07

Механизм влияния дисперсных наночастиц на параметры мартенситных переходов в сплавах с эффектом памяти формы

© Г.А. Малыгин

Физико-технический институт им. А.Ф. Иоффе, Санкт-Петербург, Россия E-mail: malygin.ga@mail.ioffe.ru

Поступила в Редакцию 1 июля 2019 г. В окончательной редакции 1 июля 2019 г. Принята к публикации 2 июля 2019 г.

В рамках теории размытых мартенситных переходов, базирующейся на термодинамических и кинетических уравнениях и соотношениях, анализируется механизм влияния дисперсных наночастиц на параметры мартенситных переходов в сплавах с ЭПФ. В качестве объектов анализа выбраны сплав TiNi с вариацией размера частиц Ti₃Ni₄ при постоянной их объемной концентрации, и сплав NiMnGaTb с частицами выделений Tb постоянного размера при вариации объемной концентрации выделений. Сведения об этих сплавах имеются в литературе. Анализ показал, что из-за когерентного характера связи частиц Ti₃Ni₄ с матрицей температурная ширина R-B19' перехода зависит от размера частиц *d*, как 1/d, что подтверждает ранее установленную закономерность влияния внутренних локальных напряжений на этот параметр. Что касается сплава NiMnGaTb, то анализ показал, что из-за наличия внутренних локальных напряжений, связанных с частицами Tb, температурная ширина мартенситного перехода увеличивается линейно с ростом концентрации частиц в сплаве. Показано также существование критической величины концентрации частиц, выше которой температурная ширина перехода становится неопределенно большой, и мартенситное превращение в сплаве блокируется.

Ключевые слова: сплавы с ЭПФ, мартенситные переходы, дисперсные наночастицы, дислокации фазового превращения.

DOI: 10.21883/FTT.2019.11.48415.542

1. Введение

Сплавы с эффектом памяти формы (ЭПФ) — перспективные материалы для применения в различных высокотехнологичных областях науки и техники. Они являются в настоящее время предметом интенсивных исследований с целью улучшения их функциональных свойств. Эти свойства непосредственным образом связаны с параметрами протекающих в сплавах с ЭПФ термопругих мартенситных переходов. Наиболее важными параметрами являются температура T_c , интервал ΔT и гистерезис ΔT_n перехода, а также величина деформации мартенситного превращения ε_m . Согласно экспериментальным данным, рассматриваемые параметры чувствительны к структуре сплава не только на атомном уровне (содержанию и соотношению в сплаве компонентов), но и на мезо (микро и нано) уровне. Исследования показывают, что рассматриваемые параметры чувствительны к размеру кристалла сплава в целом, а в поли (микро и нано) кристаллическом материале — к размеру кристаллитов.

Другой важный фактор, влияющий на параметры мартенситных переходов в этих сплавах, это наличие в них дисперсных нано- и микрочастиц [1–6]. В сплаве TiNi — это частицы интерметаллида Ti₃Ni₄ [2,3], в сплаве Ni_{50-x}Mn₃₀Ga₂₀Tb_x — частицы выделений тербия [1], в компактированном после размола порошке

сплава Ti-Ni-Hf — частицы карбида HfC [5], а в сплаве Cu-Al-Ni — частицы двуокиси HfO₂ [6]. Влияние частиц, как показывают эксперименты, зависит от размера частиц, их объемной плотности, а также от наличия или отсутствия у частиц когерентной связи с матрицей. Поскольку частицы являются одновременно препятствиями для перемещения решеточных дислокаций, то их наличие в сплаве с ЭПФ расширяет рабочий диапазон напряжений использования сплава в различных силовых и сенсорных устройствах. К настоящему времени накоплен достаточно большой объем данных по влиянию дисперсных нано и микрочастиц на параметры мартенситных переходов в сплавах с ЭПФ. Но их теоретическое осмысление не выходит за рамки качественного рассмотрения вопроса ввиду отсутствия структурно чувствительной на мезоуровне теории фазовых переходов первого рода, к которым относятся мартенситные переходы в рассматриваемых сплавах. Это не позволяет количественно установить явную зависимость параметров мартенситного перехода в каждом конкретном сплаве от размера и объемной плотности частиц и влияние на эти параметры когерентной связи частиц с матрицей или ее отсутствия.

