Спектры остаточной фотопроводимости в гетероструктурах с квантовыми ямами HgTe/CdHgTe

© К.Е. Спирин¹, Д.М. Гапонова^{1,¶}, В.И. Гавриленко^{1,2}, Н.Н. Михайлов³, С.А. Дворецкий³

¹ Институт физики микроструктур Российской академии наук,

603950 Нижний Новгород, Россия

² Нижегородский государственный университет им. Н.И. Лобачевского,

603950 Нижний Новгород, Россия

³ Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

[¶] E-mail: dmg@ipmras.ru

Поступила в Редакцию 24 апреля 2019 г. В окончательной редакции 29 апреля 2019 г. Принята к публикации 29 апреля 2019 г.

Исследованы спектры остаточной фотопроводимости (ОФП) в гетероструктурах с квантовыми ямами HgTe/CdHgTe *n*- и *p*-типа проводимости при температуре T = 4.2 K. Показано, что в зависимости от длины волны подсветки ОФП может быть как положительной (увеличение концентрации носителей в квантовой яме), так и отрицательной, причем максимумам ОФП в образце *n*-типа проводимости в целом соответствуют минимумы ОФП в образцах *p*-типа и наоборот. В образцах *p*-типа обнаружено, что подсветка при определенных длинах волн приводит к "вымораживанию" свободных носителей в KЯ, но не к конверсии типа проводимости, что указывает на важную роль в механизме ОФП встроенного электрического поля, которое "выключается" при нейтрализации квантовой ямы.

Ключевые слова: гетероструктура HgTe/CdHgTe, квантовая яма, остаточная фотопроводимость.

DOI: 10.21883/FTP.2019.10.48297.43

1. Введение

Интерес к гетероструктурам с квантовыми ямами (КЯ) НgTe/CdHgTe связан в первую очередь с возможностью реализации в них топологического фазового перехода. При толщине КЯ больше критической, $d > d_c \approx 6.3$ нм, в КЯ происходит инверсия зон и структура переходит в состояние двумерного топологического изолятора [1,2]. При изучении зонной структуры КЯ часто возникает необходимость изменения концентрации носителей, что при магнитотранспортных исследованиях обычно реализуется путем приложения напряжения к нанесенному на поверхность структуры металлическому затвору. Для магнитооптических исследований при низких температурах более удобным способом является использование эффекта остаточной, т.е. сохраняющейся после выключения подсветки, фотопроводимости (ОФП) (см., например, [3-5]). В работе [5] мы впервые исследовали спектры биполярной ОФП в структурах с КЯ HgTe/CdHgTe и показали, что в зависимости от длины волны подсветки концентрация носителей заряда может изменяться более чем на порядок. В настоящей работе мы показываем кардинальные различия в спектрах ОФП для структур *n*- и *p*-типа проводимости.

2. Исследуемые образцы и методика эксперимента

Исследуемые структуры с КЯ были выращены методом молекулярно-лучевой эпитаксии на подложках GaAs(013) с метаморфным буферным и покрывающим слоями CdTe, они содержали KЯ HgTe, окруженную широкозонными барьерами Cd_xHg_{1-x}Te. Параметры слоев для всех исследуемых образцов представлены в таблице. Структуры 110621–110624 специально не легировались, при гелиевой температуре они имели остаточную темновую проводимость *p*-типа (как и структуры с двойными KЯ HgTe/CdHgTe, исследовавшиеся в работе [5]). В структуре 101221 проводилось симметричное селективное легирование барьерных слоев индием, и структура имела остаточную проводимость *n*-типа. Концентрации носителей заряда определялись методом Ван-дер-Пау.

При исследованиях остаточной фотопроводимости образцы размещались в криомагнитной вставке в транспортный гелиевый сосуд Дьюара СТГ-40. На образец квадратной формы размерами 5 × 5 мм по краям наносились два полосковых омических контакта. Через образец пропускался постоянный ток 0.1–100 мкА. С помощью гибкого многожильного световода образец освещался монохроматическим излучением с выхода решеточного монохроматора МДР-23 [3]. Измерялось изменение сопротивления образца в зависимости от длины волны падающего излучения. Для образца 101221 методом Вандер-Пау были также измерены значения концентрации электронов при различных длинах волн подсветки.

