02

Комбинационное рассеяние света в хирально чистых и рацемической фазах поликристаллов триптофана и тирозина

© В.С. Горелик^{1,2}, М.Ф. Умаров³, Ю.П. Войнов¹

 ¹ Физический институт им. П.Н. Лебедева РАН, 119991 Москва, Россия
 ² МГТУ им. Н.Э. Баумана, 105005 Москва, Россия
 ³ Вологодский государственный университет, 160000 Вологда, Россия

e-mail: gorelik@sci.lebedev.ru

Поступила в редакцию 22.05.2019 г. В окончательной редакции 22.05.2019 г. Принята к публикации 04.06.2019 г.

Выполнен анализ спектров комбинационного рассеяния (КР) света поликристаллов триптофана и тирозина в широком спектральном интервале методом волоконно-оптической спектроскопии. Регистрация спектров КР проводилась с применением спектрометра типа BWS465-785H в спектральном диапазоне $0-2700 \,\mathrm{cm^{-1}}$, при использовании в качестве возбуждающего излучения непрерывного лазера с длиной волны генерации 785 nm. Сопоставлены параметры спектров КР трех кристаллических фазовых модификаций ароматических аминокислот: левой (L); правой (D) и рацемической фаз (DL). В низкочастотных спектрах КР кристаллических решеток аминокислот триптофана и тирозина обнаружено присутствие интенсивных комбинационных спутников, характеристики которых видоизменяются в зависимости от типа хирального фазового состояния аминокислоты. Полученные результаты могут быть использованы для контроля хиральной чистоты биоактивных препаратов, содержащих аминокислоты.

Ключевые слова: комбинационное рассеяние, кристаллические аминокислоты, хиральное фазовое состояние.

DOI: 10.21883/OS.2019.10.48354.162-19

Введение

Протеиногенные аминокислоты являются составляющими компонентами белков и играют важную роль в процессах жизнедеятельности биологических объектов [1]. Свойства поликристаллических аминокислот во многом определяются образованием цвиттер-ионов и существованием межмолекулярных водородных связей. Изучение спектров комбинационного рассеяния (КР) света аминокислот представляет научный интерес в связи с возможностью характеризации различных фазовых состояний биоструктур (моно- и биполярных форм, лево- и правовращающих оптических изомеров и др.). Наибольший интерес представляют спектральные исследования в низкочастотной области кристаллических аминокислот, которые дают прямую информацию о межмолекулярных взаимодействиях, играющих важную роль во многих биофизических процессах. В геноме человека кодируется 20 аминокислот, входящих в состав белков живых организмов. Наиболее эффективными люминофорами являются ароматические аминокислоты: фенилаланин, тирозин и триптофан. В связи с этим изучение спектров КР ароматических аминокислот представляется важной задачей, позволяющей установить закономерности процессов переноса энергии в белках и сложных биологических объектах. Для эффективно-

го использования аминокислот необходимо обеспечение соответствия их молекулярной структуры и состава номинальным препаратам, воздействие которых на биологические структуры и живые организмы надежно установлено. В зависимости от аминокислотного остатка молекулы аминокислот могут существовать в виде двух зеркально-симметричных изомерах: L (левозакрученная форма) и D (правозакрученная спираль). Кроме того, возможно существование так называемых рацематов (DL) — фаз, в структуре которых присутствуют и "левые" и "правые" молекулы. Исследования колебательных спектров аминокислот неоднократно выполнялись с использованием методов спектроскопии КР [2-15] и ИК спектроскопии [16-23]. В частности, большое внимание уделялось области внутримолекулярных мод, в которой проявлялись колебательные степени свободы аминокислотных остатков, а также колебания групп С-Н и N-Н.

Все естественные протеиногенные аминокислоты имеют L-конформацию. Аминокислоты D-конформации, как правило, живыми клетками не усваиваются. Продуктом химической реакции без участия какого-либо асимметричного агента, реагирующего на зеркальную асимметрию молекулы, является рацемическая фаза (DL-конформация) или смесь в равных концентрациях D- и L-конформаций. Присутствие в организме рацема-

тов и правых (D) конформаций аминокислот приводит к нарушению процессов жизнедеятельности.

