13.1

Роль кулоновского взаимодействия электронов адсорбата и субстрата: модель поверхностного димера

© С.Ю. Давыдов¹, А.В. Зубов², А.А. Лебедев¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

² Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (Университет ИТМО), Санкт-Петербург, Россия E-mail: Sergei Davydov@mail.ru

Поступило в Редакцию 27 мая 2019 г. В окончательной редакции 27 мая 2019 г. Принято к публикации 7 июня 2019 г.

Кулоновское взаимодействие в адсорбционной системе сведено к короткодействующему отталкиванию электронов адсорбированной частицы и атома подложки, образующих поверхностный димер. Показано, что учет такого взаимодействия приводит к увеличению перехода заряда между компонентами димера и уменьшению перехода заряда между димером и металлической подложкой, вызванного вариацией уровня Ферми адсорбционной системы.

Ключевые слова: кулоновское отталкивание, функция Грина, переход заряда, адсорбат, субстрат.

DOI: 10.21883/PJTF.2019.18.48232.17895

Интерес к роли кулоновского взаимодействия в задаче об адсорбции возник с момента появления первой работы [1], где использовался гамильтониан Андерсона [2], в рамках которого рассматривалось кулоновское отталкивание электронов с противоположными спинами на адатоме (внутриатомное кулоновское отталкивание). Результаты этой и подобных работ были обобщены на случай конечной концентрации адатомов вплоть до монослойного покрытия [3,4]. В дальнейшем было учтено также отталкивание электронов, принадлежащих соседним атомам адсорбированного слоя (межатомное кулоновское отталкивание) [4]. В настоящей работе мы рассмотрим кулоновское отталкивание электронов адсорбированной частицы и подложки и выясним, как учет такого взаимодействия влияет на переход заряда. Удобнее всего осуществить эту программу, воспользовавшись моделью поверхностного димера [5], которая строится следующим образом.

Рассмотрим свободный (не связанный с подложкой) димер, состоящий из частицы, изначально содержащей на орбитали с энергией ε_a один электрон (дырку), и связанный с этой частицей поверхностный атом подложки, характеризуемый одноэлектронным уровнем с энергией ε_s . Соответствующий гамильтониан имеет вид

$$H^0_{dim} = \varepsilon_s \hat{n}_s + \varepsilon_a \hat{n}_a + G \hat{n}_s \hat{n}_a - t(s^+ a + a^+ s).$$
(1)

Здесь G — межатомное кулоновское отталкивание, $\hat{n}_s = s^+ s$ и $\hat{n}_a = a^+ a$ — операторы чисел заполнения для атома подложки в состоянии $|s\rangle$ и частицы в состоянии $|a\rangle$, $s^+(s)$ и $a^+(a)$ — соответствующие операторы рождения (уничтожения), t — энергия перехода электрона между частицей и поверхностным атомом подложки. В рамках расширенной теории Хартри-Фока [1–4] гамильтониан (1) можно преобразовать к виду

$$H_{dim}^{0} = w_{s}\hat{n}_{s} + w_{a}\hat{n}_{a} - t(s^{+}a + a^{+}s) - Gn_{s}n_{a}, \qquad (2)$$

где $w_{s(a)} = \varepsilon_{s(a)} + Gn_{a(s)}, n_{s(a)} = \langle \hat{n}_{s(a)} \rangle, \langle \dots \rangle$ означает усреднение по основному состоянию гамильтониана (1). Исходя из уравнения Дайсона [1–4] получим функции Грина, соответствующие гамильтониану (2). Они равны

$$G_{a(s)}^{0}(\omega) = \frac{g_{a(s)}(\omega)}{1 - g_{a}(\omega)g_{s}(\omega)t^{2}},$$
(3)

где $g_{a(s)}^{-1}(\omega) = \omega - w_{a(s)} + i0^+$. Локальные уровни димера, определяемые полюсами функций Грина (3), равны

$$\omega_{\pm} = \overline{w} \pm R/2, \quad R = \sqrt{\Delta^2 + 4t^2}, \tag{4}$$

где $\overline{w} = (w_a + w_s)/2$, $\Delta = w_a - w_s$. Соответствующие плотности состояний $\rho^0_{a(s)}(\omega) = -\pi^{-1} \text{Im} G^0_{a(s)}(\omega)$ для частицы и атома

$$\rho^{0}_{a(s)}(\omega) = D_{\pm}\delta(\omega - \omega_{+}) + D_{\pm}\delta(\omega - \omega_{-}),$$
$$D_{\pm} = (1 \pm \Delta/R)/2, \tag{5}$$

где $\delta(...)$ — дельта-функция Дирака. Отметим, что состояния ω_{-} и ω_{+} отвечают связывающим и антисвязывающим состояниям димера, а множители D_{-} и D_{+} — вероятностям заполнения этих состояний.

