Люминесцентные свойства боросиликатного стекла, легированного церием

© Д.Т. Валиев¹, С.А. Степанов¹, G. Yao², Y. Zhou²

¹ Национальный исследовательский Томский политехнический университет, Томск, Россия ² Changchun University of Science and Technology, Changchun, China E-mail: dtdamirka@gmail.com

Поступила в Редакцию 6 мая 2019 г. В окончательной редакции 6 мая 2019 г. Принята к публикации 14 мая 2019 г.

ABS-BGP (Al₂O₃-B₂O₃-SiO₂-BaCO₃-Gd₂O4₃-P₂O₅) стекла, допированные различными концентрациями Ce³⁺ были синтезированы методом высокотемпературного плавления. Исследованы оптические, структурные и люминесцентные свойства. Было зафиксировано излучение в спектральной области 350-550 nm, связанное с переходами ионов Ce³⁺. Кинетика затухания люминесценции характеризуется двумя компонентами. Быстрая компонента затухания составляет 45–90 ns. Для медленной компоненты показано уменьшение времени затухания с 4 до 0.9 μ s с увеличением концентрации ионов церия. По результатам изучения спектров люминесценции сделано предположение о существовании различных излучающих состояний иона Ce³⁺ в боросиликатном стекле.

Ключевые слова: сцинтилляционные стекла, люминесцентные свойства, кинетика затухания люминесценции.

DOI: 10.21883/FTT.2019.10.48264.473

1. Введение

09

Расширение сферы применения ионизирующих излучений, включая медицинскую диагностику и терапию, системы радиационного неразрушающего контроля, атомную энергетику определяет потребность в материалах для детектирования ионизирующего излучения, совершенствования их свойств, увеличения чувствительности, быстродействия, разрешающей способности, разработки новых материалов с заданными характеристиками [1–3].

Стекла, активированные редкоземельными ионами (РЗИ) могут служить альтернативой сцинтилляционным кристаллам, т.к. обладают интенсивной люминесценцией, хорошей растворимостью для РЗИ, возможностью модификации физико-химических свойств в широком диапазоне за счет изменения состава стеклообразующих компонент, относительно низкой стоимостью и др. [4-6]. Основной проблемой является более низкий световой выход люминесцирующих стекол по сравнению с кристаллами. Эффективность сцинтилляционного процесса напрямую связана с механизмами диссипации поглощенной энергии в материале. Процессы безызлучательной передачи энергии между ионами-активаторами, между матрицей и активатором, а также закономерности релаксации возбужденного состояния определяют основные характеристики сцинтилляционных материалов [7].

Люминесцентное стекло, активированное ионами Ce³⁺, является перспективным материалом для создания дозиметров, сцинтилляторов, используемых в та-

ких областях как физика высоких энергий и рентгенография. Боросиликатные стекла обладают хорошими физико-химическими и эксплуатационными свойствами, имеют достаточно низкую температуру плавления и являются негигроскопичными, что делает их еще более интересными для изучения [8–13]. Однако на данный момент люминесцентные стекла, активированные РЗИ, имеют низкую световую отдачу по сравнению с монокристаллами. Выбор состава матрицы стекла важен в этом случае и может быть эффективным подходом для повышения интенсивности люминесценции стекла. Разработка оптимальных составов стекол, подбор катионовмодификаторов с целью улучшения физико-химических свойств стекла также представляют немаловажную задачу [14–15].

В настоящее время практически отсутствует информация о процессах, проходящих в боросиликатных стеклах при воздействии коротких импульсов ионизирующего излучения. Использование импульсных электронных пучков наносекундной длительной и времяразрешенной спектроскопии в этом случае является одним из наиболее важных и информативных инструментов для изучения люминесцентных процессов в неорганических стеклах.