Наиболее близкой к такой структурно чувствительной на мезоуровне теории мартенситных переходов в сплавах с ЭПФ является в настоящее время теория размытых мартенситных переходов (РМП) [7–9]. Она уже использовалась для анализа размерных эффектов в этих сплавах и позволила установить явную зависимость параметров мартенситных переходов в ряде сплавов с ЭПФ от поперечного сечения кристалла D, а в поликристаллическом материале — от размера кристаллитов d в диапазоне размеров D, d = 10-1000 nm [8,9]. В частности, анализ показал, что в отсутствие внутренних локальных микронапряжений зависимость температурного интервала (размытия) перехода ΔT от размерных факторов D или d имеет вид $\Delta T \sim 1/D^2$ или $\Delta T \sim 1/d^2$, а при наличии микронапряжений, соответственно, как $\Delta T \sim 1/D$ или $\Delta T \sim 1/d$.

Цель настоящей работы состоит в том, чтобы на основе теории РМП осуществить аналогичный анализ относительно влияния дисперсных нано и микрочастиц, их размера d и относительной объемной плотности f, а также когерентной связи с матрицей на параметры мартенситных переходов в сплавах Ni_{50-x}Mn₃₀Ga₂₀Tb_x [1] и TiNi [3]. Указанные сплавы интересны для анализа тем, что в [1] варьируется объемная плотность частиц Tb при постоянном их размере, а в [3], наоборот, варьируется размер частиц Ti₃Ni₄ при постоянной их концентрации.

2. Основные соотношения теории РМП

Теория размытых мартенситных переходов базируется как на термодинамических, так и на кинетических соотношениях. Основное термодинамическое соотношение в случае одностадийного мартенситного перехода имеет вид [7,8]

$$\varphi_M = rac{1}{1 + \exp(\Delta U/k_{\mathrm{B}}T)}, \quad \varphi_A = 1 - \varphi_M, \qquad (1a)$$

где φ_M и φ_A — относительные объемные доли мартенсита и аустенита в сплаве, $\Delta U = \omega(d, f) \Delta u$ — изменение свободной энергии сплава при образовании в нем элементарного объема новой фазы $\omega_{d,f}$, ограниченного (стесненного, constrained) структурными факторами dи f,

$$\frac{1}{\omega(d,f)} = \frac{1}{\omega_0} + \frac{1}{\omega_{d,f}},\tag{1b}$$

 ω_0 — элементарный объем превращения в отсутствие его пространственного стеснения (constraint) частицами,

$$\Delta u = q \, \frac{T - T_c}{T_c} - \varepsilon_m \sigma + W(\sigma_e), \qquad (1c)$$

 Δu — объемная плотность свободной энергии мартенситного перехода, q — теплота перехода, T — температура, T_c — температура равенства объемов мартенситной и аустенитной фаз в сплаве, ε_m — деформация мартенситного превращения, σ — механическое напряжение, приложенное к кристаллу, $W(\sigma_e) = \varepsilon_m \sigma_e$ энергия внутренних упругих напряжений σ_e из-за наличия когерентной связи частиц с решеткой кристалла, $k_{\rm B}$ постоянная Больцмана. Явная зависимость элементарного объема превращения $\omega_{d,f}$ от размера частиц d и их относительной объемной плотности $f = (\beta d/l_0)^3$ определяется соотношениями

$$\omega_{d,f} = l_p^2(d, f) a_0, \quad l_p = (l_0 - \beta d)^2 / \beta d = \beta R(f) d,$$
$$R(f) = \left(\frac{1 - f^{1/3}}{f^{1/3}}\right)^2, \quad (2a)$$

где l_p — расстояние свободного пробега дислокаций превращения до встречи их с частицами, $\beta = (\pi\beta_0/4)^{1/3}$, $\beta_0 = h/d = \text{const}$ — коэффициент формы частицы в виде диска высотой h и диаметром $d \gg h$, a_0 расстояние между габитусными плоскостями в сплаве. Кроме препятствий для перемещения дислокаций фазового превращения, дисперсные частицы являются источником гетерогенного зарождения этих дислокаций. Согласно [9] при гетерогенном зарождении дислокаций превращения элементарный объем превращения ω равен $(\pi a^2/4\varepsilon_m)\beta d$. В результате, для полного элементарного объема превращения получаем соотношение

$$\frac{1}{\omega(d,f)} = \frac{1}{\omega_0} \left[1 + \frac{\omega_0}{\omega_{d,f}} \right] = \frac{1}{\omega_0} \left[1 + \left(\frac{d_0}{\beta R(f)d} \right)^2 \right],$$
(2b)

где $d_0 = \omega_0^{1/3} \sim d^{1/3}, a$ — параметр решетки.