3. Результаты и обсуждение

На рис. 1 представлены измеренный спектр ОФП (в единицах сопротивления *R*) образца 101221 *n*-типа

Ширина КЯ, Темновая концентрация Номер Содержание Cd в барьерном слое Cd_xHg_{1-x} Te x образца носителей при T = 4.2 К HM $n \approx 7 \cdot 10^{10} \,\mathrm{cm}^{-2}$ 101221 0.41 8 $p pprox 1 \cdot 10^{11} \, \mathrm{cm}^{-2}$ 110621 0.7 6.3 $p pprox 9 \cdot 10^{10} \, \mathrm{cm}^{-2}$ 110622 0.65 56 $p pprox 6 \cdot 10^{10} \, \mathrm{cm}^{-2}$ 110623 0.62 6 $p \approx 3.5 \cdot 10^{10} \, \mathrm{cm}^{-2}$ 110624 0.62 7.1

Параметры исследованных образцов HgTe/CdHgTe

Рис. 1. Спектр остаточной фотопроводимости для образца HgTe/CdHgTe *n*-типа проводимости 101221. Точки — значения концентрации электронов в квантовой яме в зависимости от длины волны падающего излучения.

проводимости (сплошная линия) и зависимость концентрации электронов n_s от длины волны подсветки λ (точки). Спектральная зависимость ОФП качественно повторяет основные особенности спектров образцов, исследованных в работе [5], где подсветка приводила к конверсии типа проводимости с дырочного на электронный. На рис. 2 представлены спектры ОФП 4 исследуемых последовательно выращенных образцов р-типа. Как видно из рис. 1, коротковолновая подсветка $(350 < \lambda < 700 \, \text{нм})$ приводит более чем к двукратному росту концентрации электронов по сравнению с темновым значением, что сопровождается еще более сильным падением сопротивления, указывающим на увеличение подвижности носителей заряда, обусловленного, очевидно, экранированием случайного потенциала кулоновских рассеивателей (ср. с [5]). Как и в работе [5], в этой области спектра имеются две особенности: локальный максимум сопротивления (и соответствующий минимум концентрации электронов) на длине волны $\lambda \approx 520-530$ нм и резкий рост сопротивления при λ = 780 нм. Соответствующая первой особенности энергия кванта 2.4 эВ близка к сумме ширины запрещенной зоны в покрывающем слое CdTe ~ 1.6 эВ и энергии спинового расщепления в валентной зоне $\Delta_{SO} \approx 0.91$ эВ [6]. Резонансный характер особенности объясняется фотовозбуждением некоего локализованного центра, связанного со спин-отщепленной зоной. На рис. 3 показана схема перераспределения носителей заряда в структуре при подсветке, приводящего к возникновению ОФП, аналогичная представленной в работе [5]. При большой энергии кванта излучения в покрывающем слое CdTe происходит межзонная генерация электроннодырочных пар. Под действием встроенного электрического поля, направленного от подложки в сторону поверхности структуры, происходит пространственное разделение носителей заряда и увлечение электронов к KЯ, увеличивается концентрация носителей в образце, и, как видно из рис. 1, при освещении в области спектра $350 < \lambda < 700$ нм она более чем в 2 раза превосходит

Рис. 2. Спектры остаточной фотопроводимости для исследуемых образцов HgTe/CdHgTe *p*-типа проводимости: *a* — 110621, *b* — 110622, *c* — 110623, *d* — 110624.

Физика и техника полупроводников, 2019, том 53, вып. 10

Рис. 3. Схема перераспределения электронов (*e*) и дырок (*h*) внутри структуры под действием падающего излучения.

