06

Исследование трещиностойкости покрытий микродугового оксидирования после лазерного легирования оксидом циркония

© В.А. Лапицкая,¹ Т.А. Кузнецова,¹ С.А. Чижик,¹ А.И. Комаров,² Ю.И. Фролов,³ А.С. Романюк²

 ¹ Институт тепло- и массообмена им. А.В. Лыкова НАН Беларуси, 220072 Минск, Беларусь
 ² Объединенный институт машиностроения НАН Беларуси, 220072 Минск, Беларусь
 ³ Белорусский национальный технический университет, 220013 Минск, Беларусь e-mail: vasilinka.92@mail.ru

Поступило в Редакцию 28 марта 2019 г. В окончательной редакции 28 марта 2019 г. Принято к публикации 15 апреля 2019 г.

Представлены результаты исследования трещиностойкости покрытия микродугового оксидирования (МДО) после лазерного легирования оксидом циркония. Трещиностойкость определяли методом индентирования с визуализацией отпечатка с помощью атомно-силовой микроскопии. Установлено, что лазерное легирование оксидом циркония приводит к значительному упрочнению МДО-покрытия. Коэффициент интенсивности напряжений в 2.7 раз увеличивается, и повреждаемость поверхности в 2 раза уменьшается по сравнению с исходным МДО-покрытием.

Ключевые слова: трещиностойкость, микродуговое оксидирование, покрытие, лазерное легирование, атомно-силовая микроскопия.

DOI: 10.21883/JTF.2019.11.48331.117-19

Введение

Керамические покрытия, полученные микродуговым оксидированием (МДО) алюминия, благодаря высоким механическим, изоляционным, теплофизическим характеристикам и эксплуатационным свойствам в настоящее время широко используются в машиностроении, в приборостроении, радиоэлектронике, авиационной и космической отраслях, в нефтегазодобывающей промышленности. Для повышения прочности МДО-покрытий применяют такие методы, как добавление дисперсных нано-размерных частиц в электролит при формировании покрытия, обработку лазерным излучением и др. [1–3].

Одним из основных физико-механических свойств керамических покрытий является трещиностойкость и ее контроль на ответственных изделиях обязателен. Трещиностойкость определяют различными методами (изгибом, скалыванием, индентированием), но не все можно применить к покрытиям. Распространенным методом определения трещиностойкости покрытия является метод индентирования путем внедрения пирамиды Виккерса в поверхность покрытия с последующим измерением параметров отпечатков и длины радиальных трещин у отпечатков [4]. Количественно трещиностойкость характеризуется критическим коэффициентом интенсивности напряжений *K*_{1*C*}. Выбор правильного подхода и формулы расчета K_{1C} при методе индентирования зависит от вида формирующихся трещин и отношения длины трещины с, к длине полудиагонали отпечатка а [4]. Традиционно для количественного определения длины трещин используется оптическая микроскопия, а в редких случаях сканирующая электронная микроскопия (СЭМ) [5,6].

Для точного детектирования параметров отпечатка микротвердости и определения вида трещин на поверхности отпечатка перспективно использование метода атомно-силовой микроскопии (АСМ) [7-12]. Совмещение АСМ с методами локального механического деформирования позволяет выявить характеристики фаз материалов и тонких покрытий, не определяемые традиционной техникой [13-16]. Метод АСМ позволяет изучать структуру поверхности с вертикальным разрешением до ангстрем, что позволяет по топографии поверхности выявлять особенности деформации и разрушения материала, не определяемые ни оптикой, ни СЭМ. При малых нагрузках погрешность определения длины трещин и параметров отпечатка оптическим методом по сравнению с АСМ достигает 30% (из них 20% определение длины трещины и 10% — определение длины диагонали отпечатка) [17].

Целью настоящей работы являлось определение критического коэффициента интенсивности напряжений K_{1C} МДО-покрытия после лазерного легирования оксидом циркония методом индентирования с визуализацией отпечатков при помощи ACM.

Методика эксперимента

Микродуговое оксидирование образцов из алюминиевого сплава В95 проводилось в силикатно-щелочном

Рис. 1. Фрагменты дифрактограмм МДО-покрытия в исходном состоянии (*a*) и после лазерного легирования оксидом циркония (*b*).