В связи с этим возникает задача выявления типа хирального состояния аминокислот для их практического использования при создании фармацевтических препаратов, при введении аминокислот в пищевые продукты в качестве биологически активных добавок и т.д. Для решения такой задачи могут быть использованы различные спектральные методы, включая фотолюминесценцию, КР-спектроскопию, нелинейно-оптическую спектроскопию и т. д. [24-26]. Для однозначного ответа на вопрос о степени соответствия молекулярной структуры и состава анализируемой аминокислоты, характеристики которой присутствуют в базе данных, необходимо провести на количественном уровне сравнение спектров различных модификаций анализируемых аминокислот. В настоящей работе методом КР-спектроскопии проанализированы различные хиральные состояния ароматических аминокислот: триптофана и тирозина.

Методика эксперимента

В качестве объектов исследования нами были выбраны поликристаллические образцы аминокислоты триптофана в виде L-, D- и DL-конформаций, а также Lи D-модификации поликристаллов тирозина. Образцы были предоставлены фирмой "Roanal" (Венгрия). В таблице приведены химические и структурные формулы исследованных фаз триптофана и тирозина. Как видно из этой таблицы, в структуре обеих фаз триптофана присутствуют ароматические кольца, что приводит к фундаментальному электронному поглощению этими соединениями в среднем ультрафиолетовом диапазоне. Соответственно в этих веществах наблюдается фотолюминесценция в фиолетово-синем диапазоне при возбуждении образцов коротковолновым электромагнитным излучением [27].

Для возбуждения и регистрации спектров КР использовалась волоконно-оптическая методика [28-32]. Принципиальная схема используемой экспериментальной установки приведена на рис. 1. В качестве источника возбуждающего излучения был использован лазер 1 с длиной волны генерации $\lambda = 785 \, \text{nm}$ и мощностью 200 mW. Использование длинноволнового инфракрасного излучения для возбуждения спектров КР биологических объектов оправдано в связи с обеспечением неразрушающего воздействия на биологически активные молекулы анализируемой среды. Лазерное излучение вводилось в первый световод 2 и зонд 3. С помощью линзы 5 это излучение фокусировалось на образце 6, имеющем вид поликристаллического порошка. Возникающий в образце сигнал КР попадал на второй световод 14, фильтровался в фокусаторе 13 с помощью фотонного кристалла 9 и поступал на вход мини-спектрометра 12 с многоэлементным приемником. Компьютер 11 был предназначен для цифровой обработки и накопления

Рис. 1. Схема экспериментальной установки: 1 — лазер; 2,14 — первый и второй кварцевые световоды; 3 — зонд; 4 — корпус; 5 — линза; 6 — подложка; 7 — образец; 8,10 — линзы; 9 — фотонный кристалл; 11 — персональный компьютер; 12 — мини-спектрометр FSD0-8; 13 — фокусатор.

спектров КР. Спектральное разрешение при регистрации спектров КР составляло 1 ст⁻¹. Используемый волоконно-оптический метод позволил регистрировать спектры КР от небольшого количества (менее 1 mg) поликристаллического образца с экспозицией 10-100 s. Кварцевый световод использовался для подведения лазерного излучения к веществу и для отведения вторичного излучения, возникающего в анализируемой пробе, к малогабаритному спектрометру типа BWS465-785H. При этом пространственное разрешение на поверхности анализируемой пробы составляло $\sim 0.1\,\text{mm}$. Используемый спектрометр позволял осуществлять регистрацию спектра КР исследуемых веществ в диапазоне значений частоты $0-2700 \,\mathrm{cm}^{-1}$. От мини-спектрометра цифровая информация о спектре КР света передавалась на компьютер. После компьютерной обработки нами были построены нормированные спектры КР триптофана и тирозина, а также построены разностные спектры КР, позволяющие устанавливать степень хиральной чистоты исследуемых образцов на количественном уровне.