Учтем теперь взаимодействие димера с подложкой. Исходя из выражения (5) в пределе слабой связи димера с подложкой, т.е. при $\Gamma(\omega) \ll t$, легко показать, что плотности состояний компонентов димера могут быть приближенно представлены в виде

$$\rho_{a(s)}(\omega) = D_{\pm}\rho_{+}(\omega) + D_{\pm}\rho_{-}(\omega),$$

$$\rho_{dim}(\omega) = \rho_{+}(\omega) + \rho_{-}(\omega),$$

$$\rho_{\pm}(\omega) = \frac{1}{\pi} \frac{\Gamma(\omega)}{(\omega - \omega_{\pm} - \Lambda(\omega))^{2} + \Gamma^{2}(\omega)},$$
(6)

где функция уширения $\Gamma(\omega) = \pi V^2 \rho_s(\omega) (\rho_s(\omega) - плот$ ность состояний подложки, V — усредненный по зоне

2

Схема решения уравнения (8). Точка пересечения прямой диагональной линии Zm с зависимостью Fm(Zm) определяет величину перехода заряда при $\varepsilon_{\rm F}=0$ и $\Gamma_m=0.25t.$ Светлые символы — G = t, темные — G = 2t; кружки — $\delta = 0.5t$, квадраты — $\delta = 2t$. Все энергетические параметры на рисунке приведены в единицах t.

Бриллюэна подложки матричный элемент взаимодействия частица-подложка), функция сдвига локальных уровней

$$\Lambda(\omega) = V^2 P \int\limits_{-\infty}^{\infty}
ho_s(\omega')(\omega-\omega')^{-1}d\omega'$$

(Р — символ главного значения) [5]. Конкретизируя природу подложки, задавая ее плотность состояний $\rho_s(\omega)$, будем предполагать, что изъятие из подложки одного атома не изменяет интегральной (средней по всей бесконечной поверхности) плотности состояний подложки.

В качестве конкретной адсорбционной системы рассмотрим адсорбцию на металле [6]. Для плотности состояний подложки примем приближение бесконечно широкой зоны модели Андерсона [2,4], положив $ho_s(\omega) =
ho_m = ext{const},$ откуда получим $\Gamma(\omega) = \Gamma_m = \pi V^2
ho_m$ и $\Lambda(\omega) = \Lambda_m = 0$. Тогда плотности состояний компонентов эпитаксиального димера (эпидимера) $\rho_{a(s)}^{m}(\omega)$ представляют собой сумму двух лоренцевых контуров $ho^m_{\pm}(\omega) = \Gamma_m / \pi [(\omega - \omega_{\pm})^2 + \Gamma_m^2]$ с весовыми множителями D_{\pm} (4). При температуре T = 0 соответствующие числа заполнения

$$n_{\pm}^{m}=2\int\limits_{-\infty}^{arepsilon_{\mathrm{F}}}
ho_{\pm}^{m}(\omega)d\omega$$

(где $\varepsilon_{\rm F}$ — уровень Ферми системы) равны

$$n_{a(s)}^{m} = D_{\pm} n_{+}^{m} + D_{\pm} n_{-}^{m}, \quad n_{dim}^{0} = n_{+}^{m} + n_{-}^{m}, \quad (7)$$

где $n_{\pm}^m = (2/\pi) \operatorname{arccot}[(\omega_{\pm} - \varepsilon_{\mathrm{F}})/\Gamma_m]$. Здесь выражения (7) в отличие от случая G = 0 [5] являются системой двух уравнений.