Целью данной работы является решение двух основных взаимосвязанных задач: 1) изготовить люминесцентное стекло сложного состава ABS–BGP (Al₂O₃–B₂O₃–SiO₂–BaCO₃–Gd₂O₃–P₂O₅), активированное ионами Ce³⁺ методом высокотемпературного плавления и 2) провести сравнительный анализ катодо-

Таблица 1. Состав изготовленных боросиликатных стекол

Стекло	Состав (mol.%)							$a a/am^3$	
	SiO ₂	B_2O_3	BaCO ₃	Al ₂ O ₃	Gd_2O_3	P_2O_5	Sb_2O_3	Ce ₂ O ₃	ρ , g/cm
ABS-BGP	30.5	24	3	9	30	3	0.5	0	4.529
ABS-BGP:Ce0.1	30.4	24	3	9	30	3	0.5	0.1	4.540
ABS-BGP:Ce0.2	30.3	24	3	9	30	3	0.5	0.2	4.591
ABS-BGP: Ce0.3	30.2	24	3	9	30	3	0.5	0.3	4.708
ABS-BGP:Ce0.4	30.1	24	3	9	30	3	0.5	0.4	4.71

люминесцентных свойств синтезированных стекол. Кроме того, обсуждается влияние различной концентрации ионов Ce³⁺ на люминесцентные свойства и время затухания люминесценции.

2. Образцы и методика эксперимента

Стекло ABS-BGP готовили методом высокотемпературного плавления. Номинальные составы экспериментальных стекол перечислены в табл. 1. Исходными материалами были реагенты Al₂O₃, H₃BO₃, SiO₂, BaCO₃, Gd₂O₃, P₂O₅, Ce₂O₃, Tb₂O₃ и Sb₂O₃. Сырье было номинально чистым. Соответствующие количества этих материалов смешивали в агатовой ступе; смешанные материалы плавили при температуре 1450°C в течение 120 min в корундовом тигле в муфельной печи. После плавления расплав выливали в предварительно разогретую форму из нержавеющей стали и отжигали при температуре 650°C в течение 2h, чтобы снять внутреннее напряжение, а затем охлаждали до комнатной температуры. После резки, шлифовки и полировки были получены образцы стекла толщиной 2 ± 0.02 mm.

Плотность стекла измеряли по методу, основанному на законе Архимеда.

Рентгенофазовый анализ (РФА) стекла осуществлялся на дифрактометре XRD-7000S (Shimadzu, Япония). Спектры оптического пропускания стекол измерялись на спектрофотометре Lomo-Photonics SF-256 UVI в спектральном диапазоне 200–800 nm. Измерение фотолюминесценции и фотовозбуждения стекол проводили при комнатной температуре с помощью спектрофлуориметра Agilent Cary Eclipse с использованием Хе лампы 150 W в качестве источника возбуждения (спектральный диапазон 190–1100 nm).

Для возбуждения импульсной катодолюминесценции использовался ускоритель электронов типа GIN-600 с вакуумным диодом. Длительность электронного импульса на полуширине составляла 10 ns, средняя энергия ускоренных электронов составляла 250 keV. Образцы стекол помещали в вакуумную камеру. Плотность энергии возбуждения варьировалась от 6 до 300 mJ/cm². Кинетику затухания люминесценции регистрировали с помощью фотоумножителя ФЭУ-97 с использованием монохроматора МДР-23 (спектральный диапазон 200–2000 nm, линейная дисперсия 1.3 nm/mm) и цифрового осциллографа Tektronix DPO3034 (300 MHz). Спектр излучения был исправлен на спектральную чувствительность оптического тракта.

3. Результаты и обсуждение

Проведенный РФА (рис. 1, a) подтвердил аморфную природу синтезированных стекол и не дает никаких доказательств разделения или осаждение любой кристаллической фазы во время процессов плавления и отжига с увеличением содержания CeO₂ до 0.4 mol.%.

