Люминесцентные свойства выращенных на InP слоев GaInAsP с градиентом состава по толщине

© Г.С. Гагис^{1,2}, А.С. Власов¹, Р.В. Левин¹, А.Е. Маричев¹, М.П. Щеглов¹, Т.Б. Попова¹, Б.Я. Бер¹, Д.Ю. Казанцев¹, Д.В. Чистяков³, В.И. Кучинский^{1,2}, В.И. Васильев^{1,2}

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", Санкт-Петербург, Россия

³ Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Университет ИТМО), Санкт-Петербург, Россия

E-mail: galina.gagis@gmail.com

07

Поступило в Редакцию 28 июня 2019 г. В окончательной редакции 28 июня 2019 г. Принято к публикации 1 июля 2019 г.

Исследованы люминесцентные свойства при 77 и 300 К эпитаксиальных слоев $Ga_{1-x}In_xAs_yP_{1-y}$, имеющих градиент содержания элементов пятой группы Δy до 0.08 по всей толщине (около 1 μ m). У слоев $Ga_{1-x}In_xAs_yP_{1-y}$ с высокими Δy спектры фотолюминесценции были уширены. У слоев GaInAsP низкого кристаллического совершенства фотолюминесценция либо отсутствовала, либо проявляла себя так, как это характерно для переходов с участием примесных уровней.

Ключевые слова: фотолюминесценция, твердые растворы, гетероструктуры, фотоэлектрические преобразователи.

DOI: 10.21883/PJTF.2019.20.48388.17954

Для активных областей фотоэлектрических преобразователей излучения YAG:Nd-лазера с рабочей длиной волны 1064 nm, согласно [1], подходящими материалами являются твердые растворы Ga_{1-x}In_xAs_yP_{1-y} с составами x = 0.8 - 0.85, y = 0.25 - 0.45. Они обладают прямой структурой энергетических зон и могут быть изготовлены на подложках InP. Ранее нами сообщалось об исследовании подобных эпитаксиальных слоев $Ga_{1-x}In_xAs_yP_{1-y}$, выращенных на подложках InP(001) методом газофазной эпитаксии из металлоорганических соединений при давлении 0.1 bar и температуре 600°С [2,3]. Составы исследованных в [2,3] образцов были измерены методом рентгеновского микроанализа на установке "Camebax" фирмы Сатеса и находились в пределах x = 0.77 - 0.87, y = 0.07 - 0.42. Следует отметить, что в процессе осаждения каждого эпитаксиального слоя GaInAsP, длившегося 60 min, температура, давление и состав газовой смеси поддерживались постоянными. Тем не менее глубинное профилирование состава структур, проведенное с использованием вторично-ионной масс-спектрометрии (ВИМС) на ВИМС-микрозонде САМЕСА IMS-7f, выявило существенное изменение содержания элементов пятой группы Ду практически на протяженности всего слоя GaInAsP, толщины слоев GaInAsP составляли 0.6-0.9 µm. О возможных причинах этого явления мы сообщали в [2,3], где также приводили основные результаты исследований полученных образцов методами рентгеновской дифрактометрии и ВИМС. Целью настоящей работы является анализ фотолюминесценции (ФЛ) образцов, полученных в [2,3], с учетом неоднородности

их состава по толщине. Известно, что люминесцентные характеристики полупроводниковых структур связаны со степенью их кристаллического совершенства, которую мы оценивали по совокупности данных исследований ВИМС и рентгеновской дифрактометрии, а также по результатам исследований самой ФЛ.

Исследования с помощью рентгеновской дифрактометрии проводились на базе трехкристального рентгеновского дифрактометра "ДРОН-2" с использованием симметричных рефлексов типа (004) в CuK_{a1}-излучении. В том случае, если пик отражения от слоя GaInAsP различался при использовании трехкристальной схемы (выполнялось для образцов № 3-5), в режиме $\theta/2\theta$ записывались зависимости интенсивности отражений рентгеновского луча от угла его падения *θ* — кривые дифракционного отражения (КДО). В данном случае углу θ можно сопоставить величину $(\Delta a/a)_{\perp} = (a_{\text{GaInAsP}\perp} - a_{\text{InP}\perp})/a_{\text{InP}\perp}$, которая характеризует различие параметров решетки слоя GaInAsP и подложки InP ($a_{InP\perp}$ и $a_{GaInAsP\perp}$ — параметры решетки подложки InP и слоя GaInAsP по направлению [001]). Поскольку слои GaInAsP в нашем случае неоднородны по составу и имеют целый спектр значений $(\Delta a/a)_{\perp}$, для характеристики образцов мы используем среднее значение $(\Delta a/a)^M_{\downarrow}$, определенное по центру тяжести пика отражения от GaInAsP. Мы полагаем, что чем больше $|(\Delta a/a)^M_{\perp}|$, тем ниже степень кристаллического совершенства. Кристаллическое совершенство образцов № 1 и 2, упомянутых в наших работах [2,3], мы оцениваем как низкое. Поскольку при исследованиях методом рентгеновской дифрактометрии

Рис. 1. Спектры ФЛ для образцов № 2-4 при 77 (*a*) и 300 К (*b*). Для кривых с пометкой ×10 на диаграмме представлен сигнал, увеличенный в 10 раз.