Полагая $\varepsilon_s + \varepsilon_a + 2G = 0$, получим $\overline{w} = G(n_s + n_a - 2)$. Если при этом уровень Ферми $\varepsilon_{\rm F} = 0$, то переход заряда между димером и субстратом отсутствует, так что $n_s+n_a=2$ и $n^m_\pm=1\pm(2/\pi)\arctan(R/2\Gamma_m)$, где Rдается выражением (4). Поскольку с ростом G величина R увеличивается, ясно, что учет межатомного кулоновского отталкивания усиливает переход заряда $n_{-}^{m} - n_{+}^{m} = 2\nu_{m} = (4/\pi) \arctan(R/2\Gamma_{m})$ между связывающим и антисвязывающим квазиуровнями. Величина перехода заряда между компонентами димера $Z_m = n_s^m - n_a^m$ определяется из уравнения

$$Z_m = F_m, \quad F_m = 2\Delta \nu_m / R, \tag{8}$$

где $\Delta = \delta + GZ_m$ и $\delta = \varepsilon_a - \varepsilon_s$. Подчеркнем, что знак Z_m совпадает со знаком Δ и, следовательно, со знаком δ . Если $\delta = 0$, а $G \neq 0$, то вместо (8) получаем уравнение

$$(\pi \Gamma_m/2G)x = \arctan x$$

(где $x = GZ_m/2\Gamma_m$), которое имеет ненулевое решение при $\pi \Gamma_m/2G < 1$. Отметим, что в случае $\varepsilon_{\rm F} = 0$ димер представляет собой диполь с зарядами $\pm Z_m/2$.

Схема решения уравнения (8) представлена на рисунке, из которого следует, что с ростом G и б переход заряда Z_m растет. Отметим, что знак Z_m совпадает со знаком δ . Легко показать аналитически, что $dZ_m/d\delta = aZ_m$ и $dZ_m/dG = aZ_m/(1-aG)$, где $a = dZ_m/d\Delta \approx 8t^2/R^3$ и учтено неравенство $\Gamma_m \ll R$. Значения Z_m и производных $dZ_m/d\delta$ и dZ_m/dG для случаев, изображенных на рисунке, представлены в таблице.

Пусть теперь $\varepsilon_{\rm F} \neq 0$, но $|\varepsilon_{\rm F}| \ll R$. Для числа заполнения димера $n_{dim} = n^m_+ + n^m_-$ (см. (7)) получим в линейном по $\varepsilon_{\rm F}/R$ приближении $n_{dim} \approx 2(1 + 2\varepsilon_{\rm F}\Gamma_m/\pi R^2)$ и $n_{-}^{m} - n_{+}^{m} \approx 2(1 - 2\Gamma_{m}/\pi R)$. Отсюда следует, что с ростом G и δ переход заряда между димером и металлом, вызванный вариацией уровня Ферми и равный n_{dim} - 2, уменьшается по модулю пропорционально $|\varepsilon_{\rm F}|/R$, тогда как переход заряда внутри димера, пропорциональный $n_{-}^{m}-n_{+}^{m}$, не меняется.

До сих пор мы рассматривали предел $\Gamma(\omega) \ll t$. Перейдем теперь к противоположному предельному случаю сильной связи димера с подложкой. С учетом взаимодействия с подложкой выражение (3) можно переписать, заменив функции Грина $g_{a(s)}^{-1}(\omega) = \omega - w_{a(s)} + i0^+$ на $\overline{g}_{a(s)}^{-1}(\omega) = \omega - w_{a(s)} + i\Gamma_m$. Полагая $\Gamma_m \gg t$, в нулевом по t^2/Γ_m^2 приближении получим

$$\overline{\rho}_{a(s)}(\omega) = \Gamma_m / \pi \left[\left(\omega - w_{a(s)} \right)^2 + \Gamma_m^2 \right],$$

$$\overline{n}_{a(s)} = (2/\pi) \operatorname{arccot} \left[\left(w_{a(s)} - \varepsilon_{\mathrm{F}} \right) / \Gamma_m \right]. \tag{9}$$

Систему уравнений для $\overline{n}_{a(s)}$ можно свести к одному самосогласованному уравнению $G\overline{Z}_m\eta/\Gamma_m = \tan(\pi\overline{Z}_m/2),$ имеющему ненулевое решение при $\pi \Gamma_m/2G < \eta \leq 1$,

Зависимость перехода заряда Z_m между компонентами димера от параметров δ и G в режиме слабой связи димер-подложка (значения δ и G приведены в единицах t, производные $dZ_m/d\delta$, dZ_m/dG и $dZ_m/d\epsilon_F$ — в единицах t^{-1})

Параметр	$\delta = 0.5, G = 1$	$\delta = 2, G = 1$	$\delta=0.5,G=2$	$\delta=2,G=2$
$Z_m(arepsilon_{ m F}=0) \ dZ_m/d\delta(arepsilon_{ m F}=0)$	1.63 0.48	1.70 0.18	1.10 0.17	1.62 0.04
$dZ_m/dG(\varepsilon_{ m F}=0)$	0.91	0.21	0.21	0.04