Кинетические соотношения для параметров мартенситного перехода находятся из решения кинетических уравнений для объемных долей мартенситной φ_M и аустенитной φ_A фаз [7,8]. В [8] приведено частное решение этих уравнений в случае равенства объемных долей мартенсита и аустенита (равенства размеров мартенситных и аустенитных ламелей) в кристалле сплава. Это решение определяет температуры T_c , соответственно, при прямом T_c^M и обратном T_c^A мартенситных переходах. В сплаве с дисперсными частицами указанные температуры следующим образом зависят от структурных факторов d и f (при напряжении $\sigma = 0$ в (1с))

$$T_{c}^{M} = \left[1 - \frac{W(\sigma_{e})}{q} + \frac{k_{\rm B}T_{c0}}{q\omega(d,f)} \ln\left[\frac{3}{2}k_{0}(d,f) - 1\right]\right] T_{c0},$$
(3a)
$$T_{c}^{A} = \left[1 + \frac{k_{\rm B}T_{c0}}{q\omega(d,f)} \ln\left[3k_{0}(d,f) - 1\right]\right] T_{c0}.$$
(3b)

Разница между ними $\Delta T = T_c^A - T_c^M$ — ширина (размытие) перехода по температуре,

$$\Delta T = \left[\frac{W(\sigma_e)}{q} + \frac{k_{\rm B}T_{c0}}{q\omega(d,f)} \ln\left(\frac{3k_0(d,f) - 1}{3k_0(d,f)/2 - 1}\right)\right] T_{c0},$$
(3c)

 T_{c0} — температура равенства объема фаз в отсутствие внутренних напряжений и пространственного стеснения превращения,

$$k_0(d,f) = \left(\frac{l_p}{d_0}\right)^2 = \left(\frac{d}{d_0}\beta R(f)\right)^2, \qquad (3d)$$

Соотношение (3d) — вклад кинетического фактора в структурный аспект мартенситного перехода. При записи уравнения (3b) учтено отсутствие в сплаве внутренних напряжений при обратном мартенситном переходе.

3. Анализ экспериментальных данных

3.1. Сплав ТіNi

Особенностью сплава является то, что при содержании никеля более 50.3 at% его отжиг в течение 1-1.5 h при температурах 700-800 К приводит к образованию в сплаве дискообразных наночастиц интерметаллида Ti₃Ni₄, служащих источниками внутренних напряжений и формирования ромбоэдрического (*R*) мартенсита. В результате, одностадийный B2-B19' переход становится двухстадийным B2-R-B19'. При этом, обратный переход имеет практически одностадийный характер изза близости температур B19'-R и R-B2 переходов [10].

На рис. 1 приведены зависимости температур начала M_s и конца M_f прямого R-B19', и начала A_s и конца A_f обратного B19'-B2 мартенситных переходов от размера частиц Ti₃Ni₄, полученные при калориметрическом исследовании [3] кристаллов сплава TiNi с 50.7 at% Ni. Обращают на себя внимание два обстоятельства. Это большая температурная ширина прямого мартенситного перехода $\Delta T^M = M_s - M_f$ в диапазоне размеров d < 100 nm по сравнению с шириной обратного перехода $\Delta T^A = A_f - A_s$ и наличие критического размера частиц $d_k = 35$ nm. При размерах частиц d < 100 nm температуры начала и конца мартенситных превращений начинают резко снижаться и при $d_k = 35$ nm устремляются к нулю.

На рис. 2 приведена зависимость температур T_c при прямом, $T_c^M = (M_s + A_f)/2$, и обратном, $T_c^A = (M_f + A_s)/2$, мартенситных переходах от размера частиц интерметаллида согласно приведенным на рис. 1 данным [3]. На рис. 2 кривые *I* и *2* демонстрируют результаты расчета этих температур согласно

Рис. 1. Зависимость температур начала M_s и конца M_f прямого, и начала A_s и конца A_f обратного мартенситного перехода R-B19' в кристаллах сплава TiNi с концентрацией никеля 50.7% от размера частиц Ti₃Ni₄ [3].