электролите на основе дистиллированной воды с концентрацией натриевого жидкого стекла Na₂SiO₃ — 4 g/l, гидроксида калия KOH — 2 g/l в анодно-катодном режиме при плотности тока 55 A/dm² в течение 90 min. Затем осуществлялась обработка керамического покрытия лазерным излучением с применением легирующей обмазки ZrO₂. Параметры лазерной обработки были следующие: мощность излучения 1 кW, диаметр луча 3 mm, скорость перемещения луча 400 mm/min [18]. Рентгеноструктурные исследования покрытий проводились на автоматизированном комплексе на базе дифрактометра ДРОН-3М в CuK_α-излучении с применением вторичной монохроматизации рентгеновского пучка при пошаговой (0.1°) съемке с продолжительностью набора импульсов в каждой точке 20 s.

Для исследования использовали шлиф поперечного сечения образца с МДО-покрытием после лазерного легирования оксидом циркония. Отпечатки наносили с помощью микротвердомера ПМТ-3 (Россия). Нагрузка на индентор составляла 10, 20, 30, 50, 100, 200, 300 и 500 g (0.098, 0.196, 0.294, 0.49, 0.981, 1.961, 2.941 и 4.903 N соответственно).

Морфологию поверхности отпечатков исследовали на ACM Dimension FastScan (Bruker, CША) в режиме PeakForce Tapping QNM с использованием стандартных кремниевых кантилеверов типа NSC-11 (производство MicroMash, Эстония) с радиусом кривизны острия зонда 12.2 nm и жесткостью консоли 6.74 N/m. Оценку радиуса кривизны острия зонда определяли с помощью эталонного образца RS-12M — образца шероховатости поликристаллического титана.

Коэффициент интенсивности напряжений K_{1C} определяли по формулам (1)–(3) [3,19]. Формула (1) одна из самых простых в расчетах, однако не всегда правильно проводить расчет K_{1C} без учета модуля упругости и микротвердости образца. Формула (2) — универсальная для расчета K_{1C} в любых материалах. Формула (3) —

формула Ниихары [20] — одна из первых формул, полученная для определения трещиностойкости материалов, учитывающая все параметры контакта: прикладываемую нагрузку, модуль упругости, длину полудиагонали отпечатка и длину образовавшихся трещин:

$$K_{1C} = 0.0752 \, \frac{P}{c^{\frac{3}{2}}},\tag{1}$$

$$K_{1C} = 0.016 \left(\frac{E}{H_V}\right)^{\frac{1}{2}} \frac{P}{c^{\frac{3}{2}}},$$
 (2)

$$K_{1C} = 0.067 H_V a^{\frac{1}{2}} \left(\frac{E}{H_V}\right)^{\frac{4}{5}} \left(\frac{c}{a}\right)^{\frac{4}{2}},\tag{3}$$

где K_{1C} — коэффициент интенсивности разрушения [MPa · m^{1/2}]; P — нагрузка на индентор [N]; E — модуль упругости [GPa]; H_V — твердость по Виккерсу [GPa]; a — длина полудиагонали отпечатка [μ m]; c — длина радиальных трещин около отпечатка [μ m].

Повреждаемость поверхности покрытия определяли как отношение микротвердости H_V к коэффициенту интенсивности напряжений K_{1C} . Данное отношение характеризует способность материала сопротивляться механическим повреждениям его поверхности [21].

Результаты и их обсуждение

Согласно результатам рентгеноструктурного анализа, фазовый состав исходного МДО-покрытия (рис. 1, *a*) представлен оксидом алюминия γ -Al₂O₃ в кубической (ГЦК) и гексагональной α -Al₂O₃ сингониях, при этом преимущественной фазой является низкотемпературная форма γ -Al₂O₃. Лазерное легирование приводит к включению в состав МДО-покрытия оксида циркония в тетрагональной форме (рис. 1, *b*). По выполненной оценке содержание оксида циркония ZrO₂ в поверхностном

Рис. 2. АСМ-изображения поверхности отпечатков индентирования (поле сканирования $25 \times 25 \,\mu$ m): *a* — исходное МДО-покрытие (нагрузка 1.961 N); *b* — МДО-покрытие после лазерного легирования оксидом циркония (нагрузка 1.961 N); *c* — вид трещины на МДО-покрытии (нагрузка 0.981 N); *d* — вид трещины на МДО-покрытии после лазерного легирования оксидом циркония (нагрузка 0.981 N); *e* — профили отпечатков (нагрузка 1.961 N). *I* — исходное МДО-покрытие, *2* — МДО-покрытие с ZrO₂ после переплавки.