Спектры пропускания образцов стекла показаны на рис. 1, *b*. С увеличением концентрации ионов Ce^{3+} край собственного поглощения смещается в длинноволновую область спектра. Аналогичный эффект для аморфных матриц переменного состава шихты с увеличением концентрации церия наблюдался в работах [16,17]. Этот эффект чаще всего связан с увеличением концентрации ионов Се⁴⁺. В работе [18] показано взаимное положение полос поглошения ионов Се³⁺ и Се⁴⁺ в кремниевой аморфной матрице. Отмечается, что положение полосы поглощения иона Се³⁺ может несколько меняться. Вместе с тем, положение широкой полосы поглощения иона Се⁴⁺ с максимумом около 240 nm остается относительно постоянным. Положение и ширина данной полосы поглощения объясняется переносом заряда от иона O²⁻ к иону Се⁴⁺ [18–20].

Спектры возбуждения и излучения образцов ABS-BGP: Ce^{3+} показаны на рис. 1, *с*. Пики эмиссии и возбуждения, наблюдаемые при 380 и 325 nm, вызваны возбуждением 4f-5d с последующим излучением 5d-4f ионов Ce^{3+} .

Полоса излучения иона Ce³⁺ состоит из широкой полосы с максимумом при 380 nm при длинах волн возбуждения 325 nm, что способствует переходам с самого низкого уровня 5*d* на спин-орбитальное разделение ${}^{2}F_{5/2}$ и ${}^{2}F_{7/2}$ состояний ${}^{4}f_{1}$ конфигурации [21,22]. Спектры излучения всех образцов стекла подобны.

Были детально изучены катодолюминесцентные спектры, и кинетика затухания люминесценции стекла ABS–BGP, легированного Ce³⁺ в наносекундном временном интервале (рис. 2). При импульсном электронном возбуждении исследуемого стекла наблюдалась

Рис. 1. РФА: (*a*) — спектры оптического пропускания, (*b*) —спектры фотовозбуждения и фотолюминесценции, (*c*) — ABS–BGP стекол с различным содержанием церия.

интенсивная широкозонная люминесценция с пиком излучения при 385 nm. В работе [23] было продемонстрировано, что длина волны 5d-4f переходов ионов Ce³⁺ широко варьируется от ближней ультрафиолетовой до красной области спектра. Связывают данное явление с расщеплением кристаллического поля 5d конфигурации в результате взаимодействия с материалом стеклянной матрицы. Основные процессы при возбуждении импульсом электронов можно разделить на три этапа: первый — это взаимодействие электронов высокой энергии с материалом стекла, которое может обеспечить процесс ионизации. Второй этап связан с переносом некоторой доли возбужденных электронов и дырок к центру люминесценции и, наконец, с процессом люминесценции [24,25]. В этом случае может происходить прямой переход из валентной зоны в зону проводимости с релаксацией без излучения к центру люминесценции ионов Ce^{3+} . Для детального рассмотрения данного излучения спектр был разложен на Гауссианы. В результате получены 6 полос A1-A6 (табл. 2).

Подобный сложный спектральный состав люминесценции в наносекундном временном интервале может объясняться наличием нескольких излучательных центров ионов Ce³⁺. Сообщалось о существовании, по край-

Таблица 2. Положение максимума, полуширина полосы и вклад полосы излучения

Пополетти	$E_{(\mathbf{a}\mathbf{V})}$	EWHM (aV)	Вклад полосы излучения					
параметры	$L_{hv} \max (CV)$		ABS-BGP:Ce0.4	ABS-BGP:Ce0.3	ABS-BGP:Ce0.2	ABS-BGP:Ce0.1		
A1	2.48	0.32	0.045	0.045	0.033	0.018		
A2	2.81	0.26	0.116	0.118	0.071	0.037		
A3	3.04	0.26	0.216	0.175	0.119	0.094		
A4	3.27	0.26	0.319	0.337	0.156	0.153		
A5	3.52	0.26	0.233	0.152	0.108	0.099		
A6	3.74	0.32	0.071	0.068	0.075	0.078		

Рис. 2. Спектры импульсной катодолюминесценции (*a*.1–5) и кинетические кривые затухания люминесценции (*b*.1–5) ABS–BGP стекол с различным содержанием церия.