Результаты и их обсуждение

На рис. 2 приведены спектры КР L-, D- и DL-триптофана, зарегистрированные в области решеточных и внутримолекулярных мод при комнатной температуре в широком спектральном диапазоне, включающем области решеточных (0–200 сm⁻¹) и внутримолекулярных (200–3000 сm⁻¹) мод. В соответствии с [33] кристалл триптофана принадлежит к пространственной группе $P2_1/c(C_{2h}^5)$ с четырьмя молекулами в элементарной ячейке. При этом 21 решеточное колебание распределяется по группам симметрии, т.е. в спектрах

Химические и структурные формулы триптофана и тирозина

КР должно наблюдаться 12 колебаний, а в ИК поглощении — 9 колебаний кристаллической решетки триптофана. В спектре КР поликристаллов L- и D-триптофана наблюдается по 7 колебаний, а в рацемической смеси DL-триптофана 9 линий, среди которых имеются весьма интенсивные, особенно в низкочастотной области спектра. Вместе с тем интенсивность и полуширина межмолекулярных и внутримолекулярных мод изменяются от линии к линии. Аналогичная картина наблюдается для поликристаллических L- и D-тирозина, спектры КР которых приведены на рис. 3.

Существуют несколько способов сравнения спектров КР веществ: метод наименьших квадратов [34], метод функций корреляции спектров [35–38] и др. Остановимся на описании способа, основанного на построении разностных спектров, задаваемых с помощью распределения интенсивности спектра в нормированном цифровом виде. При этом рассчитываются разностные нормированные спектры рассеянного излучения [39–43] на основе следующего соотношения:

$$K(\nu) = 1 - |I_A(\nu) - I_E(\nu)|.$$
(1)

Здесь $I_A(v)$, $I_E(v)$ — нормированные спектры рассеянного излучения анализируемого вещества (A) и эталонного вещества (E). Для анализа спектров КР используется так

Оптика и спектроскопия, 2019, том 127, вып. 4

называемый коэффициент соответствия К:

$$K_A^E = \frac{\sum_{i=1}^N (1 - |I_A(v) - I_E(v)|)_i}{N}.$$
 (2)

Здесь *N* — число точек, для которых получены цифровые данные о спектре КР.

Для аналитического сравнения спектров КР L-, Dи DL-триптофана и L-, D-тирозина были построены разностные функции с использованием соотношения (1). Соответствующие спектры приведены на рис. 4, *a*-*d*. Разностные спектры строились в диапазоне частот $0-200 \,\mathrm{cm^{-1}}$ с интервалом разбиения $\Delta \nu = 0.25 \,\mathrm{cm^{-1}}$. Кроме того, на основе соотношения (2) были вычислены соответствующие коэффициенты соответствия, которые приведены в подписях к рис. 4, *a*-*d*.

Как видно из рис. 4, a-d, разностные спектры и коэффициенты соответствия позволяют установить степень сходства между различными модификациями аминокислот триптофана и тирозина. Следует отметить, что так как спектры КР L- и D-триптофана мало отличается друг от друга (рис. 4, a и 4, b), то коэффициент соответствия $K_D^L = 0.94$, т.е. ближе к единице по сравнению со спектрами КР L- и DL-триптофана (рис. 4, a и 4, c), где коэффициент соответствия $K_{DL}^L = 0.89$, а коэффициент соответствия D- и DL-триптофана $K_{DL}^D = 0.90$. При

Рис. 2. Сравнение спектров КР L- и D-триптофана (a, b), L- и DL-триптофана (c, d), зарегистрированных в диапазонах частот 0–2700 (a,c) и 0–250 сm⁻¹ (b,d).

Рис. 3. Сравнение спектров КР L- и D-тирозина, зарегистрированных в диапазоне частот 0-2700 (*a*) и 0-250 cm⁻¹ (*b*).

сравнении спектров КР D- и L-тирозина коэффициент соответствия $K_L^D = 0.90$ (рис. 4, d).