слое достигает 50%. В модифицированном покрытии также регистрируются отражения алюминиевой основы, появление которых может быть связано с образованием сквозных пор в результате переплава покрытия в процессе его лазерной обработки [18]. Методом АСМ исследована морфология отпечатков МДО-покрытия после лазерного легирования оксидом циркония (рис. 2, *a*, *b*). По полученным АСМ-изображениям поверхности отпечатков установлено, что лазерное легирование приводит к упрочнению МДО-пок-

Нагрузка <i>Р</i> , N	Средняя длина диагонали отпечатка, d _{av} , µm		Средняя длина трещины <i>с</i> , <i>µ</i> m		Глубина внедрения (ACM), µm	
	МДО- покрытие	МДО- покрытие с ZrO ₂	МДО- покрытие	МДО- покрытие с ZrO ₂	МДО- покрытие	МДО- покрытие с ZrO ₂
0.098	5.55	5.46	0	0	0.40	0.31
0.196	6.37	6.29	2.22	0	0.44	0.38
0.294	7.58	6.64	3.12	0	0.61	0.46
0.490	8.99	7.99	4.74	0	0.69	0.60
0.981	12.26	10.83	7.24	3.50	1.10	0.85
1.961	15.43	14.63	12.13	5.91	1.38	1.21
2.941	20.76	18.26	16.35	8.09	1.86	1.59

Таблица 1. Результаты определения средней длины диагонали отпечатка, глубины внедрения индентора и средней длины трещины методом АСМ

Рис. 3. Зависимость микротвердости покрытий от длины диагонали отпечатка.

рытия и улучшению его стойкости к образованию трещин. Так, на исходном МДО-покрытии трещины появляются уже при нагрузке 0.196 N (табл. 1). На покрытии с лазерным легированием трещины появляются только при нагрузке 0.981 N. Средняя длина образовавшихся трещин при нагрузке 0.981 N на покрытии с лазерным легированием в 2 раза меньше, чем на исходном МДО-покрытии (рис. 2, c, d). Трещины на исходном МДО-покрытии более развитые и имеют большую ширину раскрытия (рис. 2, c). Раскрытие трещин и глубина отпечатков хорошо контролируется профилем сечения поверхности АСМ (рис. 2, e).

При максимальной исследованной нагрузке 4.903 N и на исходном покрытии, и на покрытии с лазерным легированием происходит скалывание и отделение материала по линиям распространения трещин.

На рис. 3 показана зависимость изменения микротвердости исследуемых покрытий от длины диагонали отпечатка. Как следует из представленных данных, микротвердость на участке при нагрузках от 0.981 до 2.941 N практически стабилизируется (на графике соответствует длине диагонали от 10 до 19 μ m). Полученные результаты свидетельствуют также о повышении микротвердости покрытия в результате его лазерного легирования. Так,

Рис. 4. Зависимость коэффициента интенсивности напряжений K_{1C} от средней длины трещины для: *a* — исходного МДО-покрытия (при нагрузках 0.196–2.941 N); *b* — МДО-покрытие после лазерного легирования оксидом циркония (при нагрузках 0.981–2.941 N).

Рис. 5. Повреждаемость поверхности для: *а* — исходного МДО-покрытия (при нагрузках 0.196–2.941 N); *b* — МДО-покрытие после лазерного легирования оксидом циркония (при нагрузках 0.981–2.941 N).