ней мере, двух различных излучательных центров ионов Ce^{3+} в оксифторборататном стекле. Каждый из таких центров отвечает не более чем за два излучающих перехода [26,27]. В нашем случае мы связываем с ионами церия переходы A1-A5 [23–28]. Природа полосы излучения A6 не ясна. Возможно полоса излучения A6 связана с процессами взаимодействия церия и материала аморфной матрицы, однако данные вопросы требуют дальнейшего изучения.

Кинетика затухания люминесценции в наносекундном временном интервале может быть связана с ионами церия и аппроксимирована суммой двух экспоненциальных функций. "Быстрая" составляющая затухания τ_1 увеличивается с 45 до 90 ns, а "медленная" составляющая τ_2 уменьшается с 4 μ s до 0.9 μ s с ростом концентрации ионов церия (рис. 2, *b*. 1–5, табл. 3). Характер "медленной" составляющей может быть связан с излучением материала аморфной матрицы.

Таблица 3. Характеристические времена затухания люминесценции на длине волны излучения 380 nm

Параметры	ABS-BGP	ABS-BGP: Ce0.1	ABS-BGP:Ce0.2	ABS-BGP: Ce0.3	ABS-BGP:Ce0.4
$ au_1,\mathrm{ns}$ $ au_2,\mu\mathrm{s}$	$\begin{array}{c} 45\pm5\\ 4\pm0.2 \end{array}$	$\begin{array}{c} 70\pm5\\ 2.3\pm0.2 \end{array}$	$\begin{array}{c} 90\pm5\\ 1.3\pm0.2 \end{array}$	$\begin{array}{c} 90\pm5\\ 1.3\pm0.2 \end{array}$	$\begin{array}{c} 90\pm5\\ 0.9\pm0.2 \end{array}$

4. Заключение

Сцинтилляционные стекла ABS-BGP ($Al_2O_3-B_2O_3-SiO_2-BaCO_3-Gd_2O_3-P_2O_5$), легированные различными концентрациями Ce³⁺, были получены методом высокотемпературного плавления. Интенсивность люминесценции постепенно возрастает с увеличением легирующих ионов Ce³⁺ в диапазоне от 0.1 до 0.4 mol.%. Показано, что спектр излучения может быть описан суммой шести полос Гауссовой формы. Полосы излучения на 2.48, 2.81, 3.04, 3.27, 3.52 eV можно связать с излучением иона церия — рост концентрации церия коррелирует с ростом интенсивности данных полос (табл. 2). Полоса на 3.74 eV проявляется только в присутствие церия, но ее вклад остается постоянным. По всей видимости, данную полосу свечения можно отнести к процессам в данной стеклянной матрице в присутствие церия.

Кинетика затухания люминесценции в наносекундном временном интервале может быть аппроксимирована суммой двух экспоненциальных функций. "Быстрая" и "медленная" составляющая изменяются с ростом концентрации церия. "Медленная" составляющая, связанная с излучением стеклянной матрицы, уменьшается с 4μ s до 0.9μ s при увеличении концентрации церия. Конфликт интересов: авторы заявляют об отсутствии конфликта интересов.

Финансирование работы

Эксперименты проводились в рамках реализации программы развития Национального исследовательского Томского политехнического университета среди ведущих университетов мира 5-100.