При совпадении спектров КР анализируемых объектов коэффициент соответствия должен равняться единице. Отметим, что, как видно из рис. 2, *a*, 2, *b* и 3, наблюдается отличие спектров КР L- и D-триптофана и L- и D-тирозина, т.е. правой и левой форм изучаемых аминокислот, аналогичная картина наблюдалась в спектрах фотолюминесценции (ФЛ) триптофана [27]. Нарушение закона зеркальной симметрии в спектрах левой и правой форм представляет принципиальный интерес [44]. Надежное установление такой закономерности требует дополнительных исследований. Более простое объяснение наблюдаемых отличий в спектрах КР и ФЛ исследованных образцов D- и L-триптофана и тирозина состоит в возможности присутствия в них небольшого количества рацемата. Таким образом, на основе анализа спектров КР и ФЛ поликристаллических ароматических аминокислот может быть установлена степень их хиральной чистоты на количественном уровне.

Наблюдаемое отличие спектров КР и ФЛ хирально чистых фаз от рацемата можно объяснить тем,

Рис. 4. Разностные спектры K(v) в диапазоне $0-200 \,\mathrm{cm}^{-1}$: a — D-триптофан при сравнении с L-триптофаном, коэффициент соответствия $K_{DL}^L = 0.94$; b — DL-триптофан при сравнении с L-триптофаном, коэффициент соответствия $K_{DL}^L = 0.89$; c — D-тирозин при сравнении с L-тирозином, коэффициент соответствия $K_D^L = 0.90$.

что центросимметричная кристаллическая структура DL-триптофана существенным образом отличается от нецентросимметричной кристаллической структуры Dи L-триптофана. Молекулярное взаимодействие между зеркально симметричными молекулами в рацемической фазе приводит к изменению вида соответствующих электронных спектров. Это может быть причиной наблюдаемых в спектрах КР и ФЛ сдвигов положений максимумов и уширений полос.

С другой стороны, наблюдаемое различие в спектрах хирально чистых фаз и рацемата может быть использовано для анализа хиральной чистоты промышленных препаратов, широко используемых в настоящее время для ускорения роста биомассы животных. Присутствие в пище правых изомеров триптофана или тирозина, а также рацематов, входящих в состав белков и биологически активных сред, может приводить к патологии потребителей таких продуктов.

Заключение

Таким образом, в настоящей работе на примере ароматических аминокислот триптофана и тирозина установлено отличие спектров КР хирально чистых фаз ароматических аминокислот тритофана от соответствующей рацемической фазы этой аминокислоты. Кроме того, обнаружено отличие в спектрах КР "левых" и "правых" фаз триптофана, а также тирозина. Нарушение закона зеркальной симметрии в спектрах КР левой и правой форм аминокислот представляет принципиальный интерес. Возможно, наблюдаемые различия в спектрах КР левой и правой форм триптофана и тирозина связаны с особенностями их приготовления и присутствия в них различных примесей, возникающих в процессе роста поликристаллов. Разработанная методика волоконнооптической регистрации спектров КР обеспечивает получение экспресс-информации от небольшого количества анализируемой пробы с высоким пространственным разрешением по поверхности образца 0.1 mm при времени экспозиции, равном 10–100 s.