Таблица 2. Значения коэффициента интенсивности напряжений *K*_{1C}, микротвердости и повреждаемости поверхности покрытий

Покрытие	<i>H</i> _V , GPa	Коэффициент интенсивности напряжений K_{1C} , MPa \cdot m ^{1/2}	Повреждаемость поверхности H_V/K_{1C} , $\cdot 10^3/m^{1/2}$
МДО-покрытие	13.6	3.6	3.7
МДО-покрытие после лазерного легирования оксидом циркония	16.6	9.7	1.6

среднее значение микротвердости исходного МДО-покрытия составило 13.6 GPa, а МДО-покрытия после лазерного легирования оксидом циркония — 16.6 GPa (рис. 3). Результаты определения коэффициента интенсивности напряжений K_{1C} по формулам (1)–(3) и его зависимость от длины образовавшихся трещин приведена на рис. 4.

Из данных, представленных на графиках, следует, что значительного различия при расчетах по формулам (1), (2) и (3) в количественном изменении K_{1C} нет. С ростом нагрузки при индентировании K_{1C} уменьшается и при нагрузках 0.981–2.941 N изменяется несущественно. Таким образом, среднее значение K_{1C} составило (табл. 2): для исходного МДО-покрытия 3.6 МРа · m^{1/2}, для МДО-покрытия после лазерного легирования оксидом циркония 9.7 МРа · m^{1/2}.

Также было определена повреждаемость поверхности покрытия (табл. 2). По построенной зависимости повреждаемости поверхности покрытия от длины трещины (рис. 5) установлено, что повреждаемость поверхности исходного МДО-покрытия в 2 раза выше, чем у МДОпокрытия после лазерного легирования оксидом циркония.

Коэффициент повреждаемости для исходного МДО-покрытия составил $3.7 \cdot 10^3 1/m^{1/2}$, а для МДО-покрытия после лазерного легирования оксидом циркония — $1.6 \cdot 10^3 1/m^{1/2}$.

Заключение

Методом рентгенофазового анализа установлено, что лазерное легирование МДО-покрытия оксидом циркония приводит к образованию композиционного керамического слоя, состоящего из оксида алюминия в модификациях γ -Al₂O₃ и α -Al₂O₃ и оксида циркония в тетрагональной форме.

Методом ACM исследована трещиностойкость МДОпокрытия после лазерного легирования оксидом циркония, определены коэффициент интенсивности напряжений и повреждаемость поверхности покрытий.

Коэффициент интенсивности напряжений, характеризующий трещиностойкость, МДО-покрытия после лазерного легирования оксидом циркония в 2.7 раз выше, чем у исходного МДО-покрытия и составил: для исходного МДО-покрытия 3.6 МРа \cdot m^{1/2}, для МДО-покрытия после лазерного легирования оксидом циркония 9.7 МРа \cdot m^{1/2}. Показано, что повреждаемость поверхности покрытия с лазерным легированием в 2 раза ниже, чем на исходном МДО-покрытии.

Установлено, что лазерное легирование оксидом циркония приводит к значительному упрочнению МДОпокрытия и расширяет возможности использования данного покрытия в промышленности.

