01,11

ЯМР-исследование полуметалла Вейля WTe₂ ниже температуры топологического перехода

© A.O. Антоненко¹, E.B. Чарная¹, M.K. Lee², L.J. Chang², J. Haase³, C.B. Наумов⁴, A.H. Доможирова⁴, В.В. Марченков^{4,5}

¹ Санкт-Петербургский государственный университет,

Санкт-Петербург, Россия

² National Cheng Kung University,

Tainan, Taiwan

³ University of Leipzig,

Leipzig, Germany

⁴ Институт физики металлов им. М.Н. Михеева УрО РАН,

Екатеринбург, Россия

5 Уральский федеральный университет,

Екатеринбург, Россия

E-mail: charnaya@mail.ru

Поступила в Редакцию 24 июня 2019 г. В окончательной редакции 24 июня 2019 г. Принята к публикации 24 июня 2019 г.

Проведены ЯМР-исследования на ядрах ¹²⁵Те топологического полуметалла Вейля WTe₂ при температурах 41 и 293 К. Измерения проводились на импульсном ЯМР-спектрометре Bruker Avance 500. Получены спектры ЯМР ¹²⁵Те для монокристалла WTe₂ при ориентации кристаллической оси *с* параллельно и перпендикулярно квантующему полю. Сложный вид спектров связывался с наличием четырех неэквивалентных позиций атомов теллура в кристаллической структуре WTe₂. Восстановление продольной намагниченности исследовалось после импульсного насыщения для отдельных линий спектра. Выявлен экспоненциальный характер релаксации. Частотный сдвиг и ширина линий спектра незначительно отличались при двух температурах, тогда как времена ядерной спин-решеточной релаксации при 41 К превышали соответствующие времена, измеренные при комнатной температуре, примерно в 30 раз. Сильная температурная зависимость релаксации предположительно обусловлена вкладом квазичастиц Вейля ниже топологического фазового перехода.

Ключевые слова: вейлевские полуметаллы, ядерный магнитный резонанс, топологический фазовый переход, термоэлектрики.

DOI: 10.21883/FTT.2019.11.48400.546

1. Введение

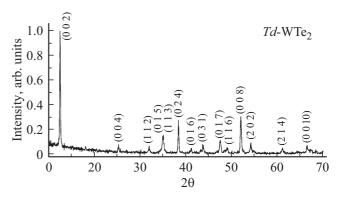
Дихалькогениды переходных металлов с химической формулой MX_2 , где M — атом переходного металла, X — атом халькогена, в последние годы привлекают большое внимание благодаря своим физическим свойствам и слоистой структуре. Эти соединения активно исследуются для потенциального использования в электрических и оптоэлектрических устройствах. Кроме того, такие дихалькогениды металлов, как WTe₂, подходят для применения в условиях экстремальных температур и давлений, а также являются хорошими термоэлектрическими материалами. Недавно было показано, что дителлурид вольфрама относится к вейлевским полуметаллам [1,2].

Дираковские материалы, к которым относятся графен, топологические изоляторы и полуметаллы Дирака и Вейля, представляют новые состояния материи с уникальной электронной структурой и новыми физическими свойствами. В полуметаллах Вейля особенности топологии электронной зонной структуры связаны с

нарушением либо инверсионной симметрии, либо симметрии относительно обращения времени [3–5]. При нарушении одной из указанных симметрий образуются пары точек Вейля в зоне Бриллюэна. Точки имеют разную киральность, их проекции в зоне Бриллюэна на плоскость $k_z=0$ связаны ферми-дугами. Когда обе симметрии сосуществуют, то происходит вырождение пары точек Вейля, что характерно для полуметаллов Дирака [5,6].

Среди полуметаллов Вейля выделяют полуметаллы первого типа, для которых гамильтониан, описывающий точки Вейля, инвариантен относительно преобразований Лоренца. Для этого класса полуметаллов характерно наличие дисперсии в виде идеальных конусов в районе вейлевских точек зоны Бриллюэна. Недавно было предсказано, что слоистые дихалькогениды переходных металлов, такие как WTe₂ и MoTe₂, относятся к вейлевским полуметаллам второго типа, в которых точки Вейля лежат вблизи границы между электронными и дырочными карманами [1,2,7,8]. Для них конусообразный энергетический спектр наклоняется. Вследствие этого

нарушается инвариантность относительно преобразований Лоренца.