Рис. 2. Зависимость температур равного объема фаз при прямом $T_c^M = (M_s + A_f)/2$ и обратном $T_c^A = (A_s + M_f)/2$ мартенситных переходах в кристаллах сплава TiNi с концентрацией никеля 50.7% от размера частиц Ti₃Ni₄ [3]. Кривые *1* и 2 — расчет согласно уравнениям (3b) (кривая *I*) и (5b) (кривая 2) и (кривая 3). Пунктир — вклад внутренних напряжений в температурную ширину R-B19' перехода согласно уравнению (5c).

уравнениям (3a) и (3b) при величине $kT_{c0}/\omega_0 q = 10^{-2}$, f = 4%, R(f) = 3.7, $\beta_0 = 0.08$, $\beta = 0.34$, $d_k = 35$ nm и $d_0 = 65 \,\mathrm{nm}$. Согласно этим уравнениям при величине кинетического фактора $k_0(d_k, f) = 1/3$ и 2/3 величина логарифмов становится равной минус бесконечности, а температуры T_c^M и T_c^A — равными нулю. В результате, температурная ширина перехода $\Delta T = T_c^A - T_c^M$ оказывается неопределенно большой (кривая 3). При расчете кривой 2 согласно уравнению (За) учтено влияние упругой энергии внутренних напряжений $W_e = \varepsilon_m \sigma_e$ на температуру T_{c}^{M} (см. ниже уравнения (7)). Согласно Эшелби [11,12] (см. также [13]) упругая деформация ε_z вне преципитата в виде тонкого диска толщиной h и диаметром d, помещенного в полость диаметром d и высотой $h_0 < h$ с деформацией $\delta_z = (h - h_0)/h_0$, изменяется в направлении нормальном плоскости диска z, как

$$\varepsilon_z = \left(\frac{2-\nu}{1-\nu}\right) \frac{\delta_z h d^2 z}{16(r^2+z^2)^2},\tag{4a}$$

где r — радиальная координата, v — коэффициент Пуассона. При r = 0 и z = d получаем согласно (4a) величину деформации ε_z и микронапряжений $\sigma_e = \sigma_z$ вне частицы (z > h/2),

$$\varepsilon_z = \left(\frac{2-\nu}{1-\nu}\right) \frac{\delta_z h}{8d}, \qquad \sigma_z = E\varepsilon_z,$$
(4b)

где E — модуль упругости сплава. Подставляя, далее, энергию внутренних напряжений $W = \varepsilon_m \sigma_z$ в уравнения (3a) и (3c), получаем зависимость температуры

Рис. 3. Температурная ширина прямого ΔT^M и обратного ΔT^A переходов в зависимости от размера частиц Ti₃Ni₄ в координатах $\Delta T - 1/d$ в кристаллах сплава TiNi с концентрацией никеля 50.7%. Экспериментальные точки — [3]. Кривые *1* и *2* — см. текст.

 $T_c^M(d)$ и температурной ширины перехода $\Delta T(d)$ от размера частиц с учетом влияния на эти параметры внутренних напряжений,

$$\begin{split} T_{c}^{M} &= \left[1 - \delta_{\sigma} \, \frac{d_{k}}{d} + \frac{k_{\rm B} T_{c0}}{q \omega(d, f)} \, \ln\left[\frac{3}{2} \, k_{0}(d, f) - 1\right]\right] T_{c0}, \\ (5a) \\ \Delta T &= \left[\delta_{\sigma} \, \frac{d_{k}}{d} + \frac{k_{\rm B} T_{c0}}{q \omega(d, f)} \, \ln\left(\frac{3k_{0}(d, f) - 1}{3k_{0}(d, f)/2} - 1\right)\right] T_{c0}, \\ (5b) \end{split}$$

$$\Delta T_{\sigma} = \delta_{\sigma} \, \frac{d_k}{d}, \qquad \delta_{\sigma} = \frac{(2-\nu)\delta_z \varepsilon_m E}{8(1-\nu)q} \left(\frac{h}{d_k}\right). \tag{5c}$$