темновую концентрацию. Дырки при этом захватываются на ловушки, в роли которых могут выступать вакансии ртути — двойные акцепторы. Ключевая роль поглощения именно в CdTe, а не в барьерных слоях CdHgTe, подтверждается резким возрастанием сопротивления и падением электронной концентрации практически до темнового значения при длине волны 780 нм, соответствующей красной границе межзонного поглощения в CdTe. При дальнейшем увеличении длины волны происходит сравнительно плавный рост концентрации электронов в КЯ и соответствующее уменьшение сопротивления, аналогичные наблюдавшимся в работе [5]. В этой области спектра генерация электронно-дырочных пар происходит на межзонных переходах в барьерных слоях CdHgTe, непосредственно примыкающих к КЯ, где дырки имеют меньшую вероятность быть захваченными в КЯ, поскольку для этого им пришлось бы двигаться против электрического поля. С ростом длины волны и уменьшением кинетической энергии фотовозбужденных дырок вероятность их захвата в КЯ уменьшается, что и обусловливает рост электронной концентрации и падение сопротивления, наблюдаемые вплоть до $\lambda \approx 1300$ нм.

Совершенно иная спектральная картина наблюдается в серии последовательно выращенных нелегированных гетероструктур с КЯ 110621–110624 *р*-типа проводимости (рис. 2). В отличие от исследованных ранее гетероструктур с двойными КЯ [5] и других нелегированных гетероструктур с одиночными КЯ HgTe/CdHgTe, в структурах этой серии ни при каких условиях не наблюдается конверсия типа проводимости — при любой длине волны подсветки в структурах сохраняется *р*-тип проводимости. Сопоставляя спектры ОФП на рис. 1 и 2, можно заметить общую тенденцию: максимумам сопротивления на рис. 1 соответствуют минимумы на рис. 2 и наоборот. Так, максимуму сопротивления при $\lambda = 520-530$ нм в образцах *n*-типа (рис. 1), связываемому с генерацией высокоэнергетичных дырок при переходах из спин-отщепленной зоны в зону проводимости CdTe, в образцах *p*-типа соответствует минимум сопротивления (рис. 2). В последних локальный максимум сопротивления наблюдается при $\lambda = 400-450$ нм (при энергии фотонов 2.8–3.1 эВ), что может быть обусловлено возбуждением электронов в зону проводимости с неких локализованных центров, связанных со спинотщепленной подзоной.

Основными спектральными особенностями на рис. 2 являются три максимума сопротивления, которые наиболее ярко выражены для образцов 110621 и 110622, с максимальными концентрациями дырок в КЯ $\sim 10^{11}\,{\rm cm}^{-2}$ (рис. 2, а, b). Величина сопротивления в этих максимумах достигает 3 МОм, что фактически означает переход образца в состояние изолятора. Наиболее коротковолновый из этих максимумов наблюдается при приближении длины волны к значению 780 нм, соответствующему ширине запрещенной зоны в CdTe, после чего наблюдается резкий спад, в отличие от образцов *п*-типа, где при прохождении этой длины волны (в сторону ее увеличения), напротив, наблюдался резкий рост сопротивления (см., например, [5], рис. 1). "Вымораживание" дырок в КЯ при $\lambda \approx 780$ нм естественно связать с межзонной генерацией электронно-дырочных пар при межзонных переходах в покрывающем слое CdTe. Возникающие электроны увлекаются встроенным электрическим полем в КЯ и компенсируют имеющиеся там дырки. Процесс прекращается при полной компенсации дырок, приводящей к "выключению" встроенного электрического поля. Падение сопротивления при λ < 780 нм можно объяснить тем, что с ростом энергии кванта фотовозбужденные дырки приобретают все бо́льшую кинетическую энергию, что препятствует их немедленному захвату на ловушки, в результате чего они получают возможность продиффундировать в глубь структуры и быть захваченными в КЯ.