Наличие сильного спин-орбитального взаимодействия имеет решающее значение для реального распределения точек Вейля в WTe2, поскольку в его отсутствие в зоне Бриллюэна для WTe₂ должно быть 16 точек Вейля [1]. Ab initio расчеты [1] показали, что, если учесть сильное спин-орбитальное взаимодействие, половина точек Вейля, присутствовавших ранее в зоне Бриллюэна, уничтожится [1]. Кроме того, небольшие изменения постоянных решетки также могут приводить к аннигиляции точек Вейля. Авторы [9] обнаружили, что при температуре порядка 70 К расстояние между двумя точками Вейля уменьшается фактически до нуля, и при более высоких температурах возникает энергетическая щель. Таким образом, WTe₂ претерпевает при этой температуре топологический фазовый переход (ТФП) от полуметалла Вейля второго типа к обычному полуметаллу.

В течение последних нескольких лет ведутся активные исследования вейлевских полуметаллов различными методами. Интерес к применению метода ядерного магнитного резонанса (ЯМР) связан с тем, что особенности электронного спектра вейлевских полуметаллов могут проявляться в специфических изменениях резонансных частот и ядерной спиновой релаксации. На настоящий момент существует две экспериментальных работы, посвященные ЯМР в полуметалле Дирака Cd₃As₂ [10] и ядерному квадрупольному резонансу (ЯКР) в полуметалле Вейля ТаР [11]. Кроме того, имеется две теоретических работы, посвященные влиянию точек Вейля на сдвиги резонансных линий и скорость ядерной спин-решеточной релаксации в вейлевских полуметаллах [12,13].

В настоящей работе представлены результаты исследований спектра ЯМР и времени ядерной спин-решеточной релаксации 125 Те в монокристаллическом образце WTe2 при комнатной температуре и ниже температуры топологического фазового перехода для монокристалла, находящегося в двух различных ориентациях в магнитном поле, при которых кристаллографическая ось c была направлена параллельно и перпендикулярно внешнему квантующему магнитному полю B_0 .

2. Образцы и эксперимент

Монокристалл WTe2 выращивался методом химического газового транспорта с использованием Br_2 в качестве транспортного агента. Рост кристалла осуществлялся в условиях вакуума в течение трех недель в запаянной кварцевой ампуле. Образец для исследований имел форму тонкой пластины толщиной порядка $0.2\,\mathrm{mm}$ и площадью поверхности $12\,\mathrm{mm}^2$, ориентированной перпендикулярно оси c. Кристаллическая структура, фазовая однородность и направления кристаллографических осей определялись методом рентгеновской дифракции. По данным рентгеноструктурного анализа (рис. 1) WTe2 при комнатной температуре и атмосферном давлении

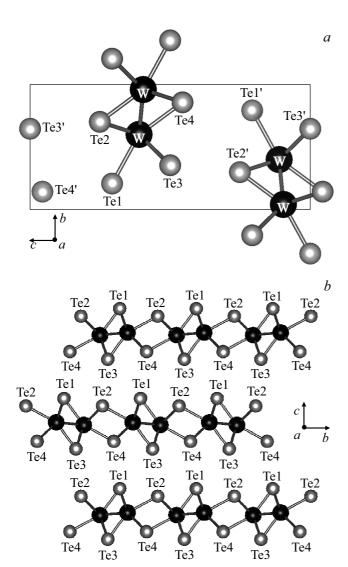


Рис. 1. Спектр рентгеновской дифракции для порошка WTe_2 , полученного из части исследуемого монокристалла, при комнатной температуре. Наблюдаемые пики соответствуют Td-фазе WTe_2 .