Известно, что при добавлении в комбикорм аминокислот триптофана и тирозина происходит набор мышечной массы у скота и птиц, а также накопление этих аминокислот в организме животных. Потребление при этом правой или рацемической форм триптофана или тирозина может привести к патологиям в организме и нарушению процессов метаболизма у животных, а также во всей цепочке организмов, в которые попадают правые или рацемические фазы аминокислот. Предлагаемый метод спектрального анализа хиральных фазовых состояний протеиногенных аминокислот может быть полезен для установления хиральной чистоты биологически активных веществ.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда (проект № 19-12-00242).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Breen M.S., Kemena C., Vlasov P.K. et al. // Nature. 2012. V. 490. P. 535.
- [2] Casado J., Lopez Navarrete J.T., Ramirez F.J. // J. Raman Spectrosc. 1995. V. 26. P. 1003.
- [3] Jarmelo S., Reva I., Carey P.R. et al. // Vibr. Spectrosc. 2007.
 V. 43. P. 395.
- [4] Moovendaran K., Martin Britto Dhas S.A., Natarajan S. // Spectrochim. Acta. A. 2013. V. 112. P. 326.
- [5] Chuang C.-H., Chen Y.-T. // J. Raman Spectrosc. 2008. V. 40. P. 150.
- [6] Kim S.K., Kim M.S., Suh S.W. // J. Raman. Spectrosc. 1987.
 V. 18. P. 171.
- [7] Lee H.I., Suh S.W., Kim M.S. // J. Raman. Spectrosc. 1988.
 V. 19. P. 491.
- [8] Dovbeshko G., Berezhinsky L. // J. Mol. Struct. 1998. V. 450.
 P. 121.
- [9] Silva B.L., Freire P.T.C., Melo F.E.A. et al. // Braz. J. Phys. 1998. V. 28. P. 19.
- [10] Lima J.A.Jr., Freire P.T.C., Lima R.J.C. et al. // J. Raman. Spectrosc. 2005. V. 36. P. 1076.
- [11] Zhu G., Zhu X., Fan Q. et al. // Spectrochim. Acta. A. 2011.
 V. 78. P. 1187.
- [12] Yao G., Zhang J., Huang Q. // Spectrochim. Acta. A. 2015.
 V. 151. P. 111.
- [13] Silva J.A.F., Freire P.T.C., Lima J.A.Jr. et al. // Vibr. Spectrosc. 2015. V. 77. P. 35.
- [14] Daniel A., Prakasarao A., Dornadula K. et al. // Spectrochim. Acta A. 2016. V. 152. P. 58.
- [15] Белянчиков М.А., Горелик В.С., Горшунов Б.П., Пятышев А.Ю. // Кристаллография. 2017. Т. 62. № 2.
 С. 278; Belyanchikov М.А., Gorshunov B.P., Gorelik V.S., Pyatyshev A.Y. // Crystallography Reports. 2017. V. 62. N 2.
 P. 290.
- [16] Suzuki S., Ohshima T., Tamiya N. et al. // Spectrochim. Acta. 1959. V. 15. P. 969.
- [17] Dupuy B., Castinel C., Garrigou-Lagrange C. // Spectrochim. Acta A. 1969. V. 25. P. 571.
- [18] *Tipping M., Viras K., King T.A.* // Biopolymers. 1984. V. 23.
 P. 2891.
- [19] Jenkins A.L., Larsen R.A., Williams T.B. // Spectrochim. Acta. A. 2005. V. 61. P. 1585.
- [20] Gaillard T, Trivella A, Stote R.H. et al. // Spectrochim. Acta. A. 2015. V. 150. P. 301.
- [21] Casado J., Lopez Navarrete J.T., Ramirez F.J. // J. Raman Spectrosc. 1995. V. 26. P. 1003.

