлений в каналах и величины зазора. Разность давлений определяется расходами газов в каналах и их температурой. Уменьшение величины газопроницаемости через межслоевой зазор удалось добиться улучшением стягивания слоев фольги путем установки стягивающих хомутиков на трубку 5 (рис. 1). На рис. 4 представлены изменения электрического сопротивления спирали во времени при использовании трубки 5 (рис. 1), стенки которой имеют различную газопроницаемость. Из полученных данных следует, что наименьшее изменение сопротивления отмечается в эксперименте с тремя хомутиками. В этом случае газопроницаемость стенки минимальна, что заметно снижает поступление метана в водородный канал и снижает карбидизацию спирали.

На рис. 5 в качестве примера влияния науглероживания спирали на морфологию синтезируемых кристаллов приведены микрофотографии алмазных кристаллов, полученных в экспериментах с одним, двумя и тремя хомутиками. Из представленных данных видно,

10²⁰

Рис. 6. Плотность метана вблизи первого кольца спирали для четырех численных экспериментов: *1* — с подложкой для давления в камере 2666 Ра; *2* — без подложки для давления в камере 2666 Ра; *3* — с подложкой для давления в камере 266.6 Ра; *4* — без подложки для давления в камере 266.6 Ра.

что скорость роста кристаллов существенно возрастает, если обеспечить наименьшую газопроницаемость стенок центрального канала. В этих экспериментах средний размер грани алмазных кристаллов имел значения 2-3, 5-8 и $15-20\,\mu$ m соответственно.

Заброс метана и его фрагментов из камеры вследствие диффузии и отражения от подложки был понят из численных экспериментов. Расчеты показали формирование вихревого течения вследствие отражения потоков метана и водорода от подложки, приводящего к попаданию значительного количества метана в область спирали. Отметим, что истечение газа из кольцевого канала существенно дозвуковое (число Маха ~ 0.1). На рис. 6 приведены данные по плотности метана вблизи первого кольца спирали (рис. 2 - x = 0.02 m) для четырех численных экспериментов. Отсутствие подложки в расчете приводит к значительному снижению плотности метана, однако его величина остается значительной вследствие рассеивания метана на фоновом газе. Уменьшение фонового давления приводит к снижению заброса метана на порядок даже при наличии подложки.

Расчетам сопоставлен эксперимент. На рис. 7 представлено сравнение изменения сопротивления спирали без подложки (кривая 1) при подаче смеси в канал. В отсутствие подложки наблюдается замедленный рост электрического сопротивления, что, по-видимому, вызвано отсутствием отраженного потока от подложки. При отключении подачи метана происходит восстановление величины сопротивления до начального уровня (кривая 2), что может свидетельствовать об очистке спирали от углерода. Это согласуется с литературными данными [14-18]. Восстановленная спираль была использована для осаждения алмазных структур. Несмотря на значительный рост относительного электрического сопротивления в ходе эксперимента (до 25%), было получено алмазное покрытие с размером кристаллов порядка 15 µm. Это является дополнительным свидетельством возможности восстановления каталитических

Рис. 7. Изменение относительного сопротивления спирали во времени при подаче газов в камеру без подложки.

Рис. 8. Результаты элементного анализа поверхности витков спирали: 1 — углерод, 2 — вольфрам.

способностей спирали. Значительный рост относительного сопротивления в этом эксперименте, по-видимому, связан с температурной деформацией центрального канала при остывании после тестового эксперимента без подложки.

Элементный анализ витков поверхности спирали (рис. 8) после этого эксперимента по осаждению алмазных структур свидетельствует о равномерном науглероживании витков, вызванном проникновением метана в кольцевой канал через стенки трубки и из вакуумной камеры. Также был проведен элементный анализ внешней и внутренней поверхностей кольцевого канала 1 (рис. 1). Установлено, что покрытие углеродом внешней поверхности кольцевого канала составляет ~ 30%, внутренней поверхности — ~ 70%. Рост покрытия внутренней поверхности углеродом согласуется с имеющимися литературными данными, так как температура этой поверхности в ходе эксперимента была около 2100 К.