находится в Td-фазе (или γ -фазе), которая остается стабильной и при изменении температуры [14,15]. Td-фаза обладает ромбической симметрией с нецентросимметричной пространственной группой $Pmn2_1$. Элементарная ячейка содержит четыре формульных единицы. Таким образом, в ней находится восемь атомов теллура. Эти атомы являются попарно кристаллографически-эквивалентными (рис. 2, a). Атомы теллура, обозначенные на рис. 2, a как a0 теa1, остаются магнитно-эквивалентными в наших экспериментах. Неэквивалентные позиции атомов теллура будем обозначать в дальнейшем как a1, a2, a3, a4 (рис. a5).

Дителлурид вольфрама имеет слоистую структуру перпендикулярно оси c (рис. 2, b). Трехкратные слои атомов Te-W-Te (связь W-Te является ковалентной) связаны между собой слабым взаимодействием Ван-дер-Ваальса, поэтому материал легко расщепляется перпендикулярно оси c.

Измерения проводились на импульсном ЯМР спектрометре Bruker Avance 500 в магнитном поле 11.74 Т. Рабочая частота для ядер ¹²⁵Те равнялась 157.79 MHz. Исследуемая монокристаллическая пластина WTe₂ ориентировалась в магнитном поле таким образом, что кристаллографическая ось c была направлена параллельно и перпендикулярно внешнему квантующему магнитному полю B_0 . Измерения проводились при комнатной температуре, а также при 41 К на низкотемпературном датчике широких линий НРLТВВ с криостатом. Стабилизация температуры была не хуже 0.5 К. Для возбуждения спинового эха использовалась импульсная последовательность $\pi/2$ - τ - π с длительностью 90-градусного импульса от 4.5 до 5.5 µs в зависимости от исследуемой ориентации монокристалла и температуры. Время ядерной спин-решеточной релаксации измерялось по восстановлению продольной намагниченности после насыщения сигнала ЯМР серией 90-градусных импульсов (saturation recovery). Природная распространенность ¹²⁵Те около 7%, поэтому количество накоплений в каждом эксперименте было не менее 211. В результате измерений получено два типа спектров: суммарные и огибающие.

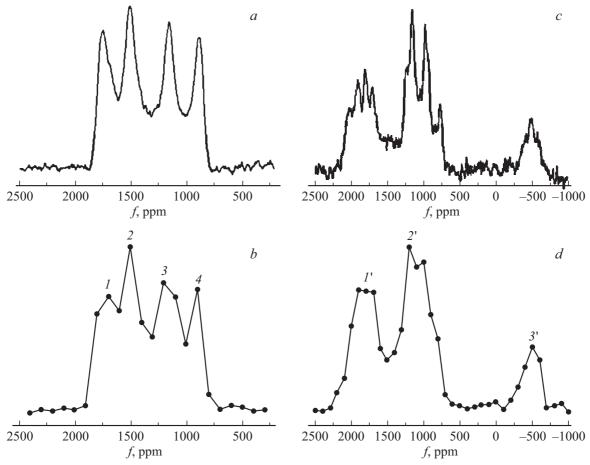
Рис. 2. Кристаллическая структура WTe₂. Черные и серые кружки обозначают атомы вольфрама и теллура соответственно. (a): элементарная ячейка, содержащая четыре формульных единицы. (b): расположение атомов теллура и вольфрама в плоскости (cb). Трехкратные слои Te-W-Te расположены перпендикулярно кристаллографической оси c.

Первый тип спектров получался при суммировании сигналов спинового эха на различных отстройках по частоте. Второй тип спектров — это построение огибающей по точкам, соответствующим интенсивности сигнала эха, полученного при варьировании частоты возбуждения. Сдвиги частоты ЯМР 125 Те рассчитывались по универсальной шкале Ξ [16], связанной со сдвигом резонанса 1 Н в разбавленном растворе Me_{2} Те в $C_{6}D_{6}$.