На рис. 2 кривые 2 и 3 рассчитаны согласно уравнениям (5) при величине параметра $\delta_{\sigma} = 0.29$ и указанных выше значениях остальных коэффициентов и параметров. Пунктиром на рис. 2 обозначен вклад внутренних напряжений ΔT_{σ} в температурную ширину перехода R-B19'. Видно, что этот вклад является основным при размере частиц $d > d_k$. Указанное выше значение коэффициента $\delta_{\sigma} = 0.29$ получено согласно соотношению (5с) при разумных значениях параметров: $\delta_z = 3 \cdot 10^{-2}$ [13], $\varepsilon_m = 6 \cdot 10^{-2}$, q = 30 МЈ/m³ [14], E = 150 GPa [3] v = 0.3 и h = 2.8 nm. Рис. 3 демонстрирует зависимость температурной ширины перехода при прямом и обратном мартенситном превращении в координатах $\Delta T \sim 1/d$. Наклон прямой 1 соответствует приведенному выше значению коэффициента $\delta_{\sigma} = 0.29$.

Видно, что при обратном переходе наклон прямой 2, $\delta_{\sigma} = 0.034$, на порядок ниже. Таким образом, анализ подтверждает ранее установленную закономерность, что наличие в сплаве локальных упругих напряжений определяет характерный вид зависимости температурной ширины перехода, как $\Delta T(d) \sim 1/d$ [9], где в рассматриваемом случае d — размер дисперсных наночастиц.

3.2. Сплав Ni_{50-x} Mn₃₀Ga₂₀Tb_x

Химический состав исследованного в [1] сплава отличается от трехкомпонентного сплава Ni₅₀Mn₃₀Ga₂₀ тем, что небольшая часть атомов Ni (x = 0-1%) замещена атомами Tb. Сплав в расплавленном виде подвергался сверхбыстрой кристаллизации (melt-spinning technology), в результате чего в нем формировались зеренная структура с размером зерен 215 nm и выделения Тb в виде когерентных с матрицей частиц размером 10 nm. С ростом концентрации тербия размеры частиц и зерен оставались постоянными, а объемная плотность частиц возрастала. Рис. 4 демонстрирует температуры равнообъемной концентрации фаз T_c при прямом, T_c^M , и обратном, T_c^A , мартенситных переходах в сплаве NiMnGaTb в зависимости от объемной концентрации частиц тербия f. Для построения кривых использовались результаты калориметрического исследования полученных при кристаллизации лент сплава [1]. На рис. 5 показано, как изменяется усредненная величина температуры равнообъемной концентрации фаз, $\overline{T}_c = (T_c^M + T_c^A)/2$, она плавно снижается с ростом концентрации тербия. В [1] найдено, что при концентрации тербия 1% мартенситное превращение в сплаве отсутствует. По аналогии с продемонстрированным выше существованием крити-

Рис. 4. Зависимость температур равной объемной концентрации мартенситной и аустенитной фаз при прямом $T_c^M = (M_s + A_f)/2$ и обратном $T_c^A = (A_s + M_f)/2$ мартенситных переходах в сплаве Ni_{50-x}Mn₃₀Ga₂₀Tb_x от концентрации частиц Tb [1].

Рис. 5. Изменение усредненной температуры $\overline{T}_c = (T_c^M + T_c^A)$ равного объема фаз при прямом и обратном мартенситных переходах в сплаве Ni–Mn–Ga–Tb с ростом объемной концентрации f частиц Tb [1]. Кривая — расчет согласно уравнениям (7) и (8), пунктир — зависимость $\overline{T}_c(f)$ в отсутствие микронапряжений ($\delta_f = 0$).

ческого размера преципитатов d_k в сплаве TiNi можно предположить существование критической объемной концентрации f_k частиц Tb интервале 1% > f > 0.8%, выше которой мартенситного превращения в сплаве NiMnGaTb не происходит.