где $\overline{Z}_m = \overline{n}_s - \overline{n}_a$, $\eta = \sin(\pi \overline{n}_s/2) \sin(\pi \overline{n}_a/2)$. Таким образом, в режиме сильной связи адсорбат–адсорбент, так же как и в режиме слабой связи, величина \overline{Z} растет с ростом *G*. Полагая число заполнения димера $\overline{n}_{dim} = \overline{n}_s + \overline{n}_a = 2 - \overline{\nu}$ ($|\overline{\nu}| \ll 1$), при $|\overline{Z}_m| \ll 1$ и $|\varepsilon_{\rm F}|/\Gamma_m \ll 1$ получим $\overline{\nu} \approx -4\varepsilon_{\rm F}/(2G + \pi \Gamma_m)$. Следовательно, с ростом *G* величина перехода заряда, вызванного изменением уровня Ферми, понижается, как и в случае слабой связи. Далее с точностью до t^2/Γ_m^2 из (9) получим

$$\rho_{a(s)}(\omega) \approx \overline{\rho}_{a(s)}(\omega) \left(1 - t^2 \frac{\Gamma_m^2 - \Omega_{a(s)}(\Omega_{a(s)} + 2\Omega_{s(a)})}{D(\omega)}\right),$$
(10)

где $D(\omega) = \Omega_a^2 \Omega_s^2 + \Gamma_m^2 (\Omega_a^2 + \Omega_s^2) + \Gamma_m^4$ и $\Omega_{a(s)} = \omega - w_{a(s)}$. Заменяя в (10) энергию $\Omega_{a(s)}$ на $\overline{\Omega}_{a(s)} = \omega - \varepsilon_{a(s)} - G\overline{n}_{s(a)}$ и пренебрегая во втором слагаемом в круглых скобках членами $\sim \overline{\nu}$, Z_m , получим поправку к числу заполнения $\overline{n}_{a(s)}$ порядка $\varepsilon_{a(s)}\Gamma_m t^2 / (\varepsilon_{a(s)}^2 + \Gamma_m^2)^2$ [4]. Отсюда следует, что поправка к \overline{Z}_m имеет третий порядок малости, так что ее учет не меняет качественных результатов, полученных на основании выражений (9).

Аналогичные оценки могут быть сделаны и для адсорбции на полупроводниковой и графеновой подложках (см. схемы расчетов, предложенные в [5]). Здесь, однако, мы ограничимся простейшем случаем адсорбции на металле.

В заключение скажем несколько слов об области применимости модели поверхностного димера. Представляется, что предложенная модель наиболее подходит к адсорбатам, которые могут образовывать с субстратом химические соединения, стабильные в свободном состоянии. В случае металлической подложки таковыми являются, например, атомы (молекулы) кислорода (металлические оксиды [7]) и иные газовые атомы и молекулы [8], а также элементы, образующие интерметаллиды и химические соединения на основе переходных металлов [9].

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Newns D.M. // Phys. Rev. 1969. V. 178. N 4. P. 1123–1135.
- [2] Anderson P.W. // Phys. Rev. 1961. V. 124. N 1. P. 41–53.

- [3] Davison S.G., Sulston K.W. Green-function theory of chemisorption. Berlin: Springer, 2006. 211 p.
- [4] Давыдов С.Ю. Теория адсорбции: метод модельных гамильтонианов. СПб.: Изд-во СПбГЭТУ "ЛЭТИ", 2013. 235 с.; twirpx.com/file/1596114/
- [5] Давыдов С.Ю., Зубов А.В., Лебедев А.А. // Письма в ЖТФ. 2019. Т. 45. В. 9. С. 40–42.
- [6] Браун О.М., Медведев В.К. // УФН. 1989. Т. 157. В. 4. С. 631–666.
- [7] *Henrich V.E., Cox P.A.* The surface science of metal oxides. Cambridge: Cambridge University Press, 1994. 464 p.
- [8] Ramsier R.D., Yates J.T., Jr. // Surf. Sci. Rep. 1991. V. 12. N 6-8.
 P. 243–378.
- [9] Вонсовский С.В., Изюмов Ю.А., Курмаев Э.З. Сверхпроводимость переходных металлов, их сплавов и соединений. М.: Наука, 1977. 384 с.