Список литературы

- [1] T. Yanagida, Opt. Mater. **35**, 1987 (2013).
- [2] M. Nikl, A. Yoshikawa. Adv. Opt. Mater. 3, 463 (2015).
- [3] P. Lecoq, A. Annenkov, A. Gektin, M. Korzhik, C. Pedrini. Springer-Verlag (2006). 251 p.
- [4] G. Okada, S. Vahedi, B. Morrell, C. Koughia, G. Belev, T. Wysokinski, D. Chapman, C. Varoy, A. Edgar, S. Kasap. Opt. Mater. 35, 1976 (2013).
- [5] F. Zaman, G. Rooh, N. Srisittipokakun, H.J. Kim, E. Kaewnuam, P. Meejitpaisan, J. Kaewkhao. Rad. Phys. Chem. 130, 158 (2016).
- [6] E.F. Polisadova, D.T. Valiev, K.N. Belikov, N.L. Egorova. Glass Phys. Chem. 41, 1, 98 (2015)
- [7] J. Pisarska, A. Kos, M. Soltys, L. Zur, W. Pisarski. J. Non-Cryst. Solids 88, 1 (2014).
- [8] S. Baccaro, R. Dall'Igna, P. Fabeni, M. Martini, J.A. Mares, F. Meinardi, M. Nikl, K. Nitsch, G.P. Pazzi, P. Polato, C. Susini, A. Vedda, G. Zanella, R. Zannoni. J. Lumin. 673, 87 (2000).
- [9] H. Luo, X. Hu, W. Liu, Y. Zhang, A. Lu, X. Hao. J. Non-Cryst. Solids 389, 86 (2014).
- [10] Z. Zhu, Y. Zhang, Y. Qiao, D. Liu, B. Wang, Z. Zhang. J. Non-Cryst. Solids 358, 1550 (2012).

- [11] K. Annapurna, R. N. Dwivedi, P. Kundu, S. Buddhudu. Mater. Lett. 58, 787 (2004).
- [12] Carel W.E. van Eijk. Rad. Meas. 38, 337 (2004).
- [13] Y. Fujimoto, T. Yanagida, S. Wakahara, S. Suzuki, S. Kurosawa, A. Yoshikawa. Rad. Meas. 55, 124 (2013).
- [14] L.H. Huang, X.J. Wang, H. Lin, X.R. Liu. J. Alloys Compd. 316, 256 (2001).
- [15] X.Y. Sun, D.G. Jiang, W.F. Wang, C.Y. Cao, Y.N. Li, G.T. Zhen, H. Wang, X.X. Yang, H.H. Chen, Z.J. Zhang, J.T. Zhao. Nucl. Inst. Meth. Phys. Res. A 716, 90 (2013).
- [16] C. Zuo, A. Lu, L. Zhu. Mater. Sci. Eng. B 175, 229 (2010).
- [17] Y. Chen, D. Luo, L. Luo, X. Wang, T. Tang, W. Luo. J. Non-Cryst. Solids 386, 124 (2014).
- [18] M.-L. Brandily-Anne, J. Lumeau, L. Glebova, L. Glebov, J of Non-Cryst. Solids 356, 2337 (2010).
- [19] R. Reisfeld, H. Minti, A. Patra, D. Ganguli, M. Gaft. Spectrochim. Acta A 54, 2143 (1998).
- [20] A. Sontakke, J. Ueda, Y. Katayama, Y. Zhuang, P. Dorenbos, S. Tanabe. J. Appl. Phys. 117, 013105 (2015).
- [21] J. Sun, Z. Zhao. Mater. Lett. 165, 63 (2016).
- [22] L.H. Zheng, X.Y. Sun, R.H. Mao, H.H. Chen, Z.J. Zhang, J.T. Zhao. J. Non Cryst. Solids 403, 1 (2014).
- [23] P. Dorenbos. J. Lumin. **135**, 93 (2013).
- [24] T. Coenen, N.M. Haegel. Appl. Phys. Rev. 4, 031103 (2017).
- [25] M. Nikl. Meas. Sci. Technol. 17, R37 (2006).
- [26] J. Tang, W. Zhou, J. Yang, J. Wang, Y. Li, X. Kuang, H. Liang. Opt. Exp. 20, A510 (2012).
- [27] A. Bahadur, Y. Dwivedi, S.B. Rai. Spectrochim. Acta. A 110, 400 (2013).
- [28] C. Canevali, M. Mattoni, F. Morazzoni, R. Scotti, M. Casu, A. Musinu, R. Krsmanovic, S. Polizzi, A. Speghini, M. Bettinelli. J. Am. Chem. Soc. 127, 14681 (2005).

Редактор Т.Н. Василевская