На рис. 6 приведена зависимость усредненного значения температурного интервала $\Delta T = (\Delta T^M + \Delta T^A)/2$ прямого, $\Delta T^{M} = M_{s} - M_{f}$, и обратного, $\Delta T^{A} = A_{f} - A_{s}$, мартенситных переходов в сплаве NiMnGaTb от объемной концентрации частиц Тb. Обращает на себя внимание приблизительно линейный характер этой зависимости вплоть до f = 0.8%. Согласно [1] выделения тербия когерентно связаны с матрицей; несовместность деформации между матрицей и преципитатом составляет $\delta_0 = 10\%$. Она служит источником внутренних напряжений в сплаве. Линейный характер зависимости температурного интервала перехода от концентрации частиц тербия свидетельствует о том, что ширина перехода по температуре определяется в данном случае не локальным упругим полем частиц (как это было в рассмотренном выше сплаве TiNi), а распределенным полем упругих деформаций $\varepsilon_e = \delta_0 f$. Согласно Эшелби [12,13] это поле создает распределенное поле упругих напряжений

$$\sigma_e(f) = \left(\frac{1-\nu}{1+\nu}\right) \frac{\delta_0 E}{1-2\nu} f.$$
(6)

Подставляя энергию упругих напряжений $W_e(f) = \varepsilon_m \sigma_e(f)$ в соотношения (3), получим зависимость температур T_c^M и T_c^A , ширины перехода ΔT и кинетического фактора $k_0(f)$ от концентрации частиц тербия,

 ΔT

$$\begin{aligned} T_{c}^{M}(f) &= \left[1 - \delta_{f}f + \frac{k_{\mathrm{B}}T_{c0}}{q\omega(d,f)}\ln\left[\frac{3}{2}k_{0}(d,f) - 1\right]\right]T_{c0}, \\ (7a)\\ T_{c}^{A}(f) &= \left[1 + \frac{k_{\mathrm{B}}T_{c0}}{q\omega(d,f)}\ln\left[3k_{0}(d,f) - 1\right]\right]T_{c0}, \quad (7b) \end{aligned}$$

$$\begin{aligned} T(f) &= \Delta T_0 \\ &+ \left[\delta_f f + \frac{k_{\rm B} T_{c0}}{q \omega(d, f)} \ln \left(\frac{3k_0(d, f) - 1}{3k_0(d, f)/2 - 1} \right) \right] T_{c0}, \\ &\qquad (7c) \\ k_{0(d,f)} &= \left(\frac{l_p}{d_c} \right)^2 = \left(\frac{d}{d_c} \beta R(f) \right)^2, \\ &\delta_f &= \left(\frac{1 - \nu}{1 + \nu} \right) \frac{\varepsilon_m \delta_0 E}{(1 - 2\nu)q}, \end{aligned}$$

где ΔT_0 — ширина перехода в отсутствие наночастиц.

Авторы [1] полагают, что отсутствие мартенситного перехода при концентрации частиц 1% связано с тем, что расстояние между частицами l_p становится величиной порядка поперечного размера частиц d. В действительности, при $\beta \approx 1$ (форма частиц близка к сферической) свободное расстояние между частицами $l_p(f) = R(f)d$ при f = 1% составляет $\approx 15d$. Это означает, что имеется другой источник пространственного стеснения перемещения дислокаций фазового превращения. Таким источником является размер зерен D.

Рис. 6. Зависимость усредненного значения температурной ширины $\Delta T = (\Delta T^M + \Delta T^A)/2$ прямого, $\Delta T^M = M_s - M_f$, и обратного, $\Delta T^A = A_f - A_s$, мартенситных переходов в сплаве Ni-Mn-Ga-Tb от объемной концентрации *f* частиц Tb [1]. Кривая — расчет согласно уравнениям (7) и (8), пунктир — зависимость $\Delta T(f)$ в отсутствие микронапряжений ($\delta_f = 0$).

Рис. 7. Зависимость температурного гистерезиса мартенситного перехода в сплаве Ni-Mn-Ga-Tb от объемной концентрации f частиц Tb [1].