Финансирование работы

Работа выполнена при поддержке гранта БРФФИ № Ф18Р-239.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Комаров А.И., Витязь П.А., Комарова В.И., Рожкова Н.Н., Золотая П.С. // Сб. науч. статей: Наноструктуры в конденсированных средах. Минск. 2016. С. 14–20.
- [2] Калиниченко А.С., Комаров А.И., Комарова В.И., Мешкова В.В., Искандарова Д.О., Фролов Ю.И. // Современные методы и технологии создания и обработки материалов Сб. науч. труд. в 3 кн. Минск. 2017. С. 176–181.
- Витязь П.А., Комаров А.И., Комарова В.И., Кузнецова Т.А. // Трение и износ. 2011. Т. 32. № 4. С. 313–325.
 [Vityaz P.A., Komarov A.I., Komarova V.I., Kuznetsova Т.А. // J. Friction and Wear. 2011. Vol. 32. N 4. P. 231–241. DOI: 10.3103/S106836661104012X]
- [4] Anstis G.R., Chantikul P., Lawn B.R., Marshall D.B. // J. Am. Ceram. Soc. 1981. Vol. 64. N. 9. P. 533–538. DOI: 10.1111/j.1151-2916.1981.tb10320.x
- [5] Хасанов О.Л., Струц В.К., Соколов В.М., Полисадова В.В., Двилис Э.С., Бикбаева З.Г. Методы измерения микротвердости и трещиностойкости наноструктурных керамик: учебное пособие. Томск: Изд-во Томского политех. ун-та, 2011. 101 с.
- [6] Дмитриевский А.А., Жигачев А.О., Жигачева Д.Г., Тюрин А.И. // ЖТФ. 2019. Т. 89. Вып. 1. С. 107–111. DOI: 10.21883/JTF.2019.01.46970.102-18
- [7] Кузнецова Т.А., Андреев М.А., Маркова Л.В., Чижик С.А. // Трение и износ. 2007. Т. 28. № 3. С. 276–281.
- [8] Кузнецова Т.А., Чижик С.А., Худолей А.Л. // Поверхность. Ренттеновские, синхротронные и нейтронные исследования. 2014. № 12. С. 46. DOI: 10.7868/S020735281409011X [Kuznetsova T.A., Chizhik S.A., Khudoley A.L. // J. Surf. Investigation: X-Ray, Synchrotron and Neutron Techniques. 2014. Vol. 8. N 6. P. 1275–1285. DOI: 10.7868/S020735281409011X]
- [9] Anishchik V.M., Uglov V.V., Kuleshov A.K., Filipp A.R., Rusalsky D.P., Astashynskaya M.V., Samtsov M.P., Kuznetsova T.A., Thiery F., Pauleau Y. // Thin Solid Films. 2005. Vol. 482. N 1–2. P. 248–252. DOI: 10.1016/j.tsf.2004.11.153
- [10] Andreyev M., Markova L., Kuznetsova T., Anishchik V.M. // Vacuum. 2005. Vol. 78. N 2–4. P. 451–454.
 DOI: 10.1016/j.vacuum.2005.01.067
- [11] Кузнецова Т.А., Андреев М.А., Маркова Л.В. // Материалы, технологии, инструменты. 2006. Т. 11. № 1. С. 105.
- [12] *Кузнецова Т.А., Андреев М.А., Маркова Л.В.* // Трение и износ. 2005. Т. 26. № 5. С. 521–529.
- [13] Ulyanova T.M., Titova L.V., Medichenko S.V., Zonov YU.G., Konstantinova T.E., Glazunova V.A., Doroshkevich A.S., Kuznetsova T.A. // Crystallography Reports. 2006. Vol. 51. N SUPPL. 1. DOI: 10.1134/S1063774506070212
- [14] Kuznetsova T.A., Lapitskaya V.A., Chizhik S.A., Warcholinski B., Gilewicz A., Kuprin A.S. // IOP Conf. Series: Materials Science and Engineering. 2018. Vol. 443. https://doi.org/10.1088/1757-899X/443/1/012017
- [5] Kuznetsova T.A., Lapitskaya V.A., Chizhik S.A., Uglov V.V., Shymanski V.I., Kvasov N.T. // IOP Conf. Series: Materials Science and Engineering. 2018. Vol. 443. https://doi.org/10.1088/1757-899X/443/1/012018

- [16] Kuznetsova T.A., Andreev M.A., Markova L.V., Chekan V.A. // J. Friction and Wear. 2001. Vol. 22. N 4. P. 423–428.
- [17] Лапицкая В.А., Кузнецова Т.А., Чижик С.А., Гринчук П.С. // Методолог. аспекты скан. зонд. микроскопии: сб. докл. XIII Междунар. конф., Минск, 16–19 окт. 2018. Минск: Беларуская навука, 2018. С. 260–265.
- [18] Комаров А.И., Фролов Ю.И., Девойно О.Г., Мешкова В.В. // Актуальные вопросы машиноведения. 2018. Вып. 7. С. 207–213.
- [19] Moradkhani A., Baharvandi H., Tajdari M., Latifi H., Martikainen J. // J. Advan. Ceramics. 2013. Vol. 2. N 1. P. 87–102. DOI: 10.1007/s40145-013-0047-z
- [20] Niihara K., Morena R., Hasselman D.P.H. // J. Mater. Sci. Lett. 1982. Vol. 1. P. 13–16.
- [21] Гогоци Г.А., Башта А.В. // Проблемы прочности. 1990. № 9. С. 49-54.