Заключение

С целью развития газоструйного метода осаждения алмазных структур проведено исследование течения смеси водорода с метаном через коаксиальные нагретые вольфрамовые цилиндрические каналы со встроенной в них вольфрамовой спиралью. Вольфрамовая спираль использовалась как для нагрева реактора и подаваемых газов, так и для активации протекающего через кольцевой канал водорода. Основное внимание уделено исследованию науглероживания вольфрамовой спирали и влиянию науглероживания на скорость осаждения и морфологию алмазных покрытий. Контроль изменения науглероживания спирали осуществлялся измерением ее электрического сопротивления.

Экспериментально установлено существование двух независимых каналов поступления метана к спирали.

При подаче смеси $H_2 + CH_4$ в реактор в отсутствии подложки рост сопротивления спирали происходит в основном за счет просачивания метана в кольцевой канал через его стенки, а при наличии подложки происходит вихревое отражение газового потока, который дополнительно забрасывается в канал, и вследствие этого происходит ускорение науглероживания спирали. Проведенное прямое статистическое моделирование течения смеси через коаксиальные цилиндрические каналы со встроенной в них спиралью подтвердило вихревое отражение газового потока от подложки и от фонового газа в камере.

Экспериментально установлено, что значительный рост электрического сопротивления спирали в ходе эксперимента (при постоянной мощности источника питания) приводит к уменьшению скорости роста алмазных кристаллов. Оказалось, что если изменение относительного сопротивления составляет менее 20% за 3 h, то результаты таких экспериментов можно сравнивать между собой и выявлять закономерности роста алмаза в зависимости от параметров эксперимента. В противном случае результаты сильно искажаются, по всей видимости, влиянием науглероженности спирали, и корректное сравнение проводить нельзя.

Полученные результаты и разработанные методики полезны для оптимизации газодинамических реакторов, используемых для осаждения алмазных структур.

Благодарности

Авторы благодарят академика РАН А.К. Реброва за полезные замечания при обсуждении работы.

Финансирование работы

Работа выполнена при частичной поддержке гранта фундаментальных Российского фонда N⁰ 18-08-00295) бюдисследований (проект И AAAA-A17-117022850029-9 жетных грантов и AAAA-A17-117030110017-0.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Спицын Б.В., Алексеенко А.А. // Защита металлов. 2007. Т. 43. № 5. С. 456–474. DOI: 10.1134/S0033173207050025 [Spitsyn B.V., Alexenko A.E. // Protection of Metals. 2007. Vol. 43. N 5. P. 415–431.]
- [2] Хмельницкий Р.А. // УФН. 2015. Т. 185. № 2. С. 143–159.
 DOI: 10.3367/UFNe.0185.201502b.0143 [Khmelnitskiy R.A. // Phys. Usp. 2015. Vol. 58. Р. 134–149.]
- [3] Pe6pos A.K. // УΦΗ. 2017. T. 187. № 2. C. 193–200. DOI: 10.3367/UFNe.2016.04.037794 [Rebrov A.K. // Phys. Usp. 2017. Vol. 60. N 2. P. 179–186.]