3. Результаты

На рис. 3 представлены спектры ЯМР 125 Те, полученные для монокристалла WTe₂ в двух ориентациях относительно внешнего магнитного поля, $c \parallel B_0$ и $c \perp B_0$, при температуре 41 К. Следует отметить различие сдви-

Времена ядерной спин-решеточной релаксации 125 Те для монокристалла WTe2 в двух ориентациях относительно внешнего магнитного поля при указанных температурах


<i>T</i> , K	Ориентация $c \parallel B_0$		Ориентация $c\perp B_0$		
	T_1' , ms	$T_1^{\prime\prime}$, ms	T_1' , ms	$T_1^{\prime\prime}$, ms	$T_1^{\prime\prime\prime}$, ms
293	8.6 ± 0.3	33 ± 2	16 ± 1	29 ± 3	12 ± 1
41	282 ± 7	890 ± 11	580 ± 20	927 ± 7	360 ± 30

гов наблюдаемых линий спектра ЯМР 125Те для исследованных ориентаций. Для ориентации $c \parallel B_0$ спектр ЯМР 125 Те состоит из четырех линий приблизительно одинаковой интенсивности, имеющих выраженный сдвиг резонансных частот в высокочастотную область (рис. 3, a, b). Линии центрированы около частот 1700, 1500, 1150 и 900 ррт. Для второй исследуемой ориентации монокристалла, $c \perp B_0$, в суммарном спектре ЯМР 125 Те (рис. 3, c) можно выделить три отдельные составляющие, которые сильно "изрезаны". Огибающая демонстрирует наличие трех линий, имеющих разную интенсивность, более явно (рис. 3, d). Видно, что для данной ориентации помимо линий в высокочастотной области со сдвигами порядка 1800 и 1100 ррт наблюдается линия меньшей интенсивности в области низких частот, имеющая сдвиг около -500 ррт. Аналогичный вид имели спектры при комнатной температуре. Отметим, что приведенные результаты получены в течение одного месяца, и нами наблюдались заметные изменения спектра ЯМР спустя полгода.

Восстановление продольной ядерной намагниченности во времени хорошо подчинялось экспоненциальному закону для исследованных ориентаций монокристалла $c \parallel B_0$ и $c \perp B_0$ как при комнатной температуре, так и при 41 К. Пример временной зависимости намагниченности после насыщения показан на рис. 4. В таблице приведены полученные значения времени ядерной спин-решеточной релаксации T_1 для обеих ориентаций при двух температурах. Для ориентации $c \parallel B_0$ даны усредненные значения времен ядерной спин-решеточной релаксации для двух линий, имеющих больший сдвиг, (T_1') и двух линий с меньшим сдвигом (T_1'') . Для $c \perp B_0$ приведены времена спин-решеточной релаксации как для линий со сдвигом в высокочастотную область, T_1' и T_1'' , так и для линии в области низких частот (T_1''') . Как видно из таблицы, значения времен T_1 для разных групп линий сильно отличаются.

4. Обсуждение результатов

Ядра 125 Те имеют спин, равный 1/2, то есть они обладают лишь дипольным моментом. Для ядер со спином 1/2 для каждого неэквивалентного положения в решетке должна наблюдаться одна линия, соответствующая переходу между уровнями $+1/2 \leftrightarrow -1/2$. Поскольку в кристаллической структуре WTe_2 имеется

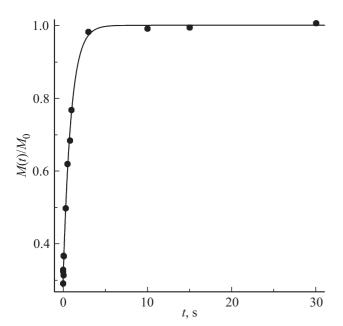


Рис. 3. Суммарные спектры (a,c) и огибающие сигналов эха (b,d) ¹²⁵Те для монокристаллической пластины WTe₂ в ориентации $c \parallel B_0$ (a,b) и $c \perp B_0$ (c,d) при температуре 41 К. Цифры I-4 нумеруют линии спектра ЯМР ¹²⁵Те, для ориентации $c \parallel B_0$. Цифрами I'-3' обозначены линии спектра ЯМР ¹²⁵Те для ориентации $c \perp B_0$.