Яркие длинноволновые спектральные особенности $(\lambda > 1000 \text{ нм})$, наблюдаемые в исследуемых образцах *p*-типа проводимости (рис. 2), не коррелируют однозначно с меж(под)зонными расстояниями в исследуемых структурах и связаны, очевидно, с фотовозбуждением локализованных центров, расположенных в валентной зоне в барьерных слоях Cd_xHg_{1-x} Те, приводящим к возбуждению электронов в зону проводимости, "сваливающихся" в КЯ. Подтверждением расположения центров именно в барьерных слоях является несомненная зависимость положения максимумов особенностей от состава барьеров (см. таблицу). С уменьшением доли Сd в барьерном слое спектральные пики сближаются, в то время как никакой зависимости от ширины КЯ не наблюдается.

4. Заключение

Таким образом, нами показано, что в гетероструктурах HgTe/CdHgTe с КЯ наблюдается сильная зависимость проводимости образца от длины волны падающего излучения, позволяющего значительно перестраивать сопротивление образца, вплоть до превращения образца в изолятор. Наличие такой зависимости позволяет в процессе различных экспериментальных исследований простым методом добиваться перестройки концентрации носителей.

Финансирование работы

Работа выполнена в рамках государственного задания ИФМ РАН, тема 0035-2019-0020-С01 и при поддержке РФФИ, грант 18-02-00309. В работе использовано оборудование ЦКП ИФМ РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- B.A. Bernevig, T.L. Hughes, S.C. Zhang. Science, 314, 1757 (2006).
- [2] M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang. Science, **318**, 766 (2007).
- [3] В.Я. Алешкин, В.И. Гавриленко, Д.М. Гапонова, А.В. Иконников, К.В. Маремьянин, С.В. Морозов, Ю.Г. Садофьев, S.R. Johnson, Y.-H. Yang. ФТП, **39**, 30 (2005).
- [4] А.В. Иконников, А.А. Ластовкин, К.Е. Спирин, М.С. Жолудев, В.В. Румянцев, К.В. Маремьянин, А.В. Антонов, В.Я. Алешкин, В.И. Гавриленко, С.А. Дворецкий, Н.Н. Михайлов, Ю.Г. Садофьев, N. Samal. Письма ЖЭТФ, 92, 837 (2010).
- [5] К.Е. Спирин, Д.М. Гапонова, К.В. Маремьянин, В.В. Румянцев, В.И. Гавриленко, Н.Н. Михайлов, С.А. Дворецкий. ФТП, **52**, 1482 (2018).
- [6] K.H. Yoo, R.L. Aggarwal, L.R. RamMohan, O.K. Wu. J. Vac. Sci. Technol. A, 8, 1194 (1990).

Редактор Л.В. Шаронова

Spectra of persistent photoconductivity in HgTe/CdHgTe quantum well heterostructures

K.E. Spirin¹, D.M. Gaponova¹, V.I. Gavrilenko^{1,2}, N.N. Mikhailov³, S.A. Dvoretsky³

¹ Institute for Physics of Microstructures, Russian Academy of Sciences,
603950 Nizhny Novgorod, Russia
² Lobachevsky State University,
603950 Nizhny Novgorod, Russia
³ Rzhanov Institute of Semiconductor Physics,
Siberian Branch of Russian Academy of Sciences,
630090 Novosibirsk, Russia

Abstract Spectra of persistent photoconductivity (PPC) in HgTe/CdHgTe quantum well (QW) heterostructures with both *n*and *p*-types conductivity have been investigated at the temperatyre T = 4.2 K. PPC is shown to be either positive (increase of carrier concentration in QW) or negative depending on the illumination wavelength. As a general trend, PPC maxima in *n*-type sample correspond to PPC minima in *p*-type samples and vice versa. It is discovered that in *p*-type samples the illumination with certain wavelengths results in freezing out of free carriers in QWs but not in the conversion of the conductivity type. The latter indicates a significant role in the PPC mechanism of the built-in electric field that is switching off at the QW neutralization.

Публикация материалов Симпозиума завершена.