В отсутствие частиц он определяет величину элементарного объема превращения $\omega_0 = \pi D^2 a_0/4$ и величину критического размера $d_c = D$ в соотношении (7d) для кинетического фактора. С учетом этого обстоятельства для элементарного объема превращения и кинетического фактора имеем следующие соотношения,

$$\frac{1}{\omega(d, f, D)} = \frac{1}{\omega_0} \left[1 + \left(\frac{D}{\beta R(f)d} \right)^2 \right],$$
$$k_0(d, f, D) = \left(\frac{d}{D} \beta R(f) \right)^2. \tag{8}$$

На рис. 5 и 6 кривые демонстрирует результаты расчета согласно уравнениям (7) и (8) температуры $\overline{T}_{c} = (T_{c}^{M} + T_{c}^{A})/2$ и температурного интервала перехода ΔT от объемной концентрации f частиц Tb. При расчете использовались следующие значения коэффициентов и параметров: d = 10 nm, D = 176 nm (что близко к $D = 215 \,\mathrm{nm}$ [1]), $\beta = 1$, $\delta_f = 5$ и $kT_{c0}/\omega_0 q = 1/60$, $\Delta T_0 = 8$ К. На рис. 5 и 6 пунктирами обозначены эти зависимости согласно уравнениям (7) и (8) при $\delta_f = 0$, т.е. в отсутствие когерентной связи частиц Тb с матрицей. Видно, что независимо от этого обстоятельства при концентрации частиц $f_k \approx 0.9\%$ температура \overline{T}_c устремляется к нулю, а температурная ширина перехода к неопределенно большой величине. Отметим также, что согласно данным [1] зависимость температурного гистерезиса превращения ΔT_h от концентрации частиц f имеет линейный характер с наклоном, соответствующим величине коэффициента $\delta_f = 3.1$ (рис. 7).

4. Заключение

Таким образом, произведенный в рамках теории размытых мартенситных переходов анализ влияния дисперсных наночастиц на параметры мартенситных переходов в сплавах с эффектом памяти формы позволяют сделать следующие выводы.

1. Наночастицы в сплавах с ЭПФ при когерентной связи частиц с матрицей являются источниками гетерогенного зарождения дислокаций фазового (мартенситного) превращения и возникновения распределенных упругих деформаций и микронапряжений; в отсутствие когерентной связи они служат источником формирования элементарного объема превращения из-за пространственного стеснения перемещения дислокаций превращения.

2. Частицы оказывают сильное влияние на термодинамические параметры мартенситных переходов в этих сплавах, такие как температура перехода, его ширина и гистерезис; и на кинетические параметры, такие как существование критических значений размера частиц и их объемной концентрации, соответственно, ниже и выше которых мартенситное превращение в сплаве блокируется.

3. В количественном отношении влияние наночастиц на термодинамические и кинетические параметры мартенситных переходов в сплавах с ЭПФ зависит от размера частиц и их объемной концентрации.

Список литературы

- [1] Y. Wu, J. Wang, C. Jiang, H. Xu. Intermetallics 97, 42 (2018).
- [2] X. Wang, S. Kustov, R. Li, D. Schryvers, B. Verlinden, J. Van Humbeeck. Acta Mater. 82, 224 (2015).
- [3] Е.Ю. Панченко, Ю.И. Чумляков, И.В. Киреева, А.В Овсяников, Х. Сехитоглу, И. Караман, Г. Майер. ФММ 106, 597 (2008).
- [4] W. Cai, J. Zhang, Z.Y. Gao, J.H. Sui. Appl. Phys. Lett. 92, 252502 (2008).
- [5] X. Yi, X. Meng, W. Cai, L. Zhao. Scripta Mater. 151, 90 (2018).
- [6] Г.А. Малыгин, В.И. Николаев, С.А. Пульнев. ЖТФ 89, N 7, 132 (2019).
- [7] Г.А. Малыгин. УФН 171, 187 (2001).
- [8] Г.А. Малыгин. ФТТ 61, 288 (2019).
- [9] Г.А. Малыгин. ФТТ 61, 1310 (2019).
- [10] K. Otsuka, X. Ren. Progr. Mater. Sci. 50, 511 (2005).
- [11] Дж. Эшелби. Континуальная теория дислокаций. Изд-во ИЛ, М. (1963). 247 с.
- [12] D.Y. Li, L.Q. Chen. Acta Mater. 45, 471 (1997).
- [13] Г.А. Малыгин. ФТТ 45, 1491 (2003).
- [14] T. Honma. Shape Memory Alloy-86 / Ed. Ch. Yoyi, T.Y. Hsu, T. Ko. China Academic Publ., Guilin. (1986). P. 47.

Редактор Т.Н. Василевская