четыре неэквивалентных позиции атомов теллура, то полученные нами линии в спектрах ЯМР 125Те должны соответствовать атомам теллура, находящимся в этих позициях. Для ориентации $c \parallel B_0$ спектр состоит из четырех линий примерно одинаковой интенсивности (рис. 3, a, b). Таким образом, можно предположить, что эти линии соответствуют четырем неэквивалентным позициям атомов теллура в WTe2. Для ориентации монокристалла $c \perp B_0$ вид спектра значительно отличается. В области частот 700-2500 ррт наблюдаются две линии с разными интенсивностями, кроме того, в спектре присутствует гораздо менее интенсивная линия со сдвигом в низкочастотную область. Исходя из интенсивностей линий в спектре, можно предположить, что центральная линия обусловлена двумя парами атомов теллура в элементарной ячейке, а две линии на частотах около 1800 и -500 ррт возникают благодаря остальным четырем атомам теллура. При условии попарной магнитной эквивалентности атомов теллура должно выполняться соотношение интенсивностей наблюдаемых линий 2:4:2. Однако, как видно из рис. 3, c, d, отношение интенсивностей линий в спектре ЯМР 125Те ближе к 3:4:1. Возможная причина такого несоответствия заключается в различии фаз для отдельных линий спектра, которое может приводить к отклонениям в соотношении наблюдаемых интенсивностей.

Дителлурид вольфрама является полуметаллом, поэтому можно предположить, что основной вклад в сдвиги наблюдаемых линий спектра ЯМР 125 Те вносит сдвиг Найта K_s за счет сверхтонкого взаимодействия ядер с электронами проводимости. Однако, поскольку величины сдвига Найта не такие большие, как наблюдались, например, для различных дителлуридов переходных металлов в работе [17], то химический сдвиг, который для некоторых материалов может быть довольно большим [18], также может вносить значительный вклад в общий сдвиг линий в спектре ЯМР 125 Те для WTe2. Таким образом, полный сдвиг линий в спектре ЯМР будет определяться как сумма химического сдвига и сдвига Найта: $\delta = \delta_{\rm ch} + K_s$.

Из сравнения полученных спектров ЯМР 125 Те при комнатной температуре и 41 К было найдено, что при низкой температуре для ориентации монокристалла WTe₂ $c \parallel B_0$ сдвиги линий I и 2 спектра ЯМР (рис. 3, b) уменьшились примерно на 230 ррт, а сдвиги линий 3 и 4 (рис. 3, b) уменьшились примерно на 120 ррт. При

Рис. 4. Восстановление продольной ядерной намагниченности 125 Те со временем t до равновесного значения M_0 после насыщения для монокристалла WTe₂ в ориентации $c \perp B_0$ при температуре 41 K для линии, центрированной около 1100 ppm.

этом оказалось, что линии 1 и 2 спектра ЯМР 125 Те при комнатной температуре находятся достаточно близко друг к другу, что привело к тому, что при 293 К фактически наблюдалась одна уширенная линия в области частот 1550-2100 ppm. Тогда как при 41 K линии 1 и 2 разделяются. Ширина линий 3 и 4 осталась неизменной при изменении температуры. Для ориентации $c\perp B_0$ линия I' (рис. 3, d) смещается при низкой температуре достаточно слабо (примерно на 60 ррт), а линии 2' и 3' спектра ЯМР (рис. 3, d) смещаются сильнее, примерно на 160 ррт. При этом при 41 К происходит небольшое уширение центральной линии спектра (2') по сравнению с линией при комнатной температуре. Линии 1' и 3'свою ширину не меняют. Таким образом, ширина и положение линий спектра ЯМР 125Те для обеих ориентаций монокристалла при понижении температуры от комнатной до 41 К не претерпевают значительных изменений. Это означает, что вид спектра оказался малочувствительным к фазовому переходу. Такой результат согласуется с выводами, полученными в работе [12] из теоретических расчетов, а также с экспериментальными результатами для полуметалла Дирака Cd₃As₂ [10] в диапазоне температур 220-380 К. В работе [17] приводится спектр ЯМР 125Те при комнатной температуре для порошка WTe₂, состоящий из одной широкой линии (ширина линии порядка 600-900 ррт) с изотропным сдвигом около 550-600 ррт. Полученные нами положения линий коррелируют с этими данными.