Рис. 2. Полученный методом ВИМС профиль содержания мышьяка *y* и рассчитанный по составу профиль E^{Γ} эпитаксиального слоя Ga_{1-x}In_xAs_yP_{1-y} для образцов № 3 (*a*) и 4 (*b*). Значение d = 0 соответствует поверхности образца, h — положение гетерограницы между слоем Ga_{1-x}In_xAs_yP_{1-y} и InP.

пики отражения от слоев GaInAsP не были различимы при использовании трехкристальной схемы, величина $(\Delta a/a)_{\perp}^{M}$ для них оценивалась с использованием

двухкристальной схемы, и для образца № 1 оценка дает $(\Delta a/a)_{\perp}^{M} = -1.3 \cdot 10^{-2}$, а для образца № 2 — $(\Delta a/a)_{\perp}^{M} = -7 \cdot 10^{-3}$. Образец № 5 исследовался с

использованием трехкристальной схемы, имел широкий пик отражения от слоя, соответствующий диапазону рассогласований $-6 \cdot 10^{-3} < (\Delta a/a)_{\perp} < -1.1 \cdot 10^{-2}$, $(\Delta a/a)_{\perp}^{M} = -9 \cdot 10^{-3}$.

Также при оценке кристаллического совершенства мы рассматривали величину размытия гетерограницы Δh , определенную методом ВИМС по критерию 16%-84% по содержанию индия *x*. У образцов № 1 и 5 $\Delta h = 30$ nm, у образцов № 2–4 $\Delta h = 15-20$ nm. Более высокие значения Δh мы связываем с более низким кристаллическим совершенством.

Данные ФЛ также выступают критерием оценки степени кристаллического совершенства. ФЛ у образцов № 1 и 5 не наблюдалась, а для образцов № 2-4 имела различный характер (рис. 1).

Поведение спектра ФЛ образца № 2 характерно для примесных уровней: при 77 К он имеет интенсивность на порядок ниже, чем у образцов № 3, 4, а при комнатной температуре — сравнимую с интенсивностью ФЛ образцов № 3, 4. Это может свидетельствовать о большом количестве дефектов, которые препятствуют захвату носителей на поверхностные состояния. На большое количество дефектов у образца № 2 указывают и данные рентгеновской дифрактометрии: это крайне низкая интенсивность пика отражения от слоя, сильное рассогласование ($\Delta a/a$)^M_⊥ = $-7 \cdot 10^{-3}$.

Для образцов № 3 и 4 мы связываем вид спектров ФЛ с градиентом состава, поскольку от состава зависит величина прямого энергетического зазора E^{Γ} , и она соответственно будет изменяться по толщине эпитаксиального слоя. Определенные методом ВИМС профили содержания мышьяка у по толщине *d* слоев Ga_{1-x}In_xAs_yP_{1-y} для образцов № 3 и 4 показаны на рис. 2. На КДО образца № 3 спектр отражений от слоя GaInAsP соответствовал изменениям величины $(\Delta a/a)_{\perp}$ в пределах $(0-+6) \cdot 10^{-3}$, что согласуется с наличием большого градиента состава: $\Delta y = 0.08$. Для образца № 4 пик отражений от слоя на КДО соответствовал рассогласованиям $-5 \cdot 10^{-3} < (\Delta a/a)_{\perp} < -3 \cdot 10^{-3}$, а средняя величина $(\Delta a/a)_{\perp}^{M} = -4 \cdot 10^{-3}$ попадает в интервал $-4 \cdot 10^{-3} \leq (\Delta a/a)_{\perp} \leq +2 \cdot 10^{-3}$, установленный в работах [4,5] по данным исследований ФЛ и ям травления для образцов GaInAsP/InP с высоким кристаллическим совершенством. Общее изменение содержания мышьяка на протяженности слоя GaInAsP для образца № 4 составило $\Delta y = 0.01$, ФЛ данного образца была достаточно интенсивной и имела узкий спектр.