- [4] May P.W. // Phil. Trans. R. Soc. Lond. A. 2000. Vol. 358.
 P. 473–495. DOI: 10.1098/rsta.2000.0542
- [5] Емельянов А.А., Ребров А.К., Юдин И.Б. // ПМТФ. 2014.
 Т. 55. № 2. С. 94–100. DOI: 10.1134/S0021894414020096
 [Emelyanov А.А., Rebrov А.К., Yudin I.B. // J. Appl. Mech.
 Tech. Phys. 2014. Vol. 55. N 2. P. 270–276.]
- [6] Emelyanov A.A., Rebrov A.K., Yudin I.B. // Phys. Stat. Sol. A. 2014. Vol. 211. N 10. P. 2279–2283.
 DOI: 10.1002/pssa.201431175
- [7] Rebrov A., Emelyanov A., Kosolobov S., Yudin I. // Phys. Status Solidi C. 2015. Vol. 12, N 7. P. 931–933.
 DOI: 10.1002/pssc.201510043
- [8] Rebrov A.K., Andreev M.N., Bieiadovskii T.T., Kubrak K.V. // Surf. Coat. Technol. 2017. Vol. 325. P. 210–218. DOI: 10.1 016/j.surfcoat.2017.06.060
- [9] Емельянов А.А., Ребров А.К., Юдин И.Б. // ЖТФ. 2016.
 Т. 86. Вып. 12. С. 56–59. DOI: 10.1134/S1063784216120124
 [Emel'yanov A.A., Rebrov A.K., Yudin I.B. // Tech. Phys. 2016.
 Vol. 61. N 12. P. 1821–1824.]
- [10] *Rebrov A.* // Diam Relat Mater. 2017. Vol. 72. P. 20–25. DOI: 10.1016/j.diamond.2016.12.014
- [11] Ребров А.К., Емельянов А.А., Плотников М.Ю., Юдин И.Б. // ПМТФ. 2017. Т. 58. № 5 (345). С. 142–150.
 DOI: 10.1134/S0021894417050145 [Rebrov A.K., Emel'yanov A.A., Plotnikov M.Yu., Yudin I.B. // Appl. Mech. Tech. Phys. 2017. Vol. 58. N 5. P. 881–888.]
- [12] Ребров А.К., Юдин И.Б. // ДАН. 2016. Т. 468. № 1.
 С. 33–36. DOI:10.1134/S1028335816050025 [Rebrov A.K., Yudin I.B. // Dokl. Phys. 2016. Vol. 61. N 5. P. 223–226.]
- Plotnikov M.Yu., Shkarupa E.V. // Vacuum. 2016. Vol. 129.
 P. 31–37. DOI: 10.1016/j. vacuum.2016.04.001
- [14] Харатьян С.Л., Чатилян А.А., Мержанов А.Г. // Химическая физика. 1987. Т. 6. № 2. С. 225–233. [Kharatyan S.L., Chatilyan A.A., Merzhanov A.G. // Khim. Fiz. 1987. Vol. 6. N 2. P. 225–233.]
- [15] Okoli S., Haubner R., Lux B. // Surf. Coat. Technol. 1991.
 Vol. 47. N 1–3. P. 585–599.
 DOI: 10.1016/0257-8972(91)90329-U
- [16] Boudart M., Ollis D.F., Harris G.W. // Trans. Faraday Soc. 1969. Vol. 65. P. 519–528.
- [17] Sommer M., Smith F.W. // J. Mater. Res. 1990. Vol. 5. N 11.
 P. 2433–2440. DOI: 10.1557/JMR.1990.2433
- [18] Winters H.F., Seki H., Rye R.R., Coltrin M.E. // J. Appl. Phys. 1994. Vol. 76. P. 1228–1243. DOI: 10.1063/1.357852
- [19] Емельянов А.А., Юдин И.Б., Ребров А.К., Лебедев В.А. В сб. тезисов Всеросс. конф. XXXI "Сибирский теплофизический семинар". 2014. Новосибирск. С. 202.
- [20] Плотников М.Ю., Шкарупа Е.В. // ПМТФ. 2017. Т. 58.
 N 3 (343). С. 30–38. DOI: 10.1134/S002189441703004X
 [Plotnikov M.Yu., Shkarupa E.V. // Appl. Mech. Tech. Phys. 2017. Vol. 58. N 3. P. 402–409.]
- [21] Koschmieder H., Raible V. // Rev. Sci. Instrum. 1975. Vol. 46.
 P. 536-537. DOI: 10.1063/1.1134251
- [22] Ivanov M.S., Rogasinsky S.V. // Russ. J. Numer. Anal. Math. Modelling. 1988. Vol. 3. N 6. P. 453–466. DOI: 10.1515/rnam.1988.3.6.453
- [23] *Bird G.A.* Molecular gas dynamics and the direct simulation of gas flows. Oxford: Clarendon Press, 1994.
- [24] Morozov A.A., Plotnikov M.Yu., Rebrov A.K., Yudin I.B. In Proc. of 30th Intern. Symp. on Rarefied Gas Dynamics. Canada. 2016. NY: AIP Conf. Proc. 2016. Vol. 1786. P. 050015. DOI: 10.1063/1.4967565