В отличие от сдвигов линий спектра ЯМР 125 Те, которые слабо изменились в результате ТФП, время спин-решеточной релаксации ядер 125 Те изменилось очень сильно, как видно из таблицы. Дителлурид воль-

фрама относится к полуметаллам, для которых количество подвижных носителей заряда слабо зависит от температуры [19]. В таком случае сдвиг Найта также должен слабо зависеть от температуры, что согласуется с нашими результатами. Исходя из соотношения Корринги [20], описывающего связь сдвига Найта в металлах с тривиальной топологией со временем ядерной спин-решеточной релаксации T_1 , время спин-решеточной релаксации должно меняться обратно пропорционально температуре Т. Учитывая малое изменение сдвига Найта, согласно закону Корринги, T_1 должно измениться при 41 К приблизительно в 7 раз по сравнению с комнатной температурой. Однако измерения времени ядерной спин-решеточной релаксации $^{\hat{1}25}$ Те показали, что ее скорость замедляется примерно в 30 раз при 41 К по сравнению с комнатной температурой для монокристалла WTe₂ в обеих исследованных ориентациях. Очевидно, что соотношение Корринги не выполняется во всем диапазоне от комнатной температуры до 41 К. При этом зависимость $T_1(T)$ является более сильной. Можно предположить, что отклонение от закона Корринги обусловлено особенностями дисперсионного спектра WTe₂, связанными с точками Вейля.

В работе [12] было показано, что вклад квазичастиц Вейля в релаксацию приводит к тому, что время релаксации ведет себя как

$$\frac{1}{T_1} \propto T^3 \ln \frac{k_{\rm B}T}{\hbar \omega_0},\tag{1}$$

где $k_{\rm B}$ — постоянная Больцмана, \hbar — постоянная Планка, ω_0 — ларморовская частота ядерной прецессии. Такой характер зависимости скорости ядерной спин-решеточной релаксации $(1/T_1)$ наблюдался для полуметалла Вейля ТаР в работе [11] при температурах выше 30 К. В работе [13] соотношение (1) было уточнено и проанализировано по отношению к экспериментальным данным для ТаР из работы [11]. Для полуметалла Дирака ${\rm Cd}_3{\rm As}_2$ [10] наблюдалась иная зависимость T_1 от температуры: ниже 330 К скорость ядерной спин-решеточной релаксации менялась пропорционально T^2 .

5. Заключение

Проведенные исследования методом ЯМР трехмерного полуметалла Вейля WTe₂ при двух температурах по-казали, что топологические особенности зонной структуры WTe₂ не сказываются заметным образом на таких характеристиках ЯМР, как сдвиг и ширина линий. Вид спектров ЯМР ¹²⁵Те для монокристалла WTe₂ при двух ориентациях в магнитном поле допускал интерпретацию в предположении о четырех неэквивалентных позициях теллура в кристалле. Восстановление продольной ядерной намагниченности после импульсного насыщения линий спектра подчинялось экспоненциальному закону. Было продемонстрировано, что зависимость времени спин-решеточной релаксации от температуры для обеих ориентаций кристалла гораздо сильнее, чем следует

из закона Корринги. Отклонение от закона Корринги, вероятно, обусловлено особенностями топологии электронной зонной структуры WTe₂.