Для того чтобы рассчитать распределение E^{Γ} по толщине эпитаксиального слоя d, мы полагали содержание индия x по толщине слоя $Ga_{1-x}In_xAs_yP_{1-y}$ постоянным, а для содержания мышьяка y использовали аппроксимацию выражениями вида

$$y_a(d) = y_\infty + \Delta y_e \exp[(d-h)/h_d] + kd,$$

где d — координата, отсчитываемая в глубь от поверхности структуры, y_{∞} , Δy_e , h_d , k — подгоночные параметры, h — толщина эпитаксиального слоя GaInAsP,

определенная методом ВИМС. Расчеты значений E^{Γ} по толщине эпитаксиального слоя GaInAsP были выполнены с использованием параметров из работы [6], влияние деформаций не учитывалось, поскольку степень деформации оценить проблематично. Результаты расчетов для образцов № 3 и 4 представлены на рис. 2. Для образца № 3, согласно расчетам, значение E^{Γ} минимально у поверхности и возрастает в глубь слоя GaInAsP, в то время как для образца № 4 имеется провисание E^{Γ} в середине слоя GaInAsP. Известно, что между твердыми растворами GaInAsP различного состава, изопериодичными с InP, образуются гетеропереходы первого типа. Это значит, что при увеличении величины E^{Γ} от поверхности в глубину слоя GaInAsP для образца № 3 у поверхности нет барьера для электронов и дырок и не создается эффекта широкозонного окна. У образца № 4 при уменьшении E^{Γ} в глубину слоя образуется потенциальная яма для обоих типов носителей заряда, что подтверждается нашими расчетами по модели, изложенной в [7], т.е., согласно расчетам, на поверхности образца № 4 создается широкозонное окно, и этим мы объясняем достаточно высокую интенсивность ФЛ этого образца при 77 и 300 К, а достаточно малую полную ширину на полувысоте от максимума Δhv можно связать с малым значением градиента состава $\Delta y = 0.01$. При этом и вариации величины E^{Γ} по толщине эпитаксиального слоя у образца № 4 не столь велики, как у образца № 3. При 300 К образец № 3 имеет крайне низкую интенсивность $\Phi \Pi$ и также большую $\Delta h v$, что можно связать с большим градиентом состава и отсутствием эффекта широкозонного окна.

Таким образом, для слоев GaInAsP с удовлетворительным кристаллическим совершенством прослеживается связь между шириной Δhv пиков ФЛ и градиентом состава по толщине.

Благодарности

Авторы выражают глубокую благодарность своим коллегам из ФТИ им. А.Ф. Иоффе: С.И. Трошкову за снимки сколов и поверхностей образцов, сделанные при помощи сканирующего электронного микроскопа (СЭМ); Б.В. Пушному за предоставление образцов для исследования.

Финансирование работы

Исследования ВИМС, СЭМ и "Сатеbax" проводились с использованием оборудования ЦКП "Материаловедение и диагностика в передовых технологиях" (ФТИ им. А.Ф. Иоффе), поддерживаемого Минобрнауки (уникальный идентификатор проекта RFMEFI62117X0018).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Sasaki A. // Jpn. J. Appl. Phys. 1979. V. 19. N 9. P. 1695–1702.
- [2] Васильев В.И., Гагис Г.С., Левин Р.В., Маричев А.Е., Пушный Б.В., Щеглов М.П., Кучинский В.И., Бер Б.Я., Казанцев Д.Ю., Горохов А.Н., Попова Т.Б. // Письма в ЖТФ. 2018. Т. 44. В. 24. С. 17–24.
- [3] Marichev A.E., Levin R.V., Pushnyii B.V., Gagis G.S., Vasil'ev V.I., Scheglov M.P., Kazantsev D.Yu., Ber B.Ya., Popova T.B., Marukhina E.P. // J. Phys.: Conf. Ser. 2018. V. 1135. P. 012076 (1–5).
- [4] Nakajima K., Yamazaki S., Komiya S., Akita K. // J. Appl. Phys. 1981. V. 52. N 7. P. 4575–4582.
- [5] Mircea A., Mellet R., Rose B., Robein D., Thibierge H., Leroux G., Daste P., Godefroy S., Ossart P., Pougnet A-M. // J. Electron. Mater. 1986. V. 15. N 4. P. 205–213.
- [6] Vurgaftman I., Meyer J.R., Ram-Mohan L.R. // J. Appl. Phys. 2001. V. 89. N 11. P. 5815–5875.
- [7] Krijn M.P.C.M. // Semicond. Sci. Technol. 1991. V. 6. N 1. P. 27–31.