- [22] Jarmelo S., Reva I., Carey P.R. et al. // Vibr. Spectrosc. 2007. V. 43. P. 395.
- [23] Moovendaran K., Martin Britto Dhas S.A., Natarajan S. // Spectrochim. Acta. A. 2013. V. 112. P. 326.
- [24] Gorelik V.S., Rakhmatullaev I.A. // Inorganic Mater. 2004.
 V. 40. N 7. P. 686
- [25] Downesand A., Elfick A. // J. Sensors. 2010. V. 10. N 3. P. 1871.
- [26] Sikirzhytski V., Virkler K., Lednev I.K. // J. Sensors. 2010. V. 10. N 4. P. 2869.
- [27] Горелик В.С., Умаров М.Ф. // Опт. и спектр. 2018. Т. 125.
 № 1. С. 137; Gorelik V.S., Umarov M.F. // Opt. Spectrosc. 2018. Т. 125. N 1. Р. 144.
- [28] Войнов Ю.П., Горелик В.С., Умаров М.Ф., Морозова С.В. // Краткие сообщения по физике ФИАН. 2011.
 Т. 38. № 11. С. 13; Voinov Y.P., Gorelik V.S., Umarov M.F., Morozova S.V. // Bulletin of the Lebedev Physics Institute. 2011. V. 38. N 11. P. 328.
- [29] Войнов Ю.П., Горелик В.С., Пятышев А.Ю., Умаров М.Ф. // Краткие сообщения по физике ФИАН. 2012.
 Т. 39. № 12. С. 28; Voinov Y.P., Gorelik V.S., Pyatyshev A.Y., Umarov M.F. // Bulletin of the Lebedev Physics Institute. 2012. V. 39. N 12. P. 341.
- [30] Горелик В.С., Литвинова Ф.О., Умаров М.Ф. // Краткие сообщения по физике ФИАН. 2014. Т. 41. № 11. С. 3; Gorelik V.S., Litvinova A.O., Umarov M.F. // Bulletin of the Lebedev Physics Institute. 2014. V. 41. N 11. P. 305.
- [31] Умаров М.Ф., Горелик В.С. Оптическая спектроскопия биоактивных препаратов. Вологда: ВоГУ, 2014. 147 с.
- [32] Войнов Ю.П., Горелик В.С., Умаров М.Ф., Юрин М.Е. Патент РФ № 2488097, 2013.
- [33] Bakke O., Mostad A. // Acta Chemica Scand. 1980. B 34. P. 559.
- [34] Глаголев К.В., Голяк И.С., Голяк И.С., Есаков А.А., Корниенко В.Н., Кочиков И.В., Морозов А.Н., Светличный С.И., Табалин С.Е. // Опт. и спектр. 2011. Т. 110. № 3. С. 486; Glagolev K.V., Golyak Ig.S., Golyak II.S., Esakov А.А., Kornienko V.N., Morozov A.N., Tabalin S.E., Kochikov I.V., Svetlichnyi S.I. // Opt. Spectrosc. 2011. V. 110. N 3. P. 449.
- [35] Глаголев К.В., Морозов А.Н., Назаренко Б.П., Табалин С.Е., Чубурков О.В., Светличный С.И., Никитаев С.П., Рожнов А.В., Филиппов В.И., Григорьев А.А. // Вестник МГТУ им. Н.Э. Баумана, серия "Естественные науки". 2005. № 3. С. 9.
- [36] Бойко А.Ю., Григорьев А.А., Мацюк Г.В., Павлов А.Ю., Шлыгин П.Е., Дворук С.К., Лельков М.В., Морозов А.Н., Табалин С.Е., Шишкин Г.В., Корниенко В.Н., Кочиков И.В., Светличный С.И. // Вестник МГТУ им. Н.Э. Баумана, серия "Естественные науки". 2004. № 1. С. 26.
- [37] Дворук С.К., Корниенко В.Н., Кочиков И.В., Лельков М.В., Морозов А.Н., Светличный С.И., Табалин С.Е. // Оптический журнал. 2004. Т. 71. № 5. С. 7.
- [38] Морозов А.Н., Светличный С.И., Фуфурин И.Л. // Вестник МГТУ им. Н.Э. Баумана, серия "Естественные науки". 2007. № 2. С. 3.
- [39] Duguid J.G., Bloomfield V.A., Benevides J.M., Thomas G.J. // Biophysical. J. 1996. V. 71. N 6. P. 3350.
- [40] Langlais M., Tajmir Riahi H.A., Savoie R. // Biopolymers. 1990. V. 30. N 7. P. 743.
- [41] Kint S., Tomimatsu Y. // Biopolymers. 1979. V. 18. N 5.
 P. 1073.

- [42] Benevides J.M., Overman S.A., Thomas G.J. // J. Raman Spectrosc. 2005. V. 36. N 4. P. 279.
- [43] Бортников К.С., Горелик В.С., Есаков А.А // Неорганические материалы. 2007. Т. 43. № 12. С. 1458; Bortnikov K.S., Gorelik V.S., Esakov А.А. // Inorganic Materials. 2007. Т. 43. N 12. С. 1313.
- [44] Хриплович И.Б. Несохранение четности в атомных явлениях. М.: Наука, 1988. 288 с.