Финансирование работы

Работа выполнена при поддержке РФФИ (гранты № 19-57-52001, 19-07-00028 и 17-52-52008), в рамках государственного задания Минобрнауки РФ (тема "Спин", № АААА-А18-118020290104-2) при частичной поддержке Правительства Российской Федерации (постановление № 211, контракт № 02.А03.21.0006). Измерения проводились с использованием оборудования ресурсных центров Научного парка СПбГУ "Центр диагностики функциональных материалов для медицины, фармакологии и наноэлектроники" и "Рентгенодифракционные методы исследования".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A.A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, B.A. Bernevig. Nature 527, 495 (2015).
- [2] F.Y. Bruno, A. Tamai, Q.S. Wu, I. Cucchi, C. Barreteau, A. de la Torre, S. Mc Keown Walker, S. Riccó, Z. Wang, T.K. Kim, M. Hoesch, M. Shi, N.C. Plumb, E. Giannini, A.A. Soluyanov, F. Baumberger. Phys. Rev. B 94, 121112(R) (2016).
- [3] C. Herring. Phys. Rev. 52, 365 (1937).
- [4] S. Murakami. New J. Phys. 9, 356 (2007).
- [5] A.A. Burkov. Nature Mater. 15, 1145 (2016).
- [6] S.M. Young, S. Zaheer, J.C. Teo, C.L. Kane, E.J. Mele, A.M. Rappe. Phys. Rev. Lett. 108, 140405 (2012).
- [7] Y. Sun, S.-C. Wu, M.N. Ali, C. Felser, B. Yan. Phys. Rev. B 92, 161107 (2015).
- [8] Z. Wang, D. Gresch, A.A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R.J. Cava, B.A. Bernevig. Phys. Rev. Lett. 117, 056805 (2016).
- [9] Y.-Y. Lv, X. Li, B.-B. Zhang, W.Y. Deng, S.-H. Yao, Y.B. Chen, J. Zhou, S.-T. Zhang, M.-H. Lu, L. Zhang, M. Tian, L. Sheng, Y.-F. Chen. Phys. Rev. Lett. 118, 096603 (2017).
- [10] D. Koumoulis, R.E. Taylor, J. Mc Cormick, Y.N. Ertas, L. Pan, X. Che, K.L. Wang, L.-S. Bouchard. J. Chem. Phys. 147, 084706 (2017).
- [11] H. Yasuoka, T. Kubo, Y. Kishimoto, D. Kasinathan, M. Schmidt, B. Yan, Y. Zhang, H. Tou, C. Felser, A.P. Mackenzie, M. Baenitz. Phys. Rev. Lett. 118, 236403 (2017).
- [12] Z. Okvátovity, F. Simon, B. Dóra. Phys. Rev. B 94, 245141 (2016).
- [13] Z. Okvátovity, H. Yasuoka, M. Baenitz, F. Simon, B. D?ra. Phys. Rev. B 99, 115107 (2019).
- [14] D. Kang, Y. Zhou, W. Yi, C. Yang, J. Gou, Y. Shi, S. Zhang, Z. Wang, C. Zhang, S. Jiang, A. Li, K. Yang, Q. Wu, G. Zhang, L. Sun, Z. Zhao. Nature Commun. 6, 7804 (2015).
- [15] X.-C. Pan, X. Chen, H. Liu, Y. Feng, Z. Wei, Y. Zhou, Z. Chi, L. Pi, F. Yen, F. Song, X. Wan, Z. Yang, B. Wang, G. Wang, Y. Zhang. Nature Commun. 6, 7805 (2015).

- [16] R.K. Harris, E.D. Becker, S.M. C.De Menezes, R. Goodfellow, P. Granger. Pure Appl. Chem. **73**, 1795 (2001).
- [17] I. Orion, J. Rocha, S. Jobic, V. Abadie, R. Brec, C. Fernandez, J.-P. Amoureux. J. Chem. Soc., Dalton Trans. 20, 3741 (1997).
- [18] B. Njegic, E.M. Levin, K. Schmidt-Rohr. Solid State Nucl. Magn. Res. 55-56, 79 (2013).
- [19] C.H. Lee, E.C. Silva, L. Calderin, M.A. Nguyen, M.J. Hollander, B. Bersch, T.E. Mallou, J.A. Robinson. Sci. Rep. 5, 10013 (2015).
- [20] J. Korringa. Physica 16, 601 (1950).

Редактор Д